the use of m-fish to analysis the presence of genome instability in cells exposed to orthopaedic...

21
The use of M-FISH to The use of M-FISH to analysis the presence of analysis the presence of genome instability in cells genome instability in cells exposed to orthopaedic exposed to orthopaedic implant wear debris implant wear debris Presented by: Martin Figgitt Bristol Implant Research Centre Southmead Hospital Bristol

Upload: ami-arnold

Post on 24-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

The use of M-FISH to analysis the The use of M-FISH to analysis the presence of genome instability in presence of genome instability in

cells exposed to orthopaedic implant cells exposed to orthopaedic implant wear debriswear debris

Presented by: Martin Figgitt

Bristol Implant Research Centre

Southmead Hospital

Bristol

ContentsContents

• Introduction – orthopaedic background, implant types etc

•The Bristol Study

•In vitro studies-metal ions

•Results

•Discussion

•Future work

•Acknowledgements

IntroductionIntroduction• Hip and knee orthopaedic implants the second most common elective operation in UK

•More orthopaedic implants in younger eg 40 years old

•Implants produce wear debris in both particulate and metal ion form ( eg cobalt and chromium)

•Does any of this wear debris have any detrimental effects upon patients eg genotoxicity

The Bristol Study

•A comparison of the genotoxicity of two hip resurfacing implants: Birmingham and ASR

•The study is comprised of three components:

1)Patients; M-FISH performed on pre-operative and post-operative blood samples (6 months, 1 year and 2 year)

2)In-vitro study of nanoparticle wear debris

3)In-vitro study of metal ions associated with wear debris

Hip Resurfacing Orthopaedic Implants

ASR Birmingham

Hip Resurfacing- Principle

Outline of procedure X-ray-Implant in situ

The metal ions The metal ions in vitroin vitro model model

•Use primary human fibroblasts (BJ)

• Expose cells to metal ions (Chromium, Cobalt) physiological concentrations

•Culture and harvest cells over a 30 day period

•M-FISH analysis (whole genome to be visualised)- to investigate genome instability

•Fibroblasts (BJ cell line) seeded at 2.5x 105 per 75 cm2 culture flask

Experimental Outline

•Cells left overnight to adhere, before exposure metal ions

•Pulse exposure to cobalt, chromium III and chromium VI ions•One set of cultures exposed to the ions separately

•Second set with chromium III and chromium VI ions in combination with cobalt ions

•M-FISH analysis of fibroblast metaphases

CoCl2

Cr III

Cr VI

Cr III+Co

Cr VI+Co

Control

HARVESTING AND PASSAGING

DAY 1,5,10,15---------30

METAL ION EXPOSURE 24 HOURS

M-FISH ANALYSIS

Experimental Schematic

1.3,25,50 ppb

2,20,40 ppb

2,20,40 ppb

1.3/2,25/20,50/40 ppb

1.3/2,25/20,50/40 ppb

M-FISH Metaphase

True Colour

Labelling Scheme

Pseudo Colours

M-FISH Chromosomal Aberrations

Translocation Deletion

Fragment Aneuploidy

Chromosome aberration levels

Do these aberration levels change overtime?

What is the composition of the aberrations, is there a pattern?

15

1015202530

15

1015202530

15

1015202530

15

1015202530

0 .02

12

5.0

425

.06

37

5.0

85

.10

63

.12

75

.14

87

0 .02

12

5.0

425

.06

37

5.0

85

.10

63

.12

75

.14

87

0 .02

12

5.0

425

.06

37

5.0

85

.10

63

.12

75

.14

87

0 .02

12

5.0

425

.06

37

5.0

85

.10

63

.12

75

.14

87

0 .02

12

5.0

425

.06

37

5.0

85

.10

63

.12

75

.14

87

Co, 0:0

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 0:0

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 0:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 0:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 0:0

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Aberration rate for: AneuploidyGraphs by Experiment and Chromium and cobalt dose

15

1015202530

15

1015202530

15

1015202530

15

1015202530

0 .01

25

.02

5.0

375

.05

.06

25

.07

5.0

875

0 .01

25

.02

5.0

375

.05

.06

25

.07

5.0

875

0 .01

25

.02

5.0

375

.05

.06

25

.07

5.0

875

0 .01

25

.02

5.0

375

.05

.06

25

.07

5.0

875

0 .01

25

.02

5.0

375

.05

.06

25

.07

5.0

875

Co, 0:0

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 0:0

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 0:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 0:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 0:0

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Aberration rate for: Simple aneuploidyGraphs by Experiment and Chromium and cobalt dose

15

1015202530

15

1015202530

15

1015202530

15

1015202530

0 .0112

5.02

25.03

375

.045

.0562

5.06

75.07

875

0 .0112

5.02

25.03

375

.045

.0562

5.06

75.07

875

0 .0112

5.02

25.03

375

.045

.0562

5.06

75.07

875

0 .0112

5.02

25.03

375

.045

.0562

5.06

75.07

875

0 .0112

5.02

25.03

375

.045

.0562

5.06

75.07

875

Co, 0:0

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 0:0

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 0:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 0:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 0:0

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Aberration rate for: Complex aneuploidyGraphs by Experiment and Chromium and cobalt dose

15

1015202530

15

1015202530

15

1015202530

15

1015202530

0 .0012

5.00

25.00

375

.005

0 .0012

5.00

25.00

375

.005

0 .0012

5.00

25.00

375

.005

0 .0012

5.00

25.00

375

.005

0 .0012

5.00

25.00

375

.005

Co, 0:0

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 0:0

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 0:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 0:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 0:0

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Aberration rate for: Structural aberrationsGraphs by Experiment and Chromium and cobalt dose

15

1015202530

15

1015202530

15

1015202530

15

1015202530

0 .0075

.015

.0225

.03.03

75.04

5.05

25

0 .0075

.015

.0225

.03.03

75.04

5.05

25

0 .0075

.015

.0225

.03.03

75.04

5.05

25

0 .0075

.015

.0225

.03.03

75.04

5.05

25

0 .0075

.015

.0225

.03.03

75.04

5.05

25

Co, 0:0

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 0:0

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 0:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 0:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 0:0

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Day

Aberration rate for: Chromosome fragmentsGraphs by Experiment and Chromium and cobalt dose

**

***

***

*

***

**

****

*****

***

********

*****

***

*******

**********

*

15

1015202530

15

1015202530

15

1015202530

-.038

750 .03

875

.0775

.1163

.155

.1938

.2325

-.038

750 .03

875

.0775

.1163

.155

.1938

.2325

-.038

750 .03

875

.0775

.1163

.155

.1938

.2325

-.038

750 .03

875

.0775

.1163

.155

.1938

.2325

-.038

750 .03

875

.0775

.1163

.155

.1938

.2325

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Treated-control rate difference for: AneuploidyGraphs by Experiment and Chromium and cobalt dose

*

***

*

**

*

**

***

***

*

*

*

*

*****

**

15

1015202530

15

1015202530

15

1015202530

-.045

-.022

50 .02

25.04

5.06

75.09.11

25

-.045

-.022

50 .02

25.04

5.06

75.09.11

25

-.045

-.022

50 .02

25.04

5.06

75.09.11

25

-.045

-.022

50 .02

25.04

5.06

75.09.11

25

-.045

-.022

50 .02

25.04

5.06

75.09.11

25

Co, 0:1.3

Co, 0:25

Co, 0:50

CrIII, 2:0

CrIII, 20:0

CrIII, 40:0

CrVI, 2:0

CrVI, 20:0

CrVI, 40:0

CrIII+Co, 2:1.3

CrIII+Co, 20:25

CrIII+Co, 40:50

CrVI+Co, 2:1.3

CrVI+Co, 20:25

CrVI+Co, 40:50

Da

y

Treated-control rate difference for: Simple aneuploidyGraphs by Experiment and Chromium and cobalt dose

*

*

*

**

*

***

*

*

15

10

152025

30

15

1015202530

15

1015202530

-.04

-.02

0 .02

.04

.06

.08

.1 -.04

-.02

0 .02

.04

.06

.08

.1 -.04

-.02

0 .02

.04

.06

.08

.1 -.04

-.02

0 .02

.04

.06

.08

.1

CrIII+Co vs CrIII, 2

CrIII+Co vs CrIII, 20

CrIII+Co vs CrIII, 40

CrVI+Co vs CrVI, 2

CrVI+Co vs CrVI, 20

CrVI+Co vs CrVI, 40

CrVI vs CrIII, 2

CrVI vs CrIII, 20

CrVI vs CrIII, 40

CrVI+Co vs CrIII+Co, 2

CrVI+Co vs CrIII+Co, 20

CrVI+Co vs CrIII+Co, 40

Da

y

Difference between treated-control differences for: Complex aneuploidyGraphs by Between-treatment contrast and Cr dose (ppb)

*

15

1015202530

15

1015202530

15

1015202530

-.067

5-.0

45-.0

225

0 .0225

.045

.0675

.09

-.067

5-.0

45-.0

225

0 .0225

.045

.0675

.09

-.067

5-.0

45-.0

225

0 .0225

.045

.0675

.09

-.067

5-.0

45-.0

225

0 .0225

.045

.0675

.09

CrIII+Co vs CrIII, 2

CrIII+Co vs CrIII, 20

CrIII+Co vs CrIII, 40

CrVI+Co vs CrVI, 2

CrVI+Co vs CrVI, 20

CrVI+Co vs CrVI, 40

CrVI vs CrIII, 2

CrVI vs CrIII, 20

CrVI vs CrIII, 40

CrVI+Co vs CrIII+Co, 2

CrVI+Co vs CrIII+Co, 20

CrVI+Co vs CrIII+Co, 40

Da

y

Difference between treated-control differences for: Simple aneuploidyGraphs by Between-treatment contrast and Cr dose (ppb)

SummarySummary• Initial exposure to the metal ions induce chromosomal aberrations

•Over the time period analysis metal ion induced chromosomal aberrations regresses

•Both CrIII and Cr VI induce simple and complex aneuploidy

•The combination of Cobalt with CrIII and CrVI results in higher levels of chromosomal aberrations

•Cr VI displays a higher incidence and persistence of complex aneuploidy overtime with and without the presence of cobalt ions

Future WorkFuture Work

• Compare metal ion results with nanoparticle experiments

•Investigate possible mechanisms causing aneuploidy eg tubulin disruption

•Prolonged exposure experiments

•Investigations with cell lines defective in DNA repair

AcknowledgementsAcknowledgementsDr CP Case

Mr A Blom

Professor I Learmonth

Dr R Newson

Grant Sponsors:

ARC

BIRC

Image Associates: M-FISH technology

Thank your for attention

Any questions?