the universality of pythia tune a - department of...

25
Fermilab MC Workshop June 11, 2004 Rick Field - CDF/Florida Page 1 The Universality of The Universality of PYTHIA Tune A PYTHIA Tune A ! We would like to have a universal tune of PYTHIA! Outline of Talk ! Show some comparisons with CDF Run 2 data. ! Review of PYTHIA Tune A (tuned on CDF Run 1 data) . ! QCD Hard Scattering ! Direct Photon Production ! Z-Boson Production ! Heavy Flavor Production ! Discuss the progress toward a universal tune. ! Must specify PDF! ! Must specify MPI parameters! Proton AntiProton Multiple Parton Interactions PT(hard) Outgoing Parton Outgoing Parton Underlying Event Underlying Event ! Must specify Q 2 scale! ! Must specify intrinsic kT!

Upload: others

Post on 28-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 1

The Universality of The Universality of PYTHIA Tune APYTHIA Tune A

! We would like to have a �universal� tune of PYTHIA!

Outline of Talk

! Show some comparisons with CDF Run 2 data.

! Review of PYTHIA Tune A (tuned on CDF Run 1 data) .

! QCD Hard Scattering! Direct Photon Production! Z-Boson Production! Heavy Flavor Production

! Discuss the progress toward a �universal� tune. ! Must specify PDF!! Must specify MPI parameters!

Proton AntiProton

Multiple Parton InteractionsPT(hard)

Outgoing Parton

Outgoing Parton

Underlying EventUnderlying Event

! Must specify Q2 scale!! Must specify intrinsic kT!

Page 2: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 2

Jet #1 Direction

∆φ∆φ∆φ∆φ

�Transverse� �Transverse�

�Toward�

�Away�

�Toward-Side� Jet

�Away-Side� Jet

The �Transverse� RegionsThe �Transverse� Regionsas defined by the Leading Jetas defined by the Leading Jet

! Look at charged particle correlations in the azimuthal angle ∆φ ∆φ ∆φ ∆φ relative to the leading calorimeter jet (JetClu R = 0.7, |ηηηη| < 2).

! Define |∆φ∆φ∆φ∆φ| < 60o as �Toward�, 60o < -∆φ∆φ∆φ∆φ< 120o and 60o < ∆φ∆φ∆φ∆φ< 120o as �Transverse 1� and �Transverse 2�, and |∆φ∆φ∆φ∆φ| > 120o as �Away�. Each of the two �transverse� regions have area ∆η∆φ∆η∆φ∆η∆φ∆η∆φ = 2x60o = 4ππππ/6. The overall �transverse� region is the sum of the two transverse regions (∆η∆φ∆η∆φ∆η∆φ∆η∆φ = 2x120o = 4ππππ/3).

Charged Particle ∆φ∆φ∆φ∆φCorrelations pT > 0.5 GeV/c |ηηηη| < 1�Transverse� region is

very sensitive to the �underlying event�!

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Trans 1� �Trans 2�

�Away�

-1 +1

φφφφ

2ππππ

0 ηηηη

Leading Jet

Toward Region

Transverse Region 1

Transverse Region 2

Away Region

Away Region

Look at the charged particle density in the �transverse� region!

Page 3: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 3

PYTHIA: Multiple PartonPYTHIA: Multiple PartonInteraction ParametersInteraction Parameters

Pythia uses multiple partoninteractions to enhancethe underlying event.

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a double Gaussian matter distribution (governed by PARP(83) and PARP(84)), with a smooth turn-off PT0=PARP(82)

4

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a single Gaussian matter distribution, with a smooth turn-off PT0=PARP(82)

3

Multiple interactions assuming the same probability, with an abrupt cut-off PTmin=PARP(81)

1MSTP(82)

Multiple-Parton Scattering on1

Multiple-Parton Scattering off0MSTP(81)

DescriptionValue Parameter

Hard Core

Multiple partoninteraction more likely in a hard

(central) collision!

and now HERWIG!

Jimmy: MPIJ. M. Butterworth

J. R. ForshawM. H. Seymour

Proton AntiProton

Multiple Parton InteractionsPT(hard)

Outgoing Parton

Outgoing Parton

Underlying EventUnderlying Event

Same parameter that cuts-off the hard 2-to-2 parton cross sections!

Page 4: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 4

PYTHIA: Multiple PartonPYTHIA: Multiple PartonInteraction ParametersInteraction Parameters

Pythia uses multiple partoninteractions to enhancethe underlying event.

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a double Gaussian matter distribution (governed by PARP(83) and PARP(84)), with a smooth turn-off PT0=PARP(82)

4

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a single Gaussian matter distribution, with a smooth turn-off PT0=PARP(82)

3

Multiple interactions assuming the same probability, with an abrupt cut-off PTmin=PARP(81)

1MSTP(82)

Multiple-Parton Scattering on1

Multiple-Parton Scattering off0MSTP(81)

DescriptionValue Parameter

Hard Core

Multiple partoninteraction more likely in a hard

(central) collision!

and now HERWIG!

Jimmy: MPIJ. M. Butterworth

J. R. ForshawM. H. Seymour

Proton AntiProton

Multiple Parton InteractionsPT(hard)

Outgoing Parton

Outgoing Parton

Underlying EventUnderlying Event

Same parameter that cuts-off the hard 2-to-2 parton cross sections!

Note that since the same cut-off parameters govern both the primary

hard scattering and the secondary MPI interaction, changing the amount of MPIalso changes the amount of hard primary scattering in PYTHIA Min-Bias events!

Page 5: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 5

Tuning PYTHIA:Tuning PYTHIA:Multiple Multiple PartonParton Interaction ParametersInteraction Parameters

A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation.

1.0PARP(67)

Determines the energy dependence of the cut-offPT0 as follows PT0(Ecm) = PT0(Ecm/E0)εεεε with εεεε = PARP(90)

0.16PARP(90)

Double-Gaussian: Fraction of the overall hadronradius containing the fraction PARP(83) of the total hadronic matter.

0.2PARP(84)

Determines the reference energy E0.1 TeVPARP(89)

Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs.

0.66PARP(86)

Probability that the MPI produces two gluons with color connections to the �nearest neighbors.

0.33PARP(85)

Double-Gaussian: Fraction of total hadronicmatter within PARP(84)

0.5PARP(83)

DescriptionDefault Parameter

Hard Core

Multiple Parton Interaction

Color String

Color String

Multiple Parton Interaction

Color String

Hard-Scattering Cut-Off PT0

1

2

3

4

5

100 1,000 10,000 100,000CM Energy W (GeV)

PT0

(GeV

/c)

PYTHIA 6.206

εεεε = 0.16 (default)

εεεε = 0.25 (Set A))

Take E0 = 1.8 TeV

Reference pointat 1.8 TeV

Determine by comparingwith 630 GeV data!

Affects the amount ofinitial-state radiation!

Multiplies Q2 scale(for some processes)!

Page 6: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 6

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)"T

rans

vers

e" C

harg

ed D

ensi

ty

CTEQ3L CTEQ4L CTEQ5L CDF Min-Bias CDF JET20

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

Pythia 6.206 (default)MSTP(82)=1

PARP(81) = 1.9 GeV/c

CDF Datadata uncorrectedtheory corrected

Default parameters give very poor description of the �underlying event�!

Note ChangePARP(67) = 4.0 (< 6.138)PARP(67) = 1.0 (> 6.138)

0.160.160.16PARP(90)

1,0001,0001,000PARP(89)

4.0

2.1

1.9

1

1

6.125

1.0

2.1

1.9

1

1

6.158

1.04.0PARP(67)

1.91.55PARP(82)

1.91.4PARP(81)

11MSTP(82)

11MSTP(81)

6.2066.115Parameter

PYTHIA 6.206 DefaultsPYTHIA 6.206 Defaults

! Plot shows the �Transverse� charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of PYTHIA 6.206 (PT(hard) > 0) using the defaultparameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L.

PYTHIA default parameters

MPI constantprobabilityscattering

Page 7: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 7

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

0.50.5PARP(83)

0.40.4PARP(84)

0.250.25PARP(90)

0.951.0PARP(86)

1.8 TeV1.8 TeVPARP(89)

4.0

0.9

2.0 GeV

4

1

Tune A

1.0PARP(67)

1.0PARP(85)

1.9 GeVPARP(82)

4MSTP(82)

1MSTP(81)

Tune BParameter

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

Tuned PYTHIA 6.206Tuned PYTHIA 6.206

! Plot shows the �Transverse� charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) andSet A (PARP(67)=4)).

PYTHIA 6.206 CTEQ5L"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

Double Gaussian

Page 8: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 8

AzimuthalAzimuthal CorrelationsCorrelations

! Predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) for the azimuthalangle, ∆φ∆φ∆φ∆φ, between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to dσσσσ/d∆φ∆φ∆φ∆φ (µµµµb/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total.

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

PY62 (67=1) Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

PYTHIA 6.206 CTEQ5L PARP(67)=1

"Away""Toward"

b-quark direction

∆φ∆φ∆φ∆φ

�Toward�

�Away�

bbar-quark

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

PY62 (67=4) Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

PYTHIA 6.206 CTEQ5L PARP(67)=4

"Away""Toward"

New PYTHIA default(less initial-state radiation)

Old PYTHIA default(more initial-state radiation)

Page 9: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 9

AzimuthalAzimuthal CorrelationsCorrelations

! Predictions of HERWIG 6.4 (CTEQ5L) for the azimuthal angle, ∆φ∆φ∆φ∆φ, between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to dσσσσ/d∆φ∆φ∆φ∆φ (µµµµb/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total.

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

HW64 Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

HERWIG 6.4 CTEQ5L

"Away""Toward"

b-quark direction

∆φ∆φ∆φ∆φ

�Toward�

�Away�

bbar-quark

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.000001

0.000010

0.000100

0.001000

0.010000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

"Flavor Creation" CTEQ5L

"Away""Toward"

HERWIG 6.4

PYTHIA 6.206PARP(67)=1

PYTHIA 6.206PARP(67)=4

�Flavor Creation�

New PYTHIA default(less initial-state radiation)

Old PYTHIA default(more initial-state radiation)

Page 10: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 10

DiPhotonDiPhoton CorrelationsCorrelations

! Predictions of PYTHIA 6.158 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) for diphoton system PT and the azimuthal angle, ∆φ∆φ∆φ∆φ, between a photon with PT1 > 12 GeV/c, |y1| < 0.9 and photon with PT2 > 12 GeV/c, |y2|< 0.9 in proton-antiproton collisions at 1.8 TeV compared with CDF data.

DiPhoton Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

90 105 120 135 150 165 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

1/σ σσσ

d σ σσσ/d

φ φφφ (1

/deg

)

PYC5 DiPhoton PARP(67)=4PYC5 DiPhoton PARP(67)=1CDF DiPhoton Data

1.8 TeV PT > 12 GeV |ηηηη| < 0.9

New Pythia

Old Pythia

Diphoton System Transverse Momentum

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16 18

Diphoton System PT (GeV/c)

1/σ σσσ

d σ σσσ/d

PT (1

/GeV

/c)

PYC5 DiPhoton PARP(67)=1PYC5 DiPhoton PARP(67)=4CDF DiPhoton Data

1.8 TeV PT > 12 GeV |ηηηη| < 0.9New Pythia

Old Pythia

Photon direction

∆φ∆φ∆φ∆φ

�Toward�

�Away�

Photon

Page 11: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 11

Tuned PYTHIA 6.206Tuned PYTHIA 6.206�Transverse� P�Transverse� PTT DistributionDistribution

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

PARP(67)=4.0 (old default) is favored over PARP(67)=1.0 (new default)!

PT(charged jet#1) > 30 GeV/c

"Transverse" Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)Ch

arge

d D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Datadata uncorrectedtheory corrected

1.8 TeV |ηηηη|<1 PT>0.5 GeV/c

PT(chgjet#1) > 5 GeV/c

PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set APARP(67)=4

PYTHIA 6.206 Set BPARP(67)=1

! Compares the average �transverse� charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the �transverse� density, dNchg/dηηηηdφφφφdPT with the QCD Monte-Carlo predictions of two tuned versions of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

Page 12: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 12

Charged Particle Density

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)C

harg

ed D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Run 1data uncorrectedtheory corrected

1.8 TeV |ηηηη |<1 PT>0.5 GeV/c

CDF Min-Bias

"Transverse"PT(chgjet#1) > 5 GeV/c

"Transverse"PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set A

CTEQ5L

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV/c

CDF Run 1data uncorrectedtheory corrected

PYTHIA 6.206 Set A

Tuned PYTHIA 6.206Tuned PYTHIA 6.206Run 1 Tune ARun 1 Tune A

! Compares the average �transverse� charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the �transverse� and �Min-Bias� densities with the QCD Monte-Carlo predictions of a tuned version of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set A).

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

Pythia 6.206 Set ACDF Min-Bias 1.8 TeV 1.8 TeV all PT

CDF Published

Describes �Min-Bias� collisions! Describes the �underlying event�!

�Min-Bias�

Describes the rise from �Min-Bias� to �underlying event�!

Page 13: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 13

Charged Particle Density

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)C

harg

ed D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Run 1data uncorrectedtheory corrected

1.8 TeV |ηηηη |<1 PT>0.5 GeV/c

CDF Min-Bias

"Transverse"PT(chgjet#1) > 5 GeV/c

"Transverse"PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set A

CTEQ5L

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV/c

CDF Run 1data uncorrectedtheory corrected

PYTHIA 6.206 Set A

Tuned PYTHIA 6.206Tuned PYTHIA 6.206Run 1 Tune ARun 1 Tune A

! Compares the average �transverse� charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the �transverse� and �Min-Bias� densities with the QCD Monte-Carlo predictions of a tuned version of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set A). Describes �Min-Bias� collisions! Describes the �underlying event�!

�Min-Bias�

Set A PT(charged jet#1) > 30 GeV/c�Transverse� <dNchg/dηηηηdφφφφ> = 0.60

Describes the rise from �Min-Bias� to �underlying event�!

Page 14: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 14

Run 1 SummaryRun 1 Summary�Min-Bias� and

the �Underlying Event�

! PYTHIA (tune �A� and �B�) does a good job of describing both �min-bias� collisions and the �underlying event� in hard scattering processes in the Run I data.

! PYTHIA (tune �A� or �B�) is the only �min-bias� generator that includes both �soft� and �hard� scattering.

! Both ISAJET and HERWIG have the too steep of a PT dependence of the �beam-beam remnant� component of the �underlying event� and hence do not have enough beam-beam remnants with PT > 0.5 GeV/c.

! PYTHIA tune �A� is slightly favored over tune �B�, but eventually the best fit may be somewhere in between. The initial-state radiation in tune �A� with PARP(67) = 4 (used in all Run I simulations) looks more like HERWIG�s initial-state radiation.

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

Page 15: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 15

Run 1 SummaryRun 1 Summary�Min-Bias� and

the �Underlying Event�

! PYTHIA (tune �A� and �B�) does a good job of describing both �min-bias� collisions and the �underlying event� in hard scattering processes in the Run I data.

! PYTHIA (tune �A� or �B�) is the only �min-bias� generator that includes both �soft� and �hard� scattering.

! Both ISAJET and HERWIG have the too steep of a PT dependence of the �beam-beam remnant� component of the �underlying event� and hence do not have enough beam-beam remnants with PT > 0.5 GeV/c.

! PYTHIA tune �A� is slightly favored over tune �B�, but eventually the best fit may be somewhere in between. The initial-state radiation in tune �A� with PARP(67) = 4 (used in all Run I simulations) looks more like HERWIG�s initial-state radiation.

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation Upon my recommendation

PYTHIA Tune A was chosenas the default parameterization

in Run 2 at CDF!

But does it work for all processes!

Page 16: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 16

CDF Run 2 CDF Run 2 Calorimeter Jet AnalysisCalorimeter Jet Analysis

! Study the ∆φ∆φ∆φ∆φdistribution of the charged particle density, dNchg/dηηηηdφφφφ, and the charged scalar pT sum density, dPTsum/dηηηηdφφφφ, for charged particles in the region pT > 0.5 GeV/c, |ηηηη| < 1).

! Study the average charged particle and PTsum density in the �toward�, �transverse�, and �away� regions versus ET(jet#1).

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

-1 +1

φφφφ

ηηηη

Leading Jet

Toward Region

Transverse Region

Transverse Region

Away Region

�Away� Jet

-1 +1

φφφφ

ηηηη

Leading Jet

Toward Region

Transverse Region

Transverse Region

Away Region

�Away� Jet

Page 17: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 17

Charged Particle DensityCharged Particle Density∆φ∆φ∆φ∆φ∆φ∆φ∆φ∆φ Dependence Dependence

! Look at the �transverse� region as defined by the leading jet (JetClu R = 0.7, |ηηηη| < 2) or by the leading two jets (JetClu R = 0.7, |ηηηη| < 2). �Back-to-Back� events are selected to have at least two jets with Jet#1 and Jet#2 nearly �back-to-back� (∆φ∆φ∆φ∆φ12 > 150o) with almost equal transverse energies (ET(jet#2)/ET(jet#1) > 0.8).

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #1 Direction

∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #2 Direction

! Shows the ∆φ∆φ∆φ∆φdependence of the charged particle density, dNchg/dηηηηdφφφφ, for charged particles in the range pT > 0.5 GeV/c and |ηηηη| < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for �Leading Jet� and �Back-to-Back� events.

Charged Particle Density: dN/dηηηηdφφφφ

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

Par

ticle

Den

sity

Back-to-BackLeading JetMin-Bias

CDF Preliminarydata uncorrected

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

30 < ET(jet#1) < 70 GeV

"Transverse" Region

Jet#1

Refer to this as a �Leading Jet� event

Refer to this as a �Back-to-Back� event

Subset

Page 18: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 18

�Transverse� Charge Density�Transverse� Charge DensityPYTHIA Tune A PYTHIA Tune A vsvs HERWIG HERWIG

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #2 Direction

! Shows the average charged particle density, dNchg/dηηηηdφφφφ, in the �transverse� region (pT> 0.5 GeV/c, |ηηηη| < 1) versus ET(jet#1) for �Leading Jet� and �Back-to-Back� events.

�Leading Jet�

�Back-to-Back�

"AVE Transverse" Charge Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

ET(jet#1) (GeV)

"Tra

nsve

rse"

Cha

rge

Den

sity

CDF Preliminarydata uncorrectedtheory + CDFSIM

1.96 TeV Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

Leading Jet

Back-to-Back

PY Tune A

HW

Now look in detail at �back-to-back� events in the region 30 < ET(jet#1) < 70 GeV!

! Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM.

Page 19: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 19

Charged Particle DensityCharged Particle DensityPYTHIA Tune A PYTHIA Tune A vsvs HERWIG HERWIG

Charged Particle Density: dN/dηηηηdφφφφ

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

Par

ticle

Den

sity

Back-to-BackPY Tune A

CDF Preliminarydata uncorrectedtheory + CDFSIM

30 < ET(jet#1) < 70 GeVCharged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

"Transverse" Region

Jet#1

Data - Theory: Charged Particle Density dN/dηηηηdφφφφ

-1.0

-0.5

0.0

0.5

1.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Dat

a - T

heor

y

CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

Back-to-Back30 < ET(jet#1) < 70 GeV

PYTHIA Tune A

Jet#1

"Transverse" Region

Charged Particle Density: dN/dηηηηdφφφφ

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

Par

ticle

Den

sity

Back-to-BackHERWIG

CDF Preliminarydata uncorrectedtheory + CDFSIM

30 < ET(jet#1) < 70 GeVCharged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

"Transverse" Region

Jet#1

Data - Theory: Charged Particle Density dN/dηηηηdφφφφ

-1.0

-0.5

0.0

0.5

1.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Dat

a - T

heor

y

CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

Back-to-Back30 < ET(jet#1) < 70 GeV

HERWIG

Jet#1

"Transverse" Region

HERWIG (without multiple partoninteractions) produces too few

charged particles in the �transverse� region for 30 < ET(jet#1) < 70 GeV!

Page 20: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 20

�Transverse� �Transverse� PTsumPTsum DensityDensityPYTHIA Tune A PYTHIA Tune A vsvs HERWIG HERWIG

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #2 Direction

! Shows the average charged PTsum density, dPTsum/dηηηηdφφφφ, in the �transverse� region (pT> 0.5 GeV/c, |ηηηη| < 1) versus ET(jet#1) for �Leading Jet� and �Back-to-Back� events.

! Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM.

�Leading Jet�

�Back-to-Back�

"AVE Transverse" PTsum Density: dPT/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250

ET(jet#1) (GeV)

"Tra

nsve

rse"

PTs

um D

ensi

ty (G

eV/c

) CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

Back-to-Back

Leading Jet

PY Tune A

HW1.96 TeV

Now look in detail at �back-to-back� events in the region 30 < ET(jet#1) < 70 GeV!

Page 21: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 21

Charged Charged PTsumPTsum DensityDensityPYTHIA Tune A PYTHIA Tune A vsvs HERWIG HERWIG

Charged PTsum Density: dPT/dηηηηdφφφφ

0.1

1.0

10.0

100.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

PTs

um D

ensi

ty (G

eV/c

) Back-to-BackPY Tune A

30 < ET(jet#1) < 70 GeVCharged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

CDF Preliminarydata uncorrectedtheory + CDFSIM

Jet#1"Transverse" Region

Charged PTsum Density: dPT/dηηηηdφφφφ

0.1

1.0

10.0

100.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

PTs

um D

ensi

ty (G

eV/c

) Back-to-BackHERWIG

30 < ET(jet#1) < 70 GeVCharged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

CDF Preliminarydata uncorrectedtheory + CDFSIM

Jet#1

"Transverse" Region

Data - Theory: Charged PTsum Density dPT/dηηηηdφφφφ

-2

-1

0

1

2

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Dat

a - T

heor

y (G

eV/c

)

CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

Back-to-Back30 < ET(jet#1) < 70 GeV

PYTHIA Tune A

Jet#1"Transverse"

Region

Data - Theory: Charged PTsum Density dPT/dηηηηdφφφφ

-2

-1

0

1

2

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Dat

a - T

heor

y (G

eV/c

)

CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

30 < ET(jet#1) < 70 GeVBack-to-Back

HERWIG

Jet#1"Transverse"

Region

HERWIG (without multiple partoninteractions) does not produces

enough PTsum in the �transverse� region for 30 < ET(jet#1) < 70 GeV!

Page 22: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 22

New CDF Run 2 AnalysisNew CDF Run 2 AnalysisPhoton and ZPhoton and Z--bosonboson

Photon #1 Direction

∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Z-boson Direction

∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

! Study the ∆φ∆φ∆φ∆φdistribution of the charged particle density, dNchg/dηηηηdφφφφ, and the charged scalar pT sum density, dPTsum/dηηηηdφφφφ, for charged particles in the region pT > 0.5 GeV/c, |ηηηη| < 1) in �leading jet� events.

! Study the average charged particle and PTsum density in the �toward�, �transverse�, and �away� regions versus ET(jet#1) in �leading jet� events.

and �leading photon� events!

and �leading photon� events!

and �Z-boson� events!

and �Z-boson� events!

Refer to this as a �Leading Jet� event

Refer to this as a �Leading Photon� event Refer to this as a

�Z-boson� event

Page 23: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 23

Charged Particle DensityCharged Particle Density∆φ∆φ∆φ∆φ∆φ∆φ∆φ∆φ DependenceDependence

Jet #1 Direction ∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Photon #1 Direction

∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

Charged Particle Density: dN/dηηηηdφφφφ

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

∆φ∆φ∆φ∆φ (degrees)

Cha

rged

Par

ticle

Den

sity

Leading JetLeading PhotonZ-boson

RDF PreliminaryPYTHIA Tune A

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

"Transverse" Region

Jet#1PhotonZ-boson

Z-boson Direction

∆φ∆φ∆φ∆φ

�Toward�

�Transverse� �Transverse�

�Away�

! Shows the ∆φ∆φ∆φ∆φdependence of the density, dNchg/dηηηηdφφφφ, for charged particles in the range pT > 0.5 GeV/c and |ηηηη| < 1 relative to jet#1 (rotated to 270o) for ET(jet#1) > 30 GeV for �Leading Jet� events from PYTHIA Tune A.

! Shows the ∆φ∆φ∆φ∆φdependence of the density, dNchg/dηηηηdφφφφ, for charged particles in the range pT > 0.5 GeV/c and |ηηηη| < 1 relative to pho#1 (rotated to 270o) for PT(pho#1) > 30 GeVfor �Leading Photon� events from PYTHIA Tune A.

! Shows the ∆φ∆φ∆φ∆φdependence of the density, dNchg/dηηηηdφφφφ, for charged particles in the range pT > 0.5 GeV/c and |ηηηη| < 1 relative to the Z (rotated to 270o) for PT(Z) > 30 GeV for �Z-boson� events from PYTHIA Tune A.

rdfsoft!PY Tune A

Page 24: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 24

�Towards� and �Transverse��Towards� and �Transverse�Particle DensitiesParticle Densities

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120 140

PT(Z or photon) (GeV)

Cha

rged

Par

ticle

Den

sity

RDF PreliminaryPYTHIA TUNE A

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

"Transverse"

"Toward"

Solid = Leading PhotonDashed = Z-boson

"Transverse" Charged Density: dN/dηηηηdφφφφ

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120 140

ET(jet#1) or PT(Z) or PT(pho#1) (GeV)

"Tra

nsve

rse"

Cha

rged

Den

sity

Leading JetLeading PhotonZ-boson

RDF PreliminaryPYTHIA Tune A

Charged Particles (|ηηηη|<1.0, PT>0.5 GeV/c)

! Shows the average charged particle density, dNchg/dηηηηdφφφφ, in the �toward� and �transverse� region (pT > 0.5 GeV/c, |ηηηη| < 1) versus PT(pho#1) for �Leading Photon� events (solid) and versus PT(Z) for �Z-boson� events (dashed) at 1.96 TeV from PYTHIA Tune A.

! Shows the average charged particle density, dNchg/dηηηηdφφφφ, in the �transverse� region (pT> 0.5 GeV/c, |ηηηη| < 1) versus PT(pho#1) for �Leading Photon� events (solid) and versus PT(Z) for �Z-boson� events (dashed) and versus ET(jet#!) for �Leading Jet� events (dots) at 1.96 TeV from PYTHIA Tune A.

rdfsoft!PY Tune A

Page 25: The Universality of PYTHIA Tune A - Department of Physicsrfield/cdf/RickField_Workshop_6-11-04.pdf · 2012. 4. 12. · Fermilab MC Workshop June 11, 2004 Rick Field - CDF /Florida

Fermilab MC Workshop June 11, 2004

Rick Field - CDF/Florida Page 27

I have hear rumors of problems, but I have to see it myself!

SummarySummary

! I am working on a �universal� PYTHIA Run 2 tune: QCD jets, direct photons, Z and W bosons, Drell-Yan, heavy flavor production, etc..

! I am just getting started, but so far I have seen no major problems with PYTHIA Tune A except that I should have included a larger intrinsic kT (I used the default).

! In addition to specifying the PDF and the MPI parameters, one will have to specify the Q2 scale for each process. For Tune A Q2 = 4pT

2 for QCD jets and direct photons and Q2 = Mz

2 for Z-boson production.

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

Proton AntiProton

Z-boson Production

PT(Z)

Z-boson

Outgoing Parton

Underlying Event Underlying EventInitial-StateRadiation

Final-StateRadiation

Proton AntiProton

Direct Photon Production

PT(γγγγ)

Photon

Outgoing Parton

Underlying Event Underlying Event Initial-State Radiation

Final-State Radiation