the universal laws of structural dynamics in large graphs dmitri krioukov ucsd/caida david meyer...

62
The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F. Papadopoulos, M. Kitsak, kc claffy, A. Vahdat DARPA’s GRAPHS, Chicago, July 2012

Upload: eliseo-hamming

Post on 31-Mar-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

The Universal Lawsof Structural Dynamics

in Large Graphs

Dmitri KrioukovUCSD/CAIDA

David Meyer & David RideoutUCSD/Math

M. Boguñá, M. Á. Serrano,F. Papadopoulos, M. Kitsak, kc claffy, A. Vahdat

DARPA’s GRAPHS, Chicago, July 2012

Page 2: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

High-level project description

• Motivation:– Predict network dynamics– Detect anomalies

• Goal:– Identify the universal laws of network dynamics

• Methods: random geometric graphs– Past work: static graphs– Future work: dynamic graphs

Page 3: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Past workRandom geometric graphs in hyperbolic spaces

• Strengths:– Common structural properties of real networks– Optimality of their common functions

• Limitations:– Static graphs– Model real networks qualitatively

Page 4: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Future workRandom geometric graphs on Lorentzian manifolds

• Dynamic graphs• Model real networks quantitatively

Page 5: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Outline

• Introduction– Why geometric graphs?– Why fundamental laws?– Real networks– Network models

• Past work– Random hyperbolic graphs (RHGs)

• Future work– Random Lorentzian graphs (RLGs)

Page 6: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Why geometric graphs?

• Graphs are not “geometry”• Yet real networks are navigable

– Efficient substrates for information propagation without global knowledge or central coordination

• How is this possible?

Page 7: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 8: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 9: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Geometric graphs

• “Coarse approximations” of smooth manifolds– Riemann’s idea (Nature, v.7)

• “Sense of direction” (geometry) makes graphs navigable

• “Hyperbolicity”– Maximizes navigability (optimal Internet routing)– Reflects hierarchical (tree-like) organization– Explains common structural properties

Page 10: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Why fundamental laws?

• Many different real networks have certain common structural properties

• Are there any common (fundamental) laws of network dynamics explaining the emergence of these common properties?– If “no”, then… too bad (each network is unique)– If “yes”, then one can utilize these laws to predict

network dynamics and detect anomalies

Page 11: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Real networks• Technological

– Internet– Transportation– Power grid

• Social– Collaboration– Trust– Friendship

• Biological– Gene regulation– Protein interaction– Metabolic– Brain

• What can be common to all these networks???

• Naïve answer:– Nothing– Well, something: they all are

messy, complex, “very random”– And that’s it

Page 12: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 13: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 14: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

“Very random” graphs

• Classical random graphs (Erdős-Rényi)– Take N nodes– Connect each node pair with probability p

• Soft version of -regular graphs ( Np)• Maximum-entropy graphs of size N and

expected average degree

Page 15: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Heterogeneity

• Distribution P(k)of node degrees k– Real: P(k) ~ k

– Random: P(k) ~ k e / k!

Page 16: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

“Less random” graphs

• Random graphs withexpected node degree distributions– Take N nodes– Assign to each node a random variable

drawn from a desired distribution, e.g.,() ~

– Connect each node pair with probabilityp(,) ~ /N

• Soft version of the configuration model• Maximum-entropy graphs of size N and expected

degree distribution ()

Page 17: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Clustering

• Distribution P(k)of node degrees k– Real: P(k) ~ k

– Random: P(k) ~ k

• Average probability that node neighbors are connected– Real: 0.5– Random: 7104

Page 18: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Random geometric graphs

• Take a compact region in a Euclidean space, e.g., a circle of radius R

• Sprinkle N nodes into it via the Poisson point process

• Connect each pair of nodes if the distance between them is d r R

Page 19: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Heterogeneity lost

• Distribution P(k)of node degrees k– Real: P(k) ~ k

– Random: P(k) ~ k e / k!

• Average probability that node neighbors are connected– Real: 0.5– Random: 0.5

Page 20: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Strong heterogeneity and clustering are common properties of large networks

Network Exponent of thedegree distribution

Average clustering

Internet 2.1 0.46

Air transportation 2.0 0.62

Actor collaboration 2.3 0.78

Protein interaction S. cerevisiae

2.4 0.09

Metabolic E. coli and S. cerevisiae

2.0 0.67

Gene regulation E. coli and S. cerevisiae

2.1 0.09

Page 21: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Any other common properties?

• No• Well, some randomness, of course• Real large networks appear to be quite different

and unique in all other respects• Any simple random graph model that can

reproduce these two universal properties?

Page 22: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Random hyperbolic graphs

• Take a compact region in a hyperbolic space, e.g., a circle of radius R

• Sprinkle N nodes into it via the Poisson point process (R ln N)

• Connect each pair of nodes if the distance between them is x R

Page 23: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Succeeded finally

• Distribution P(k)of node degrees k– Real: P(k) ~ k

– Random: P(k) ~ k

• Average probability that node neighbors are connected– Real: 0.5– Random: 0.5

Page 24: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 25: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 26: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 27: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 28: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 29: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 30: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 31: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 32: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 33: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 34: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 35: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Rrer ~)(

Node density)(

2

1

~)(rR

erk

Node degree

kkP ~)(

Degree distribution

3 1~)( kkc

Clusteringmaximized

Page 36: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Fermi-Dirac connection probability

• connection probability p(x) – Fermi-Dirac distribution • hyperbolic distance x – energy of links/fermions• disk radius R – chemical potential• two times inverse sqrt of curvature 2/ – Boltzmann constant• parameter T – temperature

1

1)(

2

T

Rx

e

xp )(0

xRT

Page 37: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Curvature and temperature

• Curvature 0 controls power-law exponent [2,]– Graphs are not geometric (node density is not uniform)

unless = 3

• Temperature T 0 controls clusteringc [0,cmax]– Phase transition at T 1

Page 38: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Limiting cases

Curvature \ Temperature T

Finite T Infinite T

Finite Random hyperbolic graphs and real networks Classical random graphs

Infinite Random geometric graphs Configuration model

Page 39: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Random graphswith hidden variables

• Definition:– Take N nodes– Assign to each node a random variable

drawn from distribution ()• can be a vector (of attributes or coordinates)

– Connect each node pair with probability p(,)

• In random geometric graphs:– ’s are node coordinates– () is the uniform distribution– p(,) is a step function of distance d(,)

Page 40: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Exponential random graphs

• Definition:– Set of graphs G with probability measure , where , and H(G) is the

graph Hamiltonian

• In soft configuration model:– , where

is the adjacency matrix and are the expected degrees

• In random hyperbolic graphs:– , where

, and

,

Page 41: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Back to reality

• Infer/learn node coordinates in real networks using maximum-likelihood methods (MCMC)

• Compare the empirical probability of connections in the real network with the inferred coordinates against the theoretical prediction

• If the model is correct, the two should match

Page 42: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 43: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 44: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 45: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 46: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 47: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 48: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 49: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 50: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Physical meaningof node coordinates

• Radial coordinates– Node degrees (popularity)

• Angular coordinates– Similarity

• Projections of a properly weighted combination of all the factors shaping the network structure

Page 51: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Summary of RHG strengths• Explanation how the structure of complex networks maximizes the

efficiency of their transport function– Optimal Internet routing as a practical application

• Two universal structural properties of real networks(degree heterogeneity and strong clustering) emerge as simple consequences of the two basic properties of hyperbolic spaces (exponential expansion and metric property)

• Connections to– Similarity distances– Hidden variable models– Exponential random graphs

• interpreting auxiliary fields as linear function of hyperbolic distances– Fermionic systems– Self-similarity– Conformal invariance?– AdS/CFT correspondence?

• RHGs subsume– Classical random graphs– Random geometric graphs– Soft configuration model

as limiting cases with degenerate geometry

Page 52: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Summary of RHG limitations• Exponential random graphs are intrinsically

static graphs (equilibrium ensembles)– Real networks are growing (far from equilibrium)

• or node density is not uniform(graphs are not coarse approximations of smooth manifolds)– in real networks

Page 53: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Proposal• These observations suggest that the geometry

of real networks is actually different• Question:

– What is it?• Proposal:

– Lorentzian geometry• Why:

– Lorentzian geometry explicitly models time– Indications that in some RLGs

• Challenge:– Dynamic exponential random graphs

Page 54: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Lorentzian manifolds

• Pseudo-Riemannian manifold is a manifold with a non-degenerate metric tensor– Distances can be positive, zero, or negative

• Lorentzian manifold is a manifold with signature – Coordinate corresponding to the minus sign is

called time– Negative distance are time-like– Positive distance are space-like

Page 55: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Causal structure

• For each point , the set of points at time-like distances from p can be split in two subsets:– ’s future– ’s past

• If , then is called the Alexandrov set of

Page 56: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 57: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 58: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Alexandrov sets

• Form a base of the manifold topology– Similar to open balls in Riemannian case

Page 59: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Random Lorentzian graphs

• Take a compact region of a Lorentzian manifold, e.g., a patch – Similar to a circle in the Riemannian case

• Sprinkle N nodes into it via the Poisson point process

• Connect each pair of nodes if the distance between them is x 0– Because Alexandrov sets are analogous to balls

Page 60: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F
Page 61: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

Summary of RLGs

• Random geometric graphs by constructions– Are they also exponential random graphs?

• Growing T explicitly models graph growth• Not to sacrifice the strengths of RHGs,

find Lorentzian manifold M such that:– There exist a map between M and hyperbolic space

H satisfying certain duality properties– The groups of isometries of M and H are isomorphic

• Lorentz group

Page 62: The Universal Laws of Structural Dynamics in Large Graphs Dmitri Krioukov UCSD/CAIDA David Meyer & David Rideout UCSD/Math M. Boguñá, M. Á. Serrano, F

• M. Boguñá, F. Papadopoulos, and D. Krioukov,Sustaining the Internet with Hyperbolic Mapping,Nature Communications, v.1, 62, 2010

• D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá,Hyperbolic Geometry of Complex Networks,Physical Review E, v.82, 036106, 2010,Physical Review E, v.80, 035101(R), 2009

• F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat,Greedy Forwarding in Scale-Free NetworksEmbedded in Hyperbolic Metric Spaces,INFOCOM 2010,SIGMETRICS MAMA 2009

• M. Boguñá, D. Krioukov, and kc claffy,Navigability of Complex Networks,Physical Review Letters, v.102, 058701, 2009Nature Physics, v.5, p.74-80, 2009

• M. Á. Serrano, M. Boguñá, and D. Krioukov,Self-Similarity of Complex Networks,Physical Review Letters, v.106, 048701, 2011Physical Review Letters, v.100, 078701, 2008