the spectral mlty transition: the role of convection in cloud formation

31
F. Allard F. Allard (CRAL-ENS, Lyon, France) (CRAL-ENS, Lyon, France) The spectral MLTY The spectral MLTY transition: transition: the role of convection in cloud formation the role of convection in cloud formation

Upload: cora

Post on 15-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

The spectral MLTY transition: the role of convection in cloud formation. F. Allard (CRAL-ENS, Lyon, France). MLT Spectral Sequence optical to red spectral range Burgasser CS13 2003. Burgasser et al. (2001). Kirkpatrick et al. ‘99. VO. CrH,FeH . TiO, VO . H . FeH. NaID,K  - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The spectral MLTY transition: the role of convection in cloud formation

F. AllardF. Allard

(CRAL-ENS, Lyon, France)(CRAL-ENS, Lyon, France)

The spectral MLTY The spectral MLTY transition:transition:

the role of convection in cloud the role of convection in cloud formationformation

Page 2: The spectral MLTY transition: the role of convection in cloud formation

CaH

CrH

Cs

K

Li

Rb

H2O

FeH

VO

H

Martín et al ‘99Martín et al ‘99wraps in L4-L8wraps in L4-L8in only 2 extrain only 2 extrasubtypes (to L6)subtypes (to L6)

1/3 of 2MASS field L dwarfs but ZERO T dwarfs show Li 1/3 of 2MASS field L dwarfs but ZERO T dwarfs show Li 6708Å 6708Å Hundreds of L dwarfs and at least 30 T dwarfs knownHundreds of L dwarfs and at least 30 T dwarfs known

Kirkpatrick et al. ‘99 Burgasser et al. (2001)

TiO, VO

Hyd, alk

NaID,KH2O

Rb,Cs

CrH,FeH

CH4

MLT Spectral SequenceMLT Spectral Sequenceoptical to red spectral rangeoptical to red spectral range

Burgasser CS13 2003Burgasser CS13 2003

Page 3: The spectral MLTY transition: the role of convection in cloud formation

Changes in HChanges in H22O bands behavior due to dust DO NOT define M-L transitionO bands behavior due to dust DO NOT define M-L transition

L-T transition defined by onset of CHL-T transition defined by onset of CH44 in H and K bandpasses in H and K bandpasses

HH22

H2,CH4 CO KI no FeH

MLT Spectral SequenceMLT Spectral Sequencenear-IR spectral rangenear-IR spectral rangeBurgasser, CS12, 2003Burgasser, CS12, 2003

Page 4: The spectral MLTY transition: the role of convection in cloud formation
Page 5: The spectral MLTY transition: the role of convection in cloud formation
Page 6: The spectral MLTY transition: the role of convection in cloud formation
Page 7: The spectral MLTY transition: the role of convection in cloud formation
Page 8: The spectral MLTY transition: the role of convection in cloud formation
Page 9: The spectral MLTY transition: the role of convection in cloud formation
Page 10: The spectral MLTY transition: the role of convection in cloud formation

Grain extinction cross-section (Mie) per particle as a function of wavelength for species we include. The monoatomiques monomers such as the metals only contribute as diffusion (dotted lines) in the UV to visual, while corundum, magnesium spinel, CaTiO3, silicates absorb (full, dashed and dotted bleue lines) in the IR.

Page 11: The spectral MLTY transition: the role of convection in cloud formation

Extinction profile for a grain size distribution of 1, 2, 10, and 100 times that of the ISM, for conditions prevailing in the photospheric layers (T1300K) of our AMES-Dusty model at Teff = 1800K. Spectral features seen above 8.5 m are due to Mg2SiO3 and MgAl2O4.

Al203Mg2Si04 Mg2Si04

Page 12: The spectral MLTY transition: the role of convection in cloud formation

name dust handling referencename dust handling reference

NextGen NextGen nonenone Allard et al. Allard et al. (1996)(1996) DustyDusty/Cond/Cond EquilibriumEquilibrium Allard et al. Allard et al. (2001)(2001)

Model GridsModel Grids

Page 13: The spectral MLTY transition: the role of convection in cloud formation

2 models to bracket de 2 models to bracket de solutionsolution

Allard et al. (2001)

Page 14: The spectral MLTY transition: the role of convection in cloud formation
Page 15: The spectral MLTY transition: the role of convection in cloud formation

General PrinciplePhenomenological Model:

• Chemical equilibrium• Dust monomers in equilibrium with gas phase• Cloud bottom set to its hottest CE condensation level• Cloud extension controlled by convective turbulent

updraft refueling cloud layers with refractory material

A. Hydrostatic equilibrium T, Pgas (done independently

before) We solve layer by layer outwards:

1) Grain diffusion (cond., sed., mix.) Ngrain , rgrain

2) Revised elemental abundances3) Chemical equilibrium4) Go back to 1) and repeat until no more grain forms

B. Radiative transfer, spectrum, model iteration, and back to A) till model converged

Page 16: The spectral MLTY transition: the role of convection in cloud formation

Refractory Elements

Quasi-Static Cloud Model

Page 17: The spectral MLTY transition: the role of convection in cloud formation

Microphysical and convective characteristic time scales as a function of mean particle radius

Grain growth:• Convection transports

condensable gas up• Sedimentation (rain)

brings dust particles down• Condensation increases

radii of small particles• Coalescence brings large

particles togetherLast 3 timescales estimated

using Rossow (1978)

Page 18: The spectral MLTY transition: the role of convection in cloud formation
Page 19: The spectral MLTY transition: the role of convection in cloud formation

Surface convection in late M dwarfLudwig, Allard, Hauschildt, ApJ 2002

• RHD simulation

• Teff =2800K, logg=5.0

• Vertically: timescale=100 sec velocities=240 m/s

• Horizontally: cell size = 80 km contrast 1.1%

Page 20: The spectral MLTY transition: the role of convection in cloud formation

3 4 5 6 7 8log10 P [dyn/cm 2]

-4.0

-3.5

-3.0

-2.5

-2.0

Mass exchange frequency as a function of Pressure for various degrees of

subsonic filtering

Page 21: The spectral MLTY transition: the role of convection in cloud formation

Considered Mixing Options

• Phenomenological model i.e.with NO free parameter

mix conv Hp / inside the convection zone.

mix parabola of same opening above

the convection zone.

Page 22: The spectral MLTY transition: the role of convection in cloud formation

name dust handling referencename dust handling reference NextGen NextGen nonenone Allard et al. Allard et al. (1996)(1996) Dusty/Cond Equilibrium Allard et al. (2001)

Settl Cloud Model Allard et al. (2003) to replace Dusty Rainout Full Sedimentation to replace Cond

New alkali line profiles for NaI D & KI by Allard N. F. et al. (2003, 2005)New solar abundances by Asplund, Grevesse & Sauval (2005, astro-ph/04102v2)New cloud model by Allard et al. (2003, IAU 211, ASP, p.325)New line data for CaH & VO C-X systems (B. Plez GRAAL)Update on QTiO ( X 3 or 0.5 dex too large!) X 3 larger TiO opacity! weaker contrast to lines!

New Model GridsNew Model Grids

Page 23: The spectral MLTY transition: the role of convection in cloud formation

Tsuji et al. (1999, 2002) TcrAckerman & Marley (2001) frainCooper et al. (2002) Smax

Page 24: The spectral MLTY transition: the role of convection in cloud formation

Metals’ Depletion

O Na Mg Al Si K Ca Ti V Cr Fe

2300 80

100

100

0

100

100

0

100

100

0

100

100

0

100

100

100

100

100

0

100

100

0

100

100

0

100

100

10

100

100

0

100

100

2000 80

80

100

0

0

100

0

99

100

0

0

100

0

99

100

100

100

100

0

60

100

0

0

100

0

0

100

0

100

100

0

80

100

1700 80

80

100

0

0

100

0

10

100

0

0

100

0

80

100

100

100

100

0

0

100

0

0

100

0

0

100

0

100

100

0

100

100

1400 80

80

100

0

0

100

0

0

100

0

0

100

0

0

100

100

100

100

0

0

100

0

0

100

0

0

100

0

0

100

0

0

100

1100 80

80

100

0

0

100

0

0

99

0

0

0

0

0

50

100

100

100

0

0

0

0

0

0

0

0

100

0

0

100

0

0

30

Page 25: The spectral MLTY transition: the role of convection in cloud formation

““Parabolic” Cloud Parabolic” Cloud ModelModel

Allard, Guillot, Ludwig et al. (2003)

Page 26: The spectral MLTY transition: the role of convection in cloud formation

TTmixmix & N & Ngrains grains vs Tauvs Tau1,21,2

Ludwig, Allard, Hauschildt (2002)

Ngrains

Tmix

OUTOUT

ININ

Page 27: The spectral MLTY transition: the role of convection in cloud formation

LAH02 ModelLAH02 Model Constant gravity locus: logg=5.0

Page 28: The spectral MLTY transition: the role of convection in cloud formation

ConclusionsConclusionsMLT and perhaps Y transition is highly sensitive to

turbulence ! 3D RHD convection simulations needed to

study the range and type of turbulence dependence upon optical depth, Teff, and surface gravity.

Project for the next 3 yrs: modeling cloud formation with 3D RHD COBOLD models in BDs

import Phoenix’s opacities and CE into COBOLD

import cloud model into COBOLD

Page 29: The spectral MLTY transition: the role of convection in cloud formation

Gravity Effect?Gravity Effect?Constant gravity locii: 5.0 & 5.5

Page 30: The spectral MLTY transition: the role of convection in cloud formation
Page 31: The spectral MLTY transition: the role of convection in cloud formation

Évolution de Phoenixpériode 2005 - 2015

• Transfert radiatif 3D vs 1D en symétrie sphérique PHH• Diffusion géométrique vs isotropie JP • Croissance des grains vs taux de condensation (Rossow ‘78) CH • Diffusion des grains vs solution linéaire au 1er ordre FA • Photochimie vs équilibre chimique de gaz idéal FS • Chimie non-idéale (SC) vs équilibre chimique de gaz idéal FA • Profiles de raies unifiés vs profiles de Lorentz NFA • Extension de nos calculs d’équilibre chimique jusqu’à 10K FA • Complétion de nos bases d’opacités moléculaires jusqu’à 10K JF

PHH= P. H. Hauschildt (Obs. de Hamburg); NFA= Nicole F. Allard (IAP) JP = Jimmy Paillet (CRAL, PhD ss ma dir.); CH= C. Helling (Univ. T. de Berlin) FS = Franck Selsis (CRAL, CR2 ss ma dir.); JF= Jason Ferguson (WSU)