the size of the w-boson - institut für physikaxm/oepg-2018-raubitzek.pdfbasic idea quantum eld...

62
Basic idea Quantum field theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek, Axel Maas, Pascal Brindl-T¨ orek University of Graz [email protected] September 13, 2018 Sebastian Raubitzek, Axel Maas, Pascal Brindl-T¨orek Size of the W-boson

Upload: others

Post on 08-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

The size of the W-boson

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek

University of Graz

[email protected]

September 13, 2018

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 2: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Basic Idea

I Elementary gauge fields are not gauge invariant → vanishingexpectation values

I Different Approach: Consider the W-boson as a gaugeinvariant composite operator. 1

1All background on the topic can be found in: A. Maas,Brout-Englert-Higgs physics: From foundations to phenomenology (1712.04721[hep-ph]; December 2017)Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 3: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Basic Idea

I Elementary gauge fields are not gauge invariant → vanishingexpectation values

I Different Approach: Consider the W-boson as a gaugeinvariant composite operator. 1

1All background on the topic can be found in: A. Maas,Brout-Englert-Higgs physics: From foundations to phenomenology (1712.04721[hep-ph]; December 2017)Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 4: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Basic Idea

I Elementary gauge fields are not gauge invariant → vanishingexpectation values

I Different Approach: Consider the W-boson as a gaugeinvariant composite operator. 1

1All background on the topic can be found in: A. Maas,Brout-Englert-Higgs physics: From foundations to phenomenology (1712.04721[hep-ph]; December 2017)Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 5: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Why are we doing this?

I Gauge dependent observables are not physical observables.

I For the mass spectrum of the standard model perturbationtheory and the approach of gauge invariant compositeoperators yield the same results. 1

I We want to get some more dynamical results whereperturbation theory and the approach of gauge invariantcomposite operators differ, i.e. the radius, scatteringprocesses...

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 6: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Why are we doing this?

I Gauge dependent observables are not physical observables.

I For the mass spectrum of the standard model perturbationtheory and the approach of gauge invariant compositeoperators yield the same results. 1

I We want to get some more dynamical results whereperturbation theory and the approach of gauge invariantcomposite operators differ, i.e. the radius, scatteringprocesses...

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 7: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Why are we doing this?

I Gauge dependent observables are not physical observables.

I For the mass spectrum of the standard model perturbationtheory and the approach of gauge invariant compositeoperators yield the same results. 1

I We want to get some more dynamical results whereperturbation theory and the approach of gauge invariantcomposite operators differ, i.e. the radius, scatteringprocesses...

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 8: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Basic ideaWhy are we doing this?

Why are we doing this?

I Gauge dependent observables are not physical observables.

I For the mass spectrum of the standard model perturbationtheory and the approach of gauge invariant compositeoperators yield the same results. 1

I We want to get some more dynamical results whereperturbation theory and the approach of gauge invariantcomposite operators differ, i.e. the radius, scatteringprocesses...

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 9: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 10: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 11: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 12: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 13: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 14: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 15: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 16: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Theory of the weak interaction

I Lagrangian density:

L = −1

4W a

µνWµνa + (Dµφ)† (Dµφ) − V

(φ†φ)

(1)

W aµν = ∂µW

aν −∂νW a

µ−gεabcW bµW

aν Dµ = ∂µ− igW a

µτa

(2)

I W aµ are the gauge fields.

I φ(x) is the Higgs. φ(x) consists of two complex scalar fields.

Remarks:

I No fermions.

I No local U(1) hypercharge symmetry.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 17: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 18: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 19: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 20: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 21: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 22: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 23: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Remarks and symmetry properties

Symmetry properties:

I There is a local SU(2) gauge symmetry with the generatorsτ a.

I There is a global SU(2) custodial symmetry with thegenerators τ a.

Remarks on the custodial symmetry:

I Acts only on the Higgs.

I Can be made explicit by writing the Higgs as SU(2) matrix:

X (x) =

(φ1(x) −φ2(x)∗

φ2(x) φ1(x)∗

)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 24: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 25: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.

Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 26: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 27: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 28: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 29: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

the theoryGauge invariance and composite operators

Gauge invariance and composite operators

Elementary fields W aµ are not gauge invariant and therefore their

expectation value vanishes.Different Approach: Composite Operators

I No open gauge index → Non vanishing expectation value

I The W-boson is a triplet vector boson → We need a tripletvector gauge invariant composite operator

I The considered composite operator is

O a1−3 µ

(x) = tr

[τ a

X (x)†√det (X (x))

Dµ(x)X (x)√

det (X (x))

].

(3)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 30: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The Radius

In nuclear phyiscs one can calculate the radius of hardrons bydoing a taylor expansion of the formfactor of a scattering process.2

−6~dR(q2)

dq2

∣∣∣∣q2=0

=⟨r2⟩

(4)

2This is shown in: W.S.C. Williams. Nuclear and Particle Physics.Clarendon Press, 1991.Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 31: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The Radius

In nuclear phyiscs one can calculate the radius of hardrons bydoing a taylor expansion of the formfactor of a scattering process.2

−6~dR(q2)

dq2

∣∣∣∣q2=0

=⟨r2⟩

(4)

2This is shown in: W.S.C. Williams. Nuclear and Particle Physics.Clarendon Press, 1991.Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 32: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The Radius

In nuclear phyiscs one can calculate the radius of hardrons bydoing a taylor expansion of the formfactor of a scattering process.2

−6~dR(q2)

dq2

∣∣∣∣q2=0

=⟨r2⟩

(4)

2This is shown in: W.S.C. Williams. Nuclear and Particle Physics.Clarendon Press, 1991.Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 33: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The form factor

I For the employed scattering process we choose the three pointinteraction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose thetree-level tensor object.

I This yields for the form factor:

R(p, q, k) =Γabcµνρ(p, q, k)

⟨O a

µ 1−3(p)O b

ν 1−3(q)O c

ρ 1−3(k)⟩

Γabcµνρ(p, q, k)D ad

µγ(p)D beνη (q)D c f

ρζ (k) Γd e fγηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 34: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The form factor

I For the employed scattering process we choose the three pointinteraction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose thetree-level tensor object.

I This yields for the form factor:

R(p, q, k) =Γabcµνρ(p, q, k)

⟨O a

µ 1−3(p)O b

ν 1−3(q)O c

ρ 1−3(k)⟩

Γabcµνρ(p, q, k)D ad

µγ(p)D beνη (q)D c f

ρζ (k) Γd e fγηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 35: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The form factor

I For the employed scattering process we choose the three pointinteraction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose thetree-level tensor object.

I This yields for the form factor:

R(p, q, k) =Γabcµνρ(p, q, k)

⟨O a

µ 1−3(p)O b

ν 1−3(q)O c

ρ 1−3(k)⟩

Γabcµνρ(p, q, k)D ad

µγ(p)D beνη (q)D c f

ρζ (k) Γd e fγηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 36: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The form factor

I For the employed scattering process we choose the three pointinteraction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose thetree-level tensor object.

I This yields for the form factor:

R(p, q, k) =Γabcµνρ(p, q, k)

⟨O a

µ 1−3(p)O b

ν 1−3(q)O c

ρ 1−3(k)⟩

Γabcµνρ(p, q, k)D ad

µγ(p)D beνη (q)D c f

ρζ (k) Γd e fγηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 37: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

IdeaThe form factor

The form factor

I For the employed scattering process we choose the three pointinteraction of the discussed composite operator (4).

I The Lorentz structure of the three point function consists of14 tensor objects.

I Gauge invariant perturbation theory1 suggests to choose thetree-level tensor object.

I This yields for the form factor:

R(p, q, k) =Γabcµνρ(p, q, k)

⟨O a

µ 1−3(p)O b

ν 1−3(q)O c

ρ 1−3(k)⟩

Γabcµνρ(p, q, k)D ad

µγ(p)D beνη (q)D c f

ρζ (k) Γd e fγηζ(p, q, k)

.

(5)

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 38: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice technology

The lattice setup is a 4 dimensional isotropic hypercubic latticewith lattice constant a and a lattice volume of V = L4.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 39: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice technology

The lattice setup is a 4 dimensional isotropic hypercubic latticewith lattice constant a and a lattice volume of V = L4.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 40: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice parameters

The calculations were done for lattices L = {8, 12, 16, 20}, and 4sets of parameters denoted with letters A,B,C and D.The sets of parameters are:

A: Inverse lattice spacing: 435 GeV; Mass of the Higgs:m0+ = 124 GeV; coulping constant: α = 0.605

B: Inverse lattice spacing: 335 GeV; Mass of the Higgs:m0+ = 122 GeV; coulping constant: α = 0.506

C: Inverse lattice spacing: 255 GeV; Mass of the Higgs:m0+ = 118 GeV; coulping constant: α = 0.211

D: Inverse lattice spacing: 151 GeV; Mass of the Higgs:m0+ = 131 GeV; coulping constant: α = 0.558

The Higgs mass from the experiment is approximately 125 GeV.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 41: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice parameters

The calculations were done for lattices L = {8, 12, 16, 20}, and 4sets of parameters denoted with letters A,B,C and D.

The sets of parameters are:

A: Inverse lattice spacing: 435 GeV; Mass of the Higgs:m0+ = 124 GeV; coulping constant: α = 0.605

B: Inverse lattice spacing: 335 GeV; Mass of the Higgs:m0+ = 122 GeV; coulping constant: α = 0.506

C: Inverse lattice spacing: 255 GeV; Mass of the Higgs:m0+ = 118 GeV; coulping constant: α = 0.211

D: Inverse lattice spacing: 151 GeV; Mass of the Higgs:m0+ = 131 GeV; coulping constant: α = 0.558

The Higgs mass from the experiment is approximately 125 GeV.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 42: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice parameters

The calculations were done for lattices L = {8, 12, 16, 20}, and 4sets of parameters denoted with letters A,B,C and D.The sets of parameters are:

A: Inverse lattice spacing: 435 GeV; Mass of the Higgs:m0+ = 124 GeV; coulping constant: α = 0.605

B: Inverse lattice spacing: 335 GeV; Mass of the Higgs:m0+ = 122 GeV; coulping constant: α = 0.506

C: Inverse lattice spacing: 255 GeV; Mass of the Higgs:m0+ = 118 GeV; coulping constant: α = 0.211

D: Inverse lattice spacing: 151 GeV; Mass of the Higgs:m0+ = 131 GeV; coulping constant: α = 0.558

The Higgs mass from the experiment is approximately 125 GeV.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 43: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice results for the ratio

The following plots are the plots for the elementary and thecomposite vertex on a lattice with size L = 20

ALL SHOWN PLOTS ARE PRELIMINARY, THESE ARENOT THE FINAL RESULTS!

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 44: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice results for the ratio

The following plots are the plots for the elementary and thecomposite vertex on a lattice with size L = 20ALL SHOWN PLOTS ARE PRELIMINARY, THESE ARENOT THE FINAL RESULTS!

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 45: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Lattice results for the ratio

The following plots are the plots for the elementary and thecomposite vertex on a lattice with size L = 20ALL SHOWN PLOTS ARE PRELIMINARY, THESE ARENOT THE FINAL RESULTS!

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 46: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Determination of the Size

For the determination of the size the numerical derivative at smallmomenta was taken. This is a plot for the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 47: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Determination of the Size

For the determination of the size the numerical derivative at smallmomenta was taken. This is a plot for the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 48: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the Radius of the composite operator in thecontinuum limit 1

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 49: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the radius of the composite operator in thecontinuum limit 2

Parameter set Radius in [1/GeV] Upper error in [1/GeV] Lower error in [1/GeV]

A, 353 GeV 0.113 +0.008 -0.007B, 253 GeV 0.222 +0.006 -0.006C, 230 GeV 0.8 +0.2 -0.2D, 151 GeV 1.22 +0.04 -0.11

Table : Values of the radius of the composite operator in [1/GeV]

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 50: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the radius of the composite operator in thecontinuum limit 3

Parameter set Radius in [fm] Upper error in [fm] Lower error in [fm]

A, 353 GeV 2.2 ∗ 10−2 +1 ∗ 10−3 −1 ∗ 10−3

B, 253 GeV 4.3 ∗ 10−2 +1 ∗ 10−3 −1 ∗ 10−3

C, 230 GeV 1.6 ∗ 10−1 +4 ∗ 10−2 −4 ∗ 10−2

D, 151 GeV 2.41 ∗ 10−1 +8 ∗ 10−3 −2.2 ∗ 10−2

Table : Values of the radius of the composite operator in [fm]

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 51: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the radius of the elementary fields in thecontinuum limit 1

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 52: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the radius of the elementary fields in thecontinuum limit 2

Parameter set Radius in [1/GeV] Upper error in [1/GeV] Lower error in [1/GeV]

A, 353 GeV 0.036 +0.001 -0.001B, 253 GeV 0.031 +0.001 -0.019C, 230 GeV 0 +0.2 -0.008D, 151 GeV 0.06 +0.01 -0.01

Table : Values of the radius of the elementary fields in [1/GeV]

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 53: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

Lattice technologyLattice resultsDetermination of the size of the W-boson

Values of the Radius of the elementary fields in thecontinuum limit 3

Parameter set Radius in [fm] Upper error in [fm] Lower error in [fm]

A, 353 GeV 7.1 ∗ 10−3 +2 ∗ 10−4 −2 ∗ 10−4

B, 253 GeV 6.1 ∗ 10−3 +2 ∗ 10−4 −3 ∗ 10−3

C, 230 GeV 0 +4 ∗ 10−2 −2 ∗ 10−2

D, 151 GeV 1.3 ∗ 10−2 +3 ∗ 10−3 −3 ∗ 10−3

Table : Values of the radius of the elementary fields in [fm]

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 54: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Summary

I We have calculated the radius of an elementary field and acomposite operator.

I The radius of the W-boson is much bigger than the radius ofthe electron(≈ 10−5fm).

I The radius of the elementary field is ≈ 10−1 smaller than theradius of the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 55: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Summary

I We have calculated the radius of an elementary field and acomposite operator.

I The radius of the W-boson is much bigger than the radius ofthe electron(≈ 10−5fm).

I The radius of the elementary field is ≈ 10−1 smaller than theradius of the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 56: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Summary

I We have calculated the radius of an elementary field and acomposite operator.

I The radius of the W-boson is much bigger than the radius ofthe electron(≈ 10−5fm).

I The radius of the elementary field is ≈ 10−1 smaller than theradius of the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 57: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Summary

I We have calculated the radius of an elementary field and acomposite operator.

I The radius of the W-boson is much bigger than the radius ofthe electron(≈ 10−5fm).

I The radius of the elementary field is ≈ 10−1 smaller than theradius of the composite operator.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 58: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Outlook

I The lattice parameters have to be optimized to get betterresults, the weak coupling is still too strong.

I One could calculate radii for different tensor structures, thisapproach is not restricted to tree-level.

I One could calculate the anomalous gauge coupling from theseresults.

I There is no experimental data on the radius of the gaugebosons of the weak interaction.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 59: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Outlook

I The lattice parameters have to be optimized to get betterresults, the weak coupling is still too strong.

I One could calculate radii for different tensor structures, thisapproach is not restricted to tree-level.

I One could calculate the anomalous gauge coupling from theseresults.

I There is no experimental data on the radius of the gaugebosons of the weak interaction.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 60: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Outlook

I The lattice parameters have to be optimized to get betterresults, the weak coupling is still too strong.

I One could calculate radii for different tensor structures, thisapproach is not restricted to tree-level.

I One could calculate the anomalous gauge coupling from theseresults.

I There is no experimental data on the radius of the gaugebosons of the weak interaction.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 61: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

Outlook

I The lattice parameters have to be optimized to get betterresults, the weak coupling is still too strong.

I One could calculate radii for different tensor structures, thisapproach is not restricted to tree-level.

I One could calculate the anomalous gauge coupling from theseresults.

I There is no experimental data on the radius of the gaugebosons of the weak interaction.

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson

Page 62: The size of the W-boson - Institut für Physikaxm/oepg-2018-raubitzek.pdfBasic idea Quantum eld theory The Radius Lattice results Summary The size of the W-boson Sebastian Raubitzek,

Basic ideaQuantum field theory

The RadiusLattice results

Summary

SummaryOutlook

The End

Sebastian Raubitzek, Axel Maas, Pascal Brindl-Torek Size of the W-boson