the sea floor morphology seaward of terre adélie (antarctica)

11
The Sea Floor Morphology Seaward of Terre Ad61ie (Antarctica) Jean-Ren6 Vanney and G. Leonard Johnson UDC 551.462.3 ; South Polar Seas, Marsden square 537 Summary All available sounding lines were used to construct general (Fig. 2) and local (Figs. 3, 4 and 5) bathymetrie charts of the Antarctic sea floor between 1360 E and 147 ~ E (Terre Ad61ie, Southern Indian Ocean). Major coastal and submarine features of the area are delineated and described (Figs. 6 and 7). The sea bed morphology is related clearly to the tectonic and climatic influences. Complex faulting has rup- tured the Gondwana crust into a series of deep basin s separated by irregular plateaus. The Pleistocene maximal extension of inland ice produced the following morpho- logical effects: (1) the overdeepening of valleys, (2) the construction of outer banks (terminal moraines), and (3) the unusual depth of the shelf edge by incomplete post-glacial isostatic readjustment. Morphologie des Meeresbodens im Seegebiet yon Adflieland (Antarktis) (Zusammen- fassung) Alle verfiigbaren Lotlinien wurden benutzt, um allgemeine (Abb. 2) und 5rt- fiche (Abb. 3, 4, 5) Tiefenkarten des antarktischen Meeresbodens zwischen 1360 E und 147 ~ E (Ad61ieland, siidlicher Indischer Ozean) herzustellen. Gr513ere Komplexe der Bodengestaltung dieses Gebietes an der Kiiste und unter Wasser werden abge- grenzt und beschrieben (Abb. 6 und 7). Die Morphologie des Meeresbodens steht danach in deutlichem Zusammenhang mit tektonischen und klimatischen Einfliissen. Komplizierte Verwerfungen haben die Gondwana-Kruste anfgebroehen und eine Reihe yon tiefen Becken geschaffen, die durch unregelm~f~ige Plateaus voneinander getrennt sind. Die groBe Ausdehnung des Inland-Eises wi~hrend des Pleistozi~ns hat folgende morphologisehe Auswirkungen gehabt: (1) die LTbertiefung yon T~lern; (2) die Entstehung von /s Banken (Endmoriinen) und (3) die ungewShnliche Tiefe des Schelfrandes dureh unvollstandigen post-glazialen isostatischen Ausgleich. La morphologie flu fond marin au large de Terre Ad61ic (Antarctique) (R~sum6) Les cartes bathym6triques d'ensemble (Fig. 2) et r6gionales (Fig. 3, 4 et 5) du fond de l'oc6an Antarctique entre 1360 E et 147 o E (Terre Ad6lie, oc6an Indien austral) furent dessin6es ~ l'aide de toutes les sondes disponibles. Les ph6nom6nes littoraux et sous-marins les plus importants du domaine sont cartographi6s et d6crits (Fig. 6 et 7). La morphologie sous-marine est clairement en relation avec les influ- ences tectoniques et climatiques. Un faillage complexe a disloqu6 le socle du Gond- wana en une s6rie de bassins profonds s6par6s par des plateaux irr6guliers. Au Pleistocbne, l'extension maximale de l'inlandsis produisit les effets morphologiques suivants : (i) le surcreusement des d6pressions, (2) la construction des bancs bordiers (moraines terminales), et (3) le maintien du rebord de la plate-forme ~ des profon- deurs anormales par suite d'un r6ajustement isostatique post-glaciaire imparfait. Introduction Geomorphic studies have shown that the continental margins of the Polar regions are unlike those of more temperate latitudes (Holtedahl and Holtedahl [1961]; Zhivago [1962]). The main differences are (1) the extensive dissection by "marginal channels"; (2) the

Upload: jean-rene-vanney

Post on 16-Aug-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The sea floor morphology seaward of Terre Adélie (Antarctica)

T h e S e a F l o o r M o r p h o l o g y S e a w a r d of T e r r e Ad61ie ( A n t a r c t i c a )

Jean-Ren6 V a n n e y and G. Leonard J o h n s o n

U D C 551.462.3 ; S o u t h P o l a r Seas , M a r s d e n s q u a r e 537

Summary All available sounding lines were used to construct general (Fig. 2) and local

(Figs. 3, 4 and 5) bathymetrie charts of the Antarctic sea floor between 1360 E and 147 ~ E (Terre Ad61ie, Southern Indian Ocean). Major coastal and submarine features of the area are delineated and described (Figs. 6 and 7). The sea bed morphology is related clearly to the tectonic and climatic influences. Complex faulting has rup- tured the Gondwana crust into a series of deep basin s separated by irregular plateaus. The Pleistocene maximal extension of inland ice produced the following morpho- logical effects: (1) the overdeepening of valleys, (2) the construction of outer banks (terminal moraines), and (3) the unusual depth of the shelf edge by incomplete post-glacial isostatic readjustment.

Morphologie des Meeresbodens im Seegebiet yon Adflieland (Antarktis) (Zusammen- fassung)

Alle verfiigbaren Lotlinien wurden benutzt, um allgemeine (Abb. 2) und 5rt- fiche (Abb. 3, 4, 5) Tiefenkarten des antarktischen Meeresbodens zwischen 1360 E und 147 ~ E (Ad61ieland, siidlicher Indischer Ozean) herzustellen. Gr513ere Komplexe der Bodengestaltung dieses Gebietes an der Kiiste und unter Wasser werden abge- grenzt und beschrieben (Abb. 6 und 7). Die Morphologie des Meeresbodens steht danach in deutlichem Zusammenhang mit tektonischen und klimatischen Einfliissen. Komplizierte Verwerfungen haben die Gondwana-Kruste anfgebroehen und eine Reihe yon tiefen Becken geschaffen, die durch unregelm~f~ige Plateaus voneinander getrennt sind. Die groBe Ausdehnung des Inland-Eises wi~hrend des Pleistozi~ns hat folgende morphologisehe Auswirkungen gehabt: (1) die LTbertiefung yon T~lern; (2) die Entstehung von /s Banken (Endmoriinen) und (3) die ungewShnliche Tiefe des Schelfrandes dureh unvollstandigen post-glazialen isostatischen Ausgleich.

La morphologie flu fond marin au large de Terre Ad61ic (Antarctique) (R~sum6) Les cartes bathym6triques d'ensemble (Fig. 2) et r6gionales (Fig. 3, 4 et 5) du

fond de l'oc6an Antarctique entre 1360 E et 147 o E (Terre Ad6lie, oc6an Indien austral) furent dessin6es ~ l'aide de toutes les sondes disponibles. Les ph6nom6nes littoraux et sous-marins les plus importants du domaine sont cartographi6s et d6crits (Fig. 6 et 7). La morphologie sous-marine est clairement en relation avec les influ- ences tectoniques et climatiques. Un faillage complexe a disloqu6 le socle du Gond- wana en une s6rie de bassins profonds s6par6s par des plateaux irr6guliers. Au Pleistocbne, l 'extension maximale de l'inlandsis produisit les effets morphologiques suivants : (i) le surcreusement des d6pressions, (2) la construction des bancs bordiers (moraines terminales), et (3) le maintien du rebord de la plate-forme ~ des profon- deurs anormales par suite d 'un r6ajustement isostatique post-glaciaire imparfait.

Introduction Geomorphic studies have shown that the continental margins of the Polar regions are

unlike those of more temperate latitudes ( H o l t e d a h l and H o l t e d a h l [1961]; Z h i v a g o [1962]). The main differences are (1) the extensive dissection by "marginal channels"; (2) the

Page 2: The sea floor morphology seaward of Terre Adélie (Antarctica)

78 Dr. hydrogr. Z. 32, 1979. I-I. 2. V a n n e y et M. : Sea Floor lViorphology

steepness of the continental slope; (3) the extensive continental rise shaped by the combined action of the turbidity and contour currents. These high latitude morphologie features are explained by the influence of both the continent and climatic changes. The sea floor seaward of Terre Ad61ie (Fig. 1) is typical with' some peculiarities.

AUSTRALIA 160~ NEW ZEALAND

%

IO0oE

< w

O rr"

Fig. 1. Index map

In our geomorphie study of the eireumantaretic sea floor: Bellingshausen Basins (Van- n e y and J o h n s o n [1976 a, b]), the P~oss Sea ( V a n n e y and J o h n s o n [1976 c]; V a n n e y , F a l c o n e r , and J o h n s o n [in press]) we are now presenting the data on the Wilkes Land sector (Indian Ocean), particularly (except for the study of H a y e s and C o n o l l y [1972]) the uncharted area of the Terre Ad61ie.

D a t a

All available sounding data were used in the contouring of the l~ig. 2. These were: (1) the extensive lines of echo-sounding obtained by the research cruises (USNS "Eltanin" that has been operating in this area during the cruises 37, 50; "Ob", "Vema", "Conrad") (Zh iv ag o [1961]; H a y e s and C o n o l l y [1972]), and compiled sounding data by the Australian Hydro- graphic Office into the standard Gebco (General Bathymetric Chart of the Ocean) and the Defense Mapping Agency (Washington); (2) the French surveys (L era s [1960]) accomplished on the inner shelf and some offshore regions by the Service Hydrographique de la Marine ("Commandant Charcot", "Norsel") at the scale of 1/500,000, 1/50,000, 1/20,000 and smaller particularly for the sectors off the G6od6sie Channel* (Fig. 3), Pointe G6ologie (Fig. 4) and

* Geographic names proposed by the authors.

Page 3: The sea floor morphology seaward of Terre Adélie (Antarctica)

Dr, hydrogr. Z. 32, 1979. I t . 2. V ~ n n e y et ~1.: Sea Floor Morphology

,,~ o ~

N W

/ �9

_~e._.o

79

I

I : " ',..- .......

W

, ! " . /

<g,,~

i I i" i ~. . . . . . . . . ," , ' ~ :.. - ~ [ ~ ~ < , ~

J z / " . . . , .>.. ~'" ,~_ ~- , y . , , , >>_ , , o ~ i ~

, r ' , , ~ ,) " ~ ~o.. I / - / i- +o+ b + + ,

o~

~ . ~ |

o ~ ' ~ 0,4~ ,

@,-~ 0 ~ - ~ ~

~,4~ .~ ~ .~ - ~

N~ e~ m .~|

b0~ ~ o ~

Page 4: The sea floor morphology seaward of Terre Adélie (Antarctica)

80 Dr. hydrogr. Z. 32, 1979. }I. 2. Va~lney et al.: Sea t~loor Morphology

Port-lV[artin (Fig. 5). A block diagram (Fig. 6) and a physiographic sketch (Fig. 7) delineate the main bathymetr ic features.

Morphology The area to be described lies between 1350 E and 1470 E, and south of 640 S (Fig. 2).

I t forms a belt extending 200 km to 300 km out of the coast of the Terre Ad61ie and sur- rounding coasts (western part of the King George V Land). The coast is slightly elevated and almost entirely glaciated by cliffs 20 m to 30 m high except for some rare nunataks of several ten meters of elevation above the bed rock ( B e l l a i r [1960]). The lack of deglaciation, except around Port-Martin, accounts for the absence of raised beaches and the lack of Pleistocene morainal deposition (Be l l a i r [1969]). The coast is regular in trend, striking W N W to ESE, to the east of 1450 E with but minor indentations, and rare bays such as at Pointe G6ologic. Thence the coast swings southward to form a re-entrant occupied by the Merz Glacier. The apparent monotony of the coastal ice belt is deceiving as it is highly probable that the topo- graphy is complex (Norwegian type) as partially revealed by the scattering of islets deglaciated during exceptionally warm summers ( B e l l a i r [1960]). The extreme scarceness of great embayments explains why this region of Antarctica is lacking the extensive ice shelves found in the Ross sector. However, the entire Dumont d'Urville Sea is occupied by a dense pack ice ( T a b u t e a u [ 1952]) (Fig. 7) swept by intense katabatie winds with a world record of 320 km/h at the Cape Denison, 142 o E (Bal l [1957] ; M a t h c r and Mi l l e r [1967]).

Continental shelf The shelf varies little in width. The narrowest part, approximately 110 kin, is off the

Dumont d'Urville station, while the widest part, 180 km across, lies front of Merz Glacier. In this latter section, the width of the Ad61ie shelf is more than twice of the world average of 78 km ( E m e r y [1969]). The average gradients measured in these two sections varies from 5.4 m/km to 3.3 m/kin. The continental shelf is, however, easily divided into two major morphologie units.

T h e H i l l o c k y i n n e r s h e l f This region is heavily dissected with the extreme contrast of rocky ridges and ledges,

separated by depressions with depths from 100 m to 200 m down to about 1,500 m: The narrow nearshore rocky zone is a succession of beaches dominated by linear crests with shallow rifts and numerous glaciated low islands. Figure 3 is a good example of this topography formed by stepped blocks oriented toward the North and lying at a depth of about several meters (example: Thala Dan Rocks*) or ten meters (W of GSodcsie Channel) below sea level. The islands (H61gne, Ifo, Fram, Gouverneur) only rise of 10 m to 20 m above the sea ice surface. This conspicuous irregularity contrasts to narrow depressions with flat bot toms between 100 m to 200 m, Similar sag and swell topography is also observed in the Pointe G6ologie Archipelago (Fig. 4), where the sea ice grounds; in this sector, where Dumont d'Urville landed in 1840, the relief is somewhat similar to the Norwegian coast and has been interpreted by B e l l a i r [1969] as a strandflat.

Beyond this rocky zone, the shelf is deeply carved by a series of deep and large "marginal" basins tha t present an orthogonal pattern. In the E, they are the King George V Basin*, formerly named Ad61ie depression by G o r d o n and T c h e r n i a [1972]. This trends to the NW, with a measured maximum depth at 1395 m in the vicinity of the fluctuating ice barrier (Fig. 2 and 7). In the western extremity, the NE trending Denison Channel* opens as a hanging valley until several km from the Cape. The basin seems to extend beneath the Merz Glacier toward the Fisher Bay where a depression of 1,591 m was discovered during the third cruise of R/S "Ob" ( Z h i v a g o [1961]).

In the W is found the large I )umont d'Urvillc Basin* (d'Urville Trough of G o r d o n and T c h e r n i a [1972]) also oriented to the NW (30 km to 50 km width; 140 km long). The coastal and northern flanks are remarkably abrupt. The basin consists of several elongated depressions, separated by subtabular banks such as Norsel*, Thala Dan*, Victor Banks*

Page 5: The sea floor morphology seaward of Terre Adélie (Antarctica)

D~. hydrogr. Z. 32, 1979. H. 2. Vanney et al. : Sea Floor Morphology 81

o@

~ S~ Q 0

o , ~ s t

! N ' ,

-%

o

% .. r~ O

>

.,

| .

�9

�9

�9

�9

|

~4

Page 6: The sea floor morphology seaward of Terre Adélie (Antarctica)

82 Dr. hydrogr. Z. 32, 1979. I t . 2. V a n n e y et al. : Sea :Floor Morphology

50' 140o00 , E 10'

6 6 a' 30'S

%

/ 1

\ % %

t.,,* w

~C~ "~TOTTA N /_ __ ~._

1 4 6

4 9 3

.•./." BANKS 4a7

GEoLOGiC.. CB/kBgFGL

ANTARCTIC CIRCLE

66 ~ 30'S

A ")lATE GEOLOGIE ARCHIPELAGOj~.

35'

H'~- a

t i

40'

LEJAY'k~fi~ DUMOr y D'URVlLLE - - ~

/ / 4"c, ~',

g "- ,

�9 'krn '-. ) ' ' - - 5 \

~ \ . . . .

POINTE-GEOLOGIE / OFFSHORE /

\ 50'

40,1 I / I 140~ 10'

"(100)' ' ~ 1 "" " "'/ / J21

Fig. 4. Bathymetry of the Dumont d'Urville sector (Pointe G6ologie offshore). Contoursin corrected m. Equidistance: 100 m. The shallow parts (lesser than 200 m) are drawn from French hydro- graphic surveys at 1/50,000, 1/20,000, 1/5,000 and 1/500. The arrow indicates the location of Fig. 3, Islands : ]3 : Buffon ; C : Cuvier; Cu : Curie; D : I)emoulin; De : Derby; F : Fram; F1: Florence;

G: Gouverneur; H : H616ne ; P : Pasteur; Pe : des P6trels

(Fig. 3 and 4). This basin deepens to the SE (1191 m) and connects with a series of digi tated channels named, proceeding from W to E as follows: (1) the G6ologie Channel*, (Fig. 4), prolongated to the SW by the G6od6sie Channel (Fig. 3), a narrow "crevice" reaching 500 m at least t k m off the coast; (2) the Astrolabe Basin* (Fig. 4), wider (5 km) t h a n the precedent

Page 7: The sea floor morphology seaward of Terre Adélie (Antarctica)

Dr. hydrogr. Z. 32, t979. I-L 2. V a n n e y et al . : Sea Floor Morphology 83

channels, deepening suddenly southward of Pointe G6ologie Archipelago (1480 m). i t ' s the terminal basin of the Astrolabe Glacier. The base of this lat ter is at 700 m to 800 m above the f jord b o t t o m ( B e l l a i r [1969]); (3) the U-shaped enclosed depression, n a m e d the Ju les Deep* (1300 m), ex tend ing sou thwards t oward a g rea t a l luvia l fan occupied by c lumps of grounding ice from the r e t r ea t ing f ron t of L a Z616e Glacier. I t is pe rhaps morphologica l ly

~

0

�9 �9 �9 2oo

�9 �9 �9 �9 �9 �9

'% .~ I

L . ~ f/ ..j

La ZE~LE~E GLACIER

73.0 ~ m / / [

k

r

? i~ P + RIFF " "

�9 I C E § - - + ' ~ . , E : ISOHYF'S " " i

f (200).% , ,

o k m - 5 . ' l / I I I I I I , " �9 )

(loo) . ~ . . 7; [ ~ . / �9 . . . i ,.PORT'MART-I~.

Fig. 5. Ba thymet ry of the P o r t - ~ a r t i n offshore. Contours in corrected m. Equidistance : 100 m. Drawn from French hydrographic survey at 1/75,000. Is lands: D: Double; E : de l 'Empereur ; H: Houle; I : Iseul t ; Ma: Marguerite ; M: des Manchots; ~ : l~essac ; 1~o : l~onde; T : Tris tan;

Tr: Triple ; V: Verte

Page 8: The sea floor morphology seaward of Terre Adélie (Antarctica)

84 Dr. hydrogr. Z. 32, 1979. H. 2. Vanney et al. : Sea Floor Morphology

connected, to Port-Martin Channel* (Fig. 5) by a hanging trough at about 300 m. This latter channel elongated (17 km) parallel to the former, is narrow (1 km to 2 km), generally straight or lightly sinuous. I t is divided in a succession of steplike basins, as a glacial trough composed by segments joined by rock sills with waterfalls. Landward, the valley comes close to the coast off Port-Martin (lV[argerie Cape) in form of a trough head wall similar to a cirque.

Fig. 6. Block diagram of the Terre Adglie Continental Margin. Made by 1~. Ldtolle (Paris). The limits of the block are those of Figs. 2 and 7. Land on the right. B, J, C, L: Buff'on, Jussieu, Cuvier, Lamarek canyons. D, K : Dumont d'Urville, King George V basins. Du : Dumont d'UrvilIe Station.

Photo : D. Mougenot

The o u t e r s h e l f b a n k s a n d she l f edge

The larger portion (2/3) of the shelf is represented by undulating plains similar to a depositional surface. They are divided in triangular plateaus by the wide open valleys (400 m to 500 m deep, several ten km width) at the terminus of the inner basins. The "outer banks" are oblique (NW) to the main orientation of the shelf edge. This dominant topography is formed by a lot of smoothly rounded, oval knobby hills interspersed by little deep kettles and hollows; for instance, the region nanied Claude Bernard Banks*, Ad61ie Knolls* and the extensive flat topped hills dispersed in the NE of the King George V Basin (E of the i~ig. 2). Fig. 2 shows the presence of a chaplet of shoals narrower than 200 m or 100 m (by example, 40 m at 136 ~ E, 78 m in the Ad61ie Knolls).

The depth of the shelf edge varies little from one sector to another. Generally, the change in gradient is about 600 m to 700 m, deeper than the Antarctic average. I t ' s relatively abrupt in the sections where the shelf is bordered by shallow banks. Excepting the detailed sinuosities, the trend of the shelf edge is composed by a succession of linear segments of diverse orienta- tion.

The continental slope As is frequent in the Antarctic margin, the slope towards the ocean floor is not continuous

but very irregular, being interrupted by numerous features which may be classified into two geomorphic groups: (1) below the generally steep and dissected upper slope (until about 2,000 m), the declivity is interrupted by benches (or platforms), that mark marginal plateau characteristics of the Wilkes Land continental margin (Vanney and Johnson [in prepara- tion]). Some steps have an irregular relief with isolated highs, although the available informa- tion is not conclusive in this respect. (2) The upper slope and plateau-like banks are dissected

Page 9: The sea floor morphology seaward of Terre Adélie (Antarctica)

])t. hydrogr. Z. 32, 1979. I-I. 2. V a n n e y et ah : Sea Floor Morphology 85

by large ravines converging toward major canyons. The more important, as far as can be ascertained from the available soundings~ are the four distinguished in the Fig. 2 and 7. Their names are, proceeding W to E: Lamarck*, Cuvier*, Jussieu* and Buffon Canyons*, named after the French naturalists of the 18th to 19th century: They are formed by diversely oriented talwegs, although their shape and course axis are only approximate, due to the comparatively wide spacing of the ship tracks. For the same reason, their extent on the continental rise is uncertain ( V a n n e y and J o h n s o n [in preparation]).

135~ 140~ 147~ 64 ~

6~o _ 65 ~ S

6 6 o ~ " . . g

.~ "" 66 ~

I Ihqlll :

67 . ' ~$A~ ~,~- 67 ~ �9 " ' " " " " �9 �9 : 1 3 9 5 , , . ]

Fig. 7. Physiographic sketch of the Terre Ad61ie Continental Margin. (1) Front of glacier or ieeberg tongue; (2) Longitudinal basin; (3) Average northern limit of pack ice in fall; (4) Benches on

the slope; (5) Seamount

D i s c u s s i o n

The Ad~l ie s h e l f The most important difference from the neighboring Ross Sea sector of Antarctica is the

break up of the Coastal Transantaretie 3s This causes a major change in the base- ment. The Alpine (Andean Orogen) and Caledonian (Ross Orogen) constructed fold belts paral]el to the platform of Archean or Early Proterozoie age (granitic gneiss and several types of gneiss and metamorphic rocks) of the East Antarctic Shield (S t i l lwe l l [1918]; V i n c e n t [1950]; Aubert de la Rt ie and T e h e r n i a [1951]; H e u r t e b i z e [1952 a, b]; B e l l a i r [1961 a, b]). In this petrographic complex, the ancient rocks of the former nucleus of Gondwana continent are known and some rocks as old as 1540 M. Y. have been found (B e l la i r and D e l b o s [1962]). Little is known about the submarine geologic framework, but the continuation of the basement at least to the inner basins is likely. I t is hard to say if the oriented relief of the nearshore rocky zone is due to the difference in the rock resistance to glacial gouging of a fault network. Whichever is predominent, glacial overdeepening appears clearly in the submarine morphology. The smooth topography of certain block tops of the rocky nearshore belt is probably due to the smoothing effect of the Pleistocene deposition. This process continues today as the icebergs gradually melt and drift away in the front of La Zglge and Astrolabe Glacier (Bel la i r , T o u r e n q and V e r n h e t [1964]).

Seaward, the more regular topography corresponds to the presence of a sedimentary wedge deposited since the separation o f Antarctica and Australia. :By comparison with the

Page 10: The sea floor morphology seaward of Terre Adélie (Antarctica)

86 Dr. hydrogr. Z. 32, 1979. H. 2. V a n n e y et al.: Sea Floor Morphology

surrounding areas, we presume the presence of an abundant morainal material (several hundred meters thick ?) deposited by glaciers, ice shelves and icebergs during the maximum ice sheet extension. The "reverse" inclination of the outer banks is perhaps due to the glaeio-isostatie rebound (differential rise) of the shelf edge, associated with a glacial recessional phenomena, for instance, the increasing accumulation of the bulk of glacial - marine deposits contem- poraneous with the eustatic elevation.

Unfortunately, the available geological and sedimentological information is insufficient to understand the respective influence and mutual interrelations of the tectonic pulsations and the climatico-eustatic changes posed by the Ad61ie shelf.

T h e Ad61ie s h e l f edge a n d s l o p e The "baionnette" pat tern of the shelf edge and steep under slope is perhaps due to the

tectonic influence of oblique faulting initiated during the formation of the Antarctica-Austra- lia corridor. For example, in appearance, a par t of the slope W of 1380 E seems controlled by a lineament striking toward the prolongation of the Dumont d'Urville Basin. However, the morphology of the sea bed also suggests the possibility of gravitational mass movement, perhaps dependent of a recent mobilism and, more likely, related to proglacial erosion pheno- mena when the ice sheet, or the ice barrier, was at the shelf edge.

I t is difficult to explain the mid-slope plateaus. They are perhaps the top of tilted blocks, more or less covered by lava flows ; the alternative explanation is the proglacial accumulation in the front of an ice sheet or under the wet base of an ice shelf. I t seems to the writers, how- ever, tha t the present morphology of the Ad61ie slope is best explained by a tectonic control. The surficial forms of the canyons on the other hand, can be readily explained in terms of alternativing proglacial erosion and accumulation. This is reinforced by the Eltanin hydro- graphic observations demonstrating the "Ad61ie Basin" is similar to the Weddell and Ross Seas in the formation of the Antarctic Bot tom Water (AABW) ( G o r d o n [1972, 1974]). Beneath the sea ice and in the front of the glacial effluent (Merz Glacier f.i.), the dense shelf water accumulated in the deep basins until at some point, it overflows the shelf and spills down the slope along the canyons to produce AABW by mixing. This interjection is confirmed b y : (1) the STD (Salinity - Temperature - Density) and water sample data from the "El tanin" cruise 37 ( G o r d o n and T c h e r n i a [1972]) and stations data during the cruise 50 ( G o r d o n [1974]) in the sector of the Jussieu Canyon; and (2) the increase of the nepheloid layer towards the floor of the sea valleys ( E i t t r e i m , G o r d o n , E w i n g et al. [1972]). Certainly, the turbid water overflow was comparatively more important during the large progressional and reces- sional phases of glaciation and was able to re-entrain and incise the detrital apron deposited during the glacial maximum extension.

A c k n o w l e d g e m e n t s The authors wish to thank the Defense Mapping Agency (Washington), the Director

of the Service Hydrographique and Oc6anographique de la Marine (Brest, Paris) for the provision of sounding material. We also thank Pr. P. Bellair (Universit6 Pierre et Marie Curie, Paris), A. Cailleux (Laboratoire de g6omorphologie, 94100, Saint-Maur-du-Fosses, France), ~ and D. E. Hayes (Lamont-Doherty Geological Observatory) for kindly reading and com- menting; and Pr. R. Lhtolle (Universit6 Pierre et Marie Curie, Paris) for the construction of the block diagram.

References A u b e r t de la ]%iie, E. and P. T c h e r n i a , 1951 :

Sur quelques roehes de la Terre Addlie. C. 1%. Acad. Sci., Paris. 232, 995-997.

Bal l , E. K., 1957: The Katabatie winds of Ade]ie Land and King George V Land. Tellus. 9, 201-208.

Be l la i r , P., 1960: La bordure c6ti@re de la Terre Ad~lie. Sciences, Paris. 2, 86-118.

Be l la i r , P., 1961a: Sur ]es formations ancien- nes de l'Archipel de Pointe G6ologie (Terre Ad@lie). C. t~. Acad. Sci., Paris. 252, 3087- 3089.

Page 11: The sea floor morphology seaward of Terre Adélie (Antarctica)

Dt. hydrogr. Z. 32; 1979. i. 2. Vanney etal. : Sea Floor Morphology 87

B e l l a i r , P., 1961b: Pdtrographio du socle cristallin de Terre Addlie. C. 1~. Aead. Sci., Paris. 252, 3296-3298.

B e l l a i r , P., 1969: Le Quaternaire dans les Terres Australes fran~aises. In : Etudes fran~aises sur le Quaternaire. VI I Ie Congrgs Internat. I N Q U A (Paris). Pp. 257-264.

B e l l a i r , P. a n d L . D e l b o s , 1962: Ageabso lu de la derni~re granitisation en Terre Addlie. C. 1%. Aead. Sci., Paris. 254, 1465-1466.

B e l l a i r , P., J . T o u r e n q and S. V e r n b e t , 1964: Un 6chantillon de moraine interne du glacier de l 'Astrolabe (Terre Ad@lie). Rev. Gdogr. phys. G@ol. dynam. (2). 6, 115-126.

E i t t r e i m , S. L., A. L. G o r d o n , M. E w i n g et al., 1972: The nepheloid layer and observed bot tom currents in the Indian-Pacific Ant- arctic Sea. In: Studies in physical oceano- graphy (ed.: A. L. Gordon). 2, 19-35. New York: Gordon & Breach.

E m e r y , K. O., 1969: The continental Shelves. Seient. Amer. 221, 107-122.

G o r d o n , A. L., 1972: Spreading of Antarctic bot tom water. In: Studies in physical oceano- graphy (ed. : A. L. Gordon). 2, 1-7. New York: Gordon & Breaeh.

G o r d o n , A. L., 1974: Varieties and variability of Antarctic bot tom water. In: Proeessus de formation des eaux oc6aniques profondes, en partieulier en M6diterran6e oeeidentale. Col- loque int. Cent. nat. 1%ech. Sci., Paris. 215, 33-48.

G o r d o n , A. L. and P. T c h e r n i a , 1972: Waters of the continental margin off Adelie coast, Antarctica. In : Antarctic ~es. Set. 19: Antarctic oceanology 2: The Australian - New Zealand Sector (ed.: D. E. Hayes). Pp. 59-69.

H a y e s , D. E. and J. 1%. C o n o l l y , 1972: Morphology of the Southeast Indian Ocean. In: Antarctic ges. Ser. 19: Antarctic oceano- logy 2: The Australian - New Zealand Sector (ed. : D. E. Hayes). Pp. 125-145.

1 - I eu r t eb i ze , G., 1952a: Sur les environs de Port-Martin (Terre Ad61ie). C. R. Aead. Sci., Paris. 234, 1380-1382.

H e u r t e b i z e , G., 1952b: Sur ]es formations anciennes de la Terre Ad61ie. C. 1~. Acad. Sci., Paris. 234, 2209-2211.

l-loltedahl, O. and H. Holtedahl, 1961: On marginal channels along continental borders and the problems of their origins. Bull. Geol. Instn. Univ. Uppsala. 40, 183-187.

L e f a s , 1~., 1960 : La cSte Ad61ie. Hydrographie. In: Exp6d. Pol. frangaises. 218, 45-61.

M a t h e r , K. B. and G. S. M i l l e r , 1967: The problem of the Katabat ic winds on the coast of Terre Addlie. Polar. ]=tee. 18, 425-432.

S t i l l w e l l , F. L., 1918: The metamorphic rocks of Adelie Land. Section 1. In : Scientific Exped. Australian Antaret. Exped. 1911- 1914. A (3), 1-230.

T a b u t e a u , M., 1952: Le littoral et le pack dans l 'Antaretique frantais. Inform. g6ogr. 16, 54-64.

V a n n e y , J. R. and G. L. J o h n s o n , 1976a: Geomorphology of the Pacific continental margin of the Antarctic Peninsula. In : Init ial reports of the Deep Sea Drilling Project. St, 279-289. Washington: U.S. Government Printing Office.

V a n n e y , J . R. and G. L. J o h n s o n , 1976b: The Bellingshausen-Amundsen Basins (South- eastern Pacific): Major sea floor units and problems. Mar. Geol. 22, 71-101.

V a n n e y , J. 1~. and G. L. J o h n s o n , 1976e: The floor of the Ross Sea and adjacent oceanic provinces. Antaret. J. U.S. 11, 231- 233.

Vanney, J. R., 1~. Falconer and G. L. Johnson [in press]: Geomorphology of the Ross Sea and adjacent oceanic provinces.

Vanney, J. 1%. and G. L. Johnson [in pre- paration] : The Wilkes Land continental margin.

V i n c e n t , P., 1950: Exp6dition antarctique, eampagne devant la Torte Adglie (1948, 1949). G6ologie. In : Exp6d. Pol. fran~aises. Publ. prdliminaires. 9, 26-32.

Z h i v a g o , A. V., 1961: Marine geologieal and geomorphologieal researches. 3. Antarctic Cruise, 1%/S "Ob". Prec. Sov. Antaret. Exped. 19.

Z h i v a g o , A. V., 1962: Outlines of southern Ocean geomorphology. Geophys. Monogr. 7, 74-80.

Eingegangen im September 1978

Anschriften der Verfasser: Prof. Jean-l%end Vanney, Universit6s Paris-Sorbonne (Institut de Gdographie, 191 rue Saint- Jacques, 75 005 Paris) and Pierre et Marie Curie (Laboratoire de G@ologie dynamique, 75 230 Paris) Dr. G. Leonard Johnson, Office of Naval Research, Arlington, Virginia 22217 USA