the scattering of the harmonic anti-plane shear stress waves by...

12
The scattering of the harmonic anti-plane shear stress waves by two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material half-infinite planes dynamic loading Z-G Zhou 1 and B Wang 2 1 Center for Composite Materials, Harbin Institute of Technology, Harbin, People’s Republic of China 2 School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China The manuscript was received on 17 July 2005 and was accepted after revision for publication on 18 November 2005. DOI: 10.1243/09544062JMES129 Abstract: In this paper, the dynamic behaviour of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material half-infinite planes sub- jected to the harmonic anti-plane shear stress waves is investigated. To make the analysis tract- able, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By using the Fourier transform technique, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved by using the Schmidt method. The relations among the electric field, the magnetic flux field, and the dynamic stress field near the crack tips can be obtained. Numerical examples are provided to show the effect of the func- tionally graded parameter, the distance between two interface cracks, and the circular frequency of the incident waves upon the stress, the electric displacement, and the magnetic flux intensity factors of cracks. Keywords: functionally graded piezoelectric/piezomagnetic materials, two collinear interface cracks, stress wave 1 INTRODUCTION The piezoelectric/piezomagnetic composite mate- rials have been found to have wide applications in the smart systems of aerospace, automotive, medi- cal, and electric fields because of the intrinsic coupling characteristics among their electric, mag- netic, and mechanical fields. As the piezoelectric/ piezomagnetic composite materials are being extensively used as actuators or transducers in the technologies of smart and adaptive systems, the mechanical reliability and durability of these materials become increasingly important. Therefore, it is of great importance to study the magneto- electro-elastic interaction and fracture behaviours of magneto-electro-elastic composites [1 12]. On the other hand, the development of functionally graded materials has demonstrated that they have the potential to reduce the stress concentration and increase of fracture toughness. Consequently, some applications of functionally graded piezoelectric materials have been made [13, 14]. Recently, the fracture problems of functionally graded piezoelec- tric materials have been considered in references [15 20]. Li and Weng [19] first considered the static anti-plane problem of a finite crack in func- tionally graded piezoelectric material strip. Their results showed that the singular stress and the singu- lar electric displacement in functionally graded piezoelectric materials carry the same forms as those in the homogeneous piezoelectric materials Corresponding author: Center of Composite Materials, Harbin Institute of Technology, PO Box 1247, Harbin, Hei-Long Jiang 150001, People’s Republic of China. email: [email protected] 137 JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science at UNIV OF MICHIGAN on April 19, 2015 pic.sagepub.com Downloaded from

Upload: others

Post on 21-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

The scattering of the harmonic anti-plane shearstress waves by two collinear interface cracksbetween two dissimilar functionally gradedpiezoelectric/piezomagnetic materialhalf-infinite planes dynamic loadingZ-G Zhou1� and B Wang2

1Center for Composite Materials, Harbin Institute of Technology, Harbin, People’s Republic of China2School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China

The manuscript was received on 17 July 2005 and was accepted after revision for publication on 18 November 2005.

DOI: 10.1243/09544062JMES129

Abstract: In this paper, the dynamic behaviour of two collinear interface cracks between twodissimilar functionally graded piezoelectric/piezomagnetic material half-infinite planes sub-jected to the harmonic anti-plane shear stress waves is investigated. To make the analysis tract-able, it is assumed that the material properties vary exponentially with coordinate vertical to thecrack. By using the Fourier transform technique, the problem can be solved with the help of apair of triple integral equations, in which the unknown variable is the jump of the displacementsacross the crack surfaces. These equations are solved by using the Schmidt method. Therelations among the electric field, the magnetic flux field, and the dynamic stress field nearthe crack tips can be obtained. Numerical examples are provided to show the effect of the func-tionally graded parameter, the distance between two interface cracks, and the circular frequencyof the incident waves upon the stress, the electric displacement, and the magnetic flux intensityfactors of cracks.

Keywords: functionally graded piezoelectric/piezomagnetic materials, two collinear interfacecracks, stress wave

1 INTRODUCTION

The piezoelectric/piezomagnetic composite mate-rials have been found to have wide applications inthe smart systems of aerospace, automotive, medi-cal, and electric fields because of the intrinsiccoupling characteristics among their electric, mag-netic, and mechanical fields. As the piezoelectric/piezomagnetic composite materials are beingextensively used as actuators or transducers inthe technologies of smart and adaptive systems, themechanical reliability and durability of thesematerials become increasingly important. Therefore,

it is of great importance to study the magneto-electro-elastic interaction and fracture behavioursof magneto-electro-elastic composites [1–12]. Onthe other hand, the development of functionallygraded materials has demonstrated that they havethe potential to reduce the stress concentration andincrease of fracture toughness. Consequently, someapplications of functionally graded piezoelectricmaterials have been made [13, 14]. Recently, thefracture problems of functionally graded piezoelec-tric materials have been considered in references[15–20]. Li and Weng [19] first considered thestatic anti-plane problem of a finite crack in func-tionally graded piezoelectric material strip. Theirresults showed that the singular stress and the singu-lar electric displacement in functionally gradedpiezoelectric materials carry the same forms asthose in the homogeneous piezoelectric materials

�Corresponding author: Center of Composite Materials, Harbin

Institute of Technology, PO Box 1247, Harbin, Hei-Long Jiang

150001, People’s Republic of China. email: [email protected]

137

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 2: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

but the magnitudes of the intensity factors dependsignificantly upon the gradient of the functionallygraded piezoelectric materials properties. Morerecently, the concept of functionally gradedmaterials was first extended to the piezoelectric/piezomagnetic materials to improve the reliabilityof piezoelectric/piezomagnetic materials and struc-tures in references [21, 22]. The results also showedthat the singular stress, the singular electric displace-ment, and the singular magnetic flux in functionallygraded piezoelectric/piezomagnetic materials carrythe same forms as those in the homogeneous piezo-electric/piezomagnetic materials but themagnitudesof the intensity factors depend significantly upon thegradient of the functionally graded piezoelectric/piezomagnetic materials properties. However, toour knowledge, the dynamic magneto-electro-elasticbehaviour of functionally graded piezoelectric/piezomagnetic materials with two collinear interfacecracks subjected to the harmonic anti-plane shearstress waves has not been studied. Thus, the presentwork is an attempt to fill this information needed.Here, we just attempt to give a theoretical solutionfor this problem.

In this paper, the dynamic magneto-electro-elasticbehaviour of two collinear permeable interface cracksbetween two dissimilar functionally graded piezo-electric/piezomagnetic material half-infinite planessubjected to the harmonic anti-plane shear stresswaves is investigated using the Schmidt method[23]. The advantages of the Schmidt method are thatit can be used to solve the first kind Fredholm integralequation as shown in reference [23] and the specialkind dual integral equations as discussed in refer-ence [24]. To make the analysis tractable, it isassumed that the material properties vary exponen-tially with coordinate vertical to the crack. Fouriertransform is applied and a mixed boundary-valueproblem is reduced to a pair of triple integralequations. To solve the triple integral equations, thejump of the displacements across the crack surfacesis expanded in a series of Jacobi polynomials.Numeri-cal solutions are obtained for the dynamic stress, theelectric displacement, and themagnetic flux intensityfactors for permeable crack surface conditions.

2 FORMULATION OF THE PROBLEM

It is assumed that there are two collinear interfacecracks of length 12 b between two dissimilar func-tionally graded piezoelectric/piezomagnetic materialhalf-planes as shown in Fig. 1. 2b is the distancebetween two collinear cracks (The solution of twocollinear cracks of length d2 b in functionallygraded piezoelectric/piezomagnetic materials canbe easily obtained by a simple change in the

numerical values of the present paper for cracklength 12 b/d, d . b . 0.) It is also assumed thatthe propagation direction of the harmonic elasticanti-plane shear stress wave is vertical to the crackin functionally graded piezoelectric/piezomagneticmaterials. Let v be the circular frequency of the inci-dent wave. w(i)

0 (x, y, t), f(i)0 (x, y, t), and c(i)

0 (x, y, t)(i ¼1, 2) are the mechanical displacement, the electricpotential, and the magnetic potential, respectively.t(i)zk0(x, y, t), D

(i)k0(x, y, t), and B(i)

k0(x, y, t) (k ¼ x, y, i ¼1, 2) are the anti-plane shear stress field, in-planeelectric displacement field, and in-plane magneticflux, respectively. Also note that all quantities withsuperscript i (i ¼ 1, 2) refer to the upper half-plane1 and the lower half-plane 2 as shown in Fig. 1,respectively. Because the incident waves are harmo-nic anti-plane shear stress waves, all field quantities

w(i)0 (x,y,t),f(i)

0 (x,y,t), c(i)0 (x,y,t), t(i)zk0(x,y,t),D

(i)k0(x,y,t),

and B(i)k0(x, y, t) can be assumed to be of the forms as

follows

½w(i)0 (x, y, t), f(i)

0 (x, y, t), c(i)0 (x, y, t),

t(i)zk0(x, y, t), D(i)k0(x, y, t), B

(i)k0(x, y, t)�

¼ ½w(i)(x, y), f(i)(x, y), c(i)(x, y),

t(i)zk(x, y), D(i)k (x, y), B(i)

k (x, y)�e�ivt (1)

In what follows, the time dependence of e�ivt willbe suppressed but understood. The functionallygraded piezoelectric/piezomagnetic materialsboundary-value problem for the harmonic anti-plane shear waves is considerably simplified if onlythe out-of-plane mechanical displacements, thein-plane electric fields, and the in-plane magneticfields are considered. As discussed in references[25, 26], as no opening displacement exists for thepresent anti-plane problem, the crack surfaces canbe assumed to be in perfect contact. Accordingly,permeable condition will be enforced in the presentstudy, i.e. the electric potential, the magnetic poten-tial, the normal electric displacement, and the mag-netic flux are assumed to be continuous across thecrack surfaces. Here, the standard superpositiontechnique was used in the present paper. Therefore,the boundary conditions of the present problem are

Fig. 1 Geometry and coordinate system for two

collinear cracks

138 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 3: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

(In this paper, we just consider the perturbationfields.)

t(1)yz (x, 0þ)¼ t(2)yz (x, 0

�)¼�t0, b4 xj j4 1

t(1)yz (x, 0þ)¼ t(2)yz (x, 0

�),w(1)(x, 0þ)

¼w(2)(x, 0�), xj j. 1, xj j,b

8><>:

(2)

f(1)(x, 0þ)¼f(2)(x, 0�),D(1)y (x, 0þ)¼D(2)

y (x, 0�)

c(1)(x, 0þ)¼c(2)(x, 0�), B(1)y (x, 0þ)¼B(2)

y (x, 0�),xj j41

8><>:

(3)

w(1)(x, y)¼w(2)(x, y)¼ 0

f(1)(x, y)¼f(2)(x, y)¼ 0

c(1)(x, y)¼c(2)(x, y)¼ 0

8><>: for (x2þy2)1=2 !1

(4)

where t0 is a magnitude of the incident wave.Crack problems in the non-homogeneous piezo-

electric/piezomagnetic materials do not appear tobe analytically tractable for arbitrary variations ofmaterial properties. Usually, one tries to generatethe forms of non-homogeneities for which the pro-blem becomes tractable. Similar to the treatment ofthe crack problem for isotropic non-homogeneousmaterials in references [15–22, 27–29], the materialproperties are described by

c(1)44 ¼ c(1)440eb(1)y , e(1)15 ¼ e(1)150e

b(1)y ,

1(1)11 ¼ 1(1)110eb(1)y

q(1)15 ¼ q(1)

150eb(1)y , d(1)

11 ¼ d(1)110e

b(1)y ,

m(1)11 ¼ m(1)

110eb(1)y , r(1)(y) ¼ r(1)0 eb

(1)y

c(2)44 ¼ c(2)440eb(2)y , e(2)15 ¼ e(2)150e

b(2)y ,

1(2)11 ¼ 1(2)110eb(2)y

q(2)15 ¼ q(2)

150eb(2)y , d(2)

11 ¼ d(2)110e

b(2)y ,

m(2)11 ¼ m(2)

110eb(2)y , r(2)(y) ¼ r(2)0 eb

(2)y (5)

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

where c(i)440, e(i)150, 1

(i)110, q

(i)150, d

(i)150, m

(i)110, r

(i)0 , and b(i) are

the shear modulus, the piezoelectric coefficient, thedielectric parameter, the piezomagnetic coefficient,the magnetoelectric coefficient, the magnetic per-meability, the mass density, and the functionallygraded parameter of two dissimilar functionallygraded piezoelectric/piezomagnetic material half-planes, respectively.

The constitutive equations for the mode III crackcan be expressed as

t(i)zk ¼ c(i)44w(i),k þ e(i)15f

(i),k þ q(i)

15c(i),k

(k ¼ x, y, i ¼ 1, 2) (6)

D(i)k ¼ e(i)15w

(i),k � 1(i)11f

(i),k � d(i)

11c(i),k

(k ¼ x, y, i ¼ 1, 2) (7)

B(i)k ¼ q(i)

15w(i),k � d(i)

11f(i),k � m(i)

11c(i),k

(k ¼ x, y, i ¼ 1, 2) (8)

The anti-plane governing equations are [1, 2]

c(i)440 r2w(i) þ b(i) @w(i)

@y

� �þ e(i)150 r2f(i) þ b(i) @f

(i)

@y

� �

þ q(i)150 r2c(i) þ b(i) @c

(i)

@y

� �¼ �r(i)0 v2w(i) (9)

e(i)150 r2w(i) þ b(i) @w(i)

@y

� �� 1(i)110 r2f(i) þ b(i) @f

(i)

@y

� �

� d(i)110 r2c(i) þ b(i) @c

(i)

@y

� �¼ 0 (10)

q(i)150 r2w(i) þ b(i) @w

(i)

@y

� �� d(i)

110 r2f(i) þ b(i) @f(i)

@y

� �

� m(i)110 r2c(i) þ b(i) @c

(i)

@y

� �¼ 0 (11)

where

�r(i)0 v2w(i)(x, y)e�ivt ¼ r(i)0@2w(i)

0 (x, y, t)

@t2

¼ r(i)0@2(w(i)(x, y)e�ivt)

@t2

andr2 ¼ @2/@x 2þ @2/@y 2 is the two-dimensional

Laplace operator.

3 SOLUTIONS

Because of the assumed symmetry in geometry andloading, it is sufficient to consider the problem for0 4 x , 1, 21 4 y , 1 only. The system of theearlier governing equations (9) to (11) is solvedusing the Fourier integral transform technique toobtain the general expressions for the displacementcomponents, the electric potentials, and themagnetic potentials as

w(1)(x, y) ¼ 2

p

ð10

A1(s)e�g(1)

1y cos (sx)ds

f(1)(x, y) ¼ a(1)0 w(1)(x, y)þ 2

p

ð10

B1(s)e�g(1)

2y

� cos (sx)ds (y 5 0)

c(1)(x, y) ¼ a(1)1 w(1)(x, y)

þ 2

p

ð10

C1(s)e�g(1)

2y cos (sx)ds (12)

8>>>>>>>>>>>><>>>>>>>>>>>>:w(2)(x, y) ¼ 2

p

ð10

A2(s)e�g(2)

1y cos (sx)ds

f(2)(x, y) ¼ a(2)0 w(2)(x, y)þ 2

p

ð10

B2(s)e�g(2)

2y

� cos (sx)ds (y 4 0)

c(2)(x, y) ¼ a(2)1 w(2)(x, y)þ 2

p

ð10

C2(s)e�g(2)

2y

� cos (sx)ds (13)

8>>>>>>>>>>><>>>>>>>>>>>:

Scattering of the harmonic anti-plane shear stress waves 139

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 4: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

where A1(s), B1(s), C1(s), A2(s), B2(s), C2(s) areunknown functions

g(1)1 ¼b(1) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib(1)2 þ 4½s2 � v2=c21�

q2

g(1)2 ¼ b(1) þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib(1)2 þ 4s2

p2

, c1 ¼ffiffiffiffiffiffiffiffim(1)0

r(1)0

s

m(1)0 ¼ c(1)440 þ a(1)

0 e(1)150 þ a(1)1 q(1)

150

a(1)0 ¼ m(1)

110e(1)150 � d(1)

110q(1)150

1(1)110m(1)110 � d(1)2

100

a(1)1 ¼ q(1)

1501(1)110 � d11e

(1)150

1(1)110m(1)110 � d(1)2

100

g(2)1 ¼b(2) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib(2)2 þ 4½s2 � v2=c22�

q2

g(2)2 ¼ b(2) þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib(2)2 þ 4s2

p2

, c2 ¼ffiffiffiffiffiffiffiffim(2)0

r(2)0

s

m(2)0 ¼ c(2)440 þ a(2)

0 e(2)150 þ a(2)1 q(2)

150

a(2)0 ¼ m(2)

110e(2)150 � d(2)

110q(2)150

1(2)110m(2)110 � d(2)2

110

a(2)1 ¼ q(2)

1501(2)110 � d(2)

110e(2)150

1(2)110m(2)110 � d(2)2

110

Therefore, from equations (6) to (8), it can beobtained

t(1)yz (x, y) ¼ � 2eb(1)y

p

ð10

{m(1)0 g(1)1 A1(s)e

�g(1)1y

þ g(1)2 ½e(1)150B1(s)þ q(1)150C1(s)�e�g(1)

2y}

� cos (sx)ds (14)

D(1)y (x, y) ¼ 2eb

(1)y

p

ð10

g(1)2 ½1(1)110B1(s)

þ d(1)110C1(s)�e�g(1)

2y cos (sx)ds (15)

B(1)y (x, y) ¼ 2eb

(1)y

p

ð10

g(1)2 ½d(1)110B1(s)

þ m(1)110C1(s)�e�g(1)

2y cos (sx)ds (16)

t(2)yz (x, y) ¼2eb

(2)y

p

ð10

{m(2)0 g(2)1 A2(s)e

g(2)1y

þ g(2)2 ½e(2)150B2(s)

þ q(2)150C2(s)�eg

(2)2y} cos (sx)ds (17)

D(2)y (x, y) ¼ � 2eb

(2)y

p

ð10

g(2)2 ½1(2)110B2(s)

þ d(2)110C2(s)�eg

(2)2y cos (sx)ds (18)

B(2)y (x, y) ¼ � 2eb

(2)y

p

ð10

g(2)2 ½d(2)110B2(s)

þ m(2)110C2(s)�eg

(2)2y cos (sx)ds (19)

To solve the problem, the jump of the displacementsacross the crack surfaces is defined as follows

f (x) ¼ w(1)(x, 0þ)�w(2)(x, 0�) (20)

Substituting equations (12) and (13) into equation(20), and applying the Fourier transform and theboundary conditions (3), it can be obtained

�f (s) ¼ A1(s)� A2(s) (21)

a(1)0 A1(s)� a(2)

0 A2(s)þ B1(s)� B2(s) ¼ 0 (22)

a(1)1 A1(s)� a(2)

1 A2(s)þ C1(s)� C2(s) ¼ 0 (23)

A superposed bar indicates the Fourier transformthroughout the paper. Substituting equations (14)to (19) into the boundary conditions (2) to (4), itcan be obtained

m(1)0 g(1)1 A1(s)þg(1)2 ½e(1)150B1(s)þq(1)

150C1(s)�þm(2)

0 g(2)1 A2(s)þg(2)2 ½e(2)150B2(s)þq(2)150C2(s)� ¼0 (24)

g(1)2 ½1(1)110B1(s)þd(1)110C1(s)�

þg(2)2 ½1(2)110B2(s)þd(2)110C2(s)� ¼0 (25)

g(1)2 ½d(1)110B1(s)þm(1)

110C1(s)�þg(2)2 ½d(2)

110B2(s)þm(2)110C2(s)�¼0 (26)

By solving six equations (21) to (26) with sixunknown functions and substituting the solutionsinto equations (14) to (16) and applying the bound-ary conditions (2) and (3), it can be obtained

2

p

ð10

�f (s)cos(sx)ds¼0, x.1, 0, x,b (27)

2

p

ð10

g1(s)�f (s)cos(sx)ds¼�t0, b4x41 (28)

where g1(s) is a known function (Appendix 2).lims!1g1(s)=s¼b1. b1 is a constant which dependson the properties of thematerials (Appendix 2). How-ever, b1 is independent of the functionally gradedparameters b(1) and b(2). When the properties of theupper and the lower half-planes are continuous

along the crack line, b1¼�c(1)440=2. To determine the

unknown function �f (s), a pair of triple integralequations (27) and (28) must be solved.

140 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 5: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

4 SOLUTION OF THE TRIPLE INTEGRALEQUATIONS

The Schmidt method [23] is used to solve the tripleintegral equations (27) and (28). The jump of the dis-placements across the crack surfaces is representedby the following series

f (x) ¼X1n¼0

bnP(1=2,1=2)n

x � (1þ b)=2

(1� b)=2

� �

� 1� (x � (1þ b)=2)2

((1� b)=2)2

� �1=2

, for b 4 x 4 1

(29)

f (x) ¼ w(1)(x, 0)�w(2)(x, 0)

¼ 0, for x . 1, 0 , x , b (30)

where bn are unknown coefficients to be determinedand P(1=2,1=2)

n (x) is a Jacobi polynomial [30]. TheFourier transform of equations (29) and (30) is [31]

�f (s) ¼X1n¼0

bnFnGn(s)1

sJnþ1 s

1� b

2

� �(31)

where

Fn ¼ 2ffiffiffiffip

p G(nþ 1þ (1=2))

n!,

Gn(s) ¼(� 1)n=2 cos s

1þ b

2

� �, n ¼ 0, 2, 4, 6, . . .

(� 1)(nþ1)=2 sin s1þ b

2

� �, n ¼ 1, 3, 5, 7,

8>><>>:

G(x) and Jn(x) are the Gamma and Bessel functions,respectively.

Substituting equation (31) into equations (27) and(28), equation (27) has been automatically satisfied.After integration with respect to x in ½b, x�, equation(28) reduces to

2

p

X1n¼0

bnFn

ð10

1

s2g1(s)Gn(s)Jnþ1 s

1� b

2

� �

� ½sin (sx)� sin (sb)�ds¼ �t0(x � b), for b 4 x 4 1 (32)

The semi-infinite integral in equation (32) canbe numerically evaluated easily as shown inAppendix 3. Thus, equation (32) can now be solvedfor the coefficients bn by the Schmidt method [23],as shown in Appendix 4.

5 INTENSITY FACTORS

The coefficients bn are known, so that the entireperturbation stress field, the perturbation electricdisplacement field, and the magnetic flux can beobtained. However, in fracture mechanics, it is ofimportance to determine the perturbation stress t(1)yz ,the perturbation electric displacement D(1)

y , and themagnetic flux B(1)

y in the vicinity of the crack tips. Inthe case of the present study, t(1)yz , D

(1)y , and B(1)

y

along the crack line can be expressed, respectively, as

t(1)yz (x, 0) ¼2

p

X1n¼0

bnFn

ð10

1

sg1(s)Gn(s)

� Jnþ1 s1� b

2

� �cos (xs)ds

¼ 2b1

p

X1n¼0

bnFn

�ð10

Gn(s)Jnþ1 s1� b

2

� �cos (xs)ds

þ 2

p

X1n¼0

bnFn

ð10

1

sg1(s)� b1

� �

� Gn(s)Jnþ1 s1� b

2

� �cos (xs)ds (33)

D(1)y (x, 0) ¼ 2

p

X1n¼0

bnFn

�ð10

1

sg2(s)Gn(s)Jnþ1 s

1� b

2

� �cos (xs)ds

¼ 2b2

p

X1n¼0

bnFn

�ð10

Gn(s)Jnþ1 s1� b

2

� �cos (xs)ds

þ 2

p

X1n¼0

bnFn

ð10

1

sg2(s)� b2

� �Gn(s)

� Jnþ1 s1� b

2

� �cos (xs)ds (34)

B(1)y (x, 0) ¼ 2

p

X1n¼0

bnFn

�ð10

1

sg3(s)Gn(s)Jnþ1 s

1� b

2

� �cos (xs)ds

¼ 2b3

p

X1n¼0

bnFn

�ð10

Gn(s)Jnþ1 s1� b

2

� �cos (xs)ds

þ 2

p

X1n¼0

bnFn

ð10

1

sg3(s)� b3

� �

� Gn(s)Jnþ1 s1� b

2

� �cos (xs)ds (35)

Scattering of the harmonic anti-plane shear stress waves 141

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 6: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

where g2(s) and g3(s) are known functions (Appendix2). lims!1 g2(s)=s ¼ b2 and lims!1 g3(s)=s ¼ b3, whereb2 and b3 are two constants which depend on theproperties of the materials (Appendix 2). When theproperties of the upper and the lower half-planesare continuous along the crack line, b2 ¼ �e(1)150=2and b3 ¼ �q(1)

150=2.From the relationships [30] as shown in Appendix

5, the singular parts of the stress field, the electricdisplacement field, and the magnetic flux near thecrack tips in equations (33) to (35) can be expressed,respectively, as follows (x . 1 or x , b)

t ¼ b1

p

X1n¼0

bnFnHn(b, x) (36)

D ¼ b2

p

X1n¼0

bnFnHn(b, x) (37)

B ¼ b3

p

X1n¼0

bnFnHn(b, x) (38)

where

Hn(b, x) ¼(� 1)nþ1R(b, x, n), 0 , x , b

�R(b, x, n), x . 1

(

R(b, x, n) ¼ 2(1� b)nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ b� 2xj2 � (1� b)2

p hj1þ b� 2xj

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ b� 2xj2 � (1� b)2

p inþ1

At the left tip of the right crack, the stress intensityfactor KL can be expressed as

KL ¼ limx!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(b� x)

pt

¼ �b1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

(� 1)nbnFn (39)

At the right tip of the right crack, the stress inten-sity factor KR can be expressed as

KR ¼ limx!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(x � 1)

pt

¼ �b1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

bnFn (40)

At the left tip of the right crack, the electric displa-cement intensity factor KD

L can be expressed as

KDL ¼ lim

x!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(b� x)

pD

¼ �b2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

(� 1)nbnFn ¼ b2

b1

KL (41)

At the right tip of the right crack, the electric dis-placement intensity factor KD

R can be expressed as

KDR ¼ lim

x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(x � 1)

pD

¼ �b2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

bnFn ¼ b2

b1

KR (42)

At the left tip of the right crack, the magnetic fluxintensity factor K B

L can be expressed as

K BL ¼ lim

x!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(b� x)

pB

¼ �b3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

(� 1)nbnFn ¼ b3

b1

KL (43)

At the right tip of the right crack, the magnetic fluxintensity factor K B

R can be expressed as

K BR ¼ lim

x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2(x � 1)

pD

¼ �b3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2

(1� b)

r X1n¼0

bnFn ¼ b3

b1

KR (44)

6 NUMERICAL CALCULATIONS ANDDISCUSSION

From the literatures [21–23], it can be seen that theSchmidt method performs satisfactorily if the first10 terms of the infinite series (32) are retained. Atb 4 x 4 1, y ¼ 0, it can be obtained that t(1)yz =t0 isvery close to negative unity. Hence, the solution ofthe present paper can also be proved to satisfy theboundary conditions (2). In all computations,according to references [1, 2, 9], the constants ofmaterials-I are assumed to be c(1)440 ¼ 44:0 (GPa),

e(1)150 ¼ 5:8 (C=m2), 1(1)110 ¼ 5:64�10�9 (C2=Nm2), q(1)150 ¼

275:0 (N/A m), d(1)110 ¼ 0:005� 10�9 (N s/V C), m(1)

110 ¼�297:0� 10�6 (N s2=C2), r(1)0 ¼ 1500 kg/m3 and the

constants of materials-II are assumed to be

c(2)440 ¼ 34:0 (GPa), e(2)150 ¼ 4:8 (C/m2), 1(2)110 ¼ 4:64� 10�9

(C2=N m2), q(2)150 ¼ 195:0 (N/A m), d(2)

110 ¼ 0:004� 10�9

(N s/V C), m(2)110 ¼ �201:0 � 10�6 (N s2=C2), r(2)0 ¼

1000 kg/m3. The normalized non-homogeneity con-

stants b(i)(i ¼ 1, 2) are varied between 22 and 2,which covers most of the practical cases. The resultsof the present paper are shown in Figs 2 to 10. Fromthe results, the following observations are verysignificant.

1. From the results, it can be shown that the singularstress, electric displacement, and the magneticflux in the functionally graded piezoelectric/piezo-magnetic materials carry the same forms as those

142 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 7: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

in the homogeneous piezoelectric/piezomagneticmaterials or in the homogeneous piezoelectricmaterials, but the magnitudes of the intensity fac-tors depend significantly upon the gradient of thefunctionally graded piezoelectric/piezomagneticmaterials properties as discussed in references[19–22].

2. The magneto-electro-elastic coupling effects canbe obtained as shown in equations (39)–(44).For the electric displacement and the magneticflux intensity factors, they have the same chan-ging tendency as the stress intensity factors asshown in Figs 2 to 4. However, the amplitudevalues of the electric displacement field, themagnetic flux field, and the stress field are differ-ent. The amplitude values of the electric displa-cement and the magnetic flux fields are verysmall as shown in Figs 3 and 4. The results ofthe electric displacement and the magnetic fluxintensity factors can be directly obtained fromthe results of the stress intensity factors throughequations (39) to (44). This means that anapplied mechanical load alone can produce theelectric displacement and magnetic flux singu-larities. The results of the electric displacementand the magnetic flux intensity factors of theother cases have been omitted in the presentpaper.

3. The interaction of the two collinear cracksdecreases when the distance between the twocollinear cracks increases as shown in Figs 2 to4. The intensity factors at the inner crack tipsare bigger than those at the outer crack tips.However, the intensity factors at the inner andouter crack tips are almost overlapped for b 50:5 as shown in Figs 2 to 4. When the materialproperties of the upper half-plane are equal tothe ones of the lower half-plane along the crack

line, it can obtain the same conclusion asshown in Figs 7 and 10. It can also be obtainedthat this conclusion is the same as the dynamicanti-plane shear fracture problem in the isotropichomogeneous materials.

4. The dynamic stress intensity factors tend toincrease with the frequency of incident waves,reaching a peak and then to decrease in magni-tude as shown in Figs 5 to 7. The intensity factorsat the inner crack tips are bigger than those atthe outer crack tips for v=c1 , 2:3. However,the intensity factors at the inner crack tips aresmaller than those at the outer crack tips forv=c1 . 2:3 as shown in Figs 5 to 7. Thesephenomena may be caused by the couplingeffects of the mechanical field, the electric field,and the magnetic flux field. From the results, itcan be concluded that the stress, the electric

Fig. 2 The stress intensity factor versus b for v/

c1 ¼ 0.4, b(1) ¼ 0.2, and b(2) ¼ 0.4 (material-I/

material-II)

Fig. 3 The electric displacement intensity factor

versus b for v=c1 ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼0:4 (material-I/material-II)

Fig. 4 The magnetic flux intensity factor versus b for

v=c1 ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)

Scattering of the harmonic anti-plane shear stress waves 143

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 8: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

displacement, and the magnetic fields near thecrack tips can be deduced by adjusting the fre-quency of incident waves in engineeringpractices.

5. The stress intensity factors tend to decrease withincrease in the functionally graded parametersb(i)(i ¼ 1, 2) as shown in Figs 8 to 10. When thematerial properties of the upper half-plane andthe lower half-plane along the crack line arecontinuous, it can obtain the same conclusionas shown in Fig. 10. This means that, by adjust-ing the functionally graded parameters, thedynamic stress fields near the crack tips can bereduced.

6. The solution of the present paper can revert to oneof the problems which the material properties of

Fig. 6 The stress intensity factor versus v=c1 for

b ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)

Fig. 7 The stress intensity factor versus v=c1 for

b ¼ 0:1, b(1) ¼ 0:4, and b(2) ¼ 0:4 (material-I/

material-I)

Fig. 8 The stress intensity factor versus b(1) for

v=c1 ¼ 0:4, b ¼ 0:1, and b(2) ¼ 0:4 (material-I/

material-II)

Fig. 9 The stress intensity factor versus b(2) for

v=c1 ¼ 0:4, b ¼ 0:1, and b(1) ¼ 0:4 (material-I/

material-II)

Fig. 5 The stress intensity factor versus v=c1 for

b ¼ 0:1, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)

144 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 9: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

the upper half-plane and the lower half-planealong the crack line are continuous as shown inFigs 7 and 10.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support bythe National Natural Science Foundation of China(10 572 043, 10 572 155, 50 232 030, 10 172 030), theNatural Science Foundation with Excellent YoungInvestigators of Hei Long Jiang Province (JC04-08),and the Natural Science Foundation of Hei LongJiang Province (A0301).

REFERENCES

1 Sih, G. C. and Song, Z. F. Magnetic and electric polingeffects associated with crack growth in BaTiO3–CoFe2O4 composite. Theor. Appl. Fract. Mech., 2003,39, 209–227.

2 Song, Z. F. and Sih, G. C. Crack initiation behavior inmagnetoelectroelastic composite under in-plane defor-mation. Theor. Appl. Fract. Mech., 2003, 39, 189–207.

3 Wang,B. L. andMai, Y.W.Crack tipfield inpiezoelectric/piezomagnetic media. Eur. J. Mech. A/Solid, 2003, 22(4),591–602.

4 Wang, B. L. and Mai, Y. W. Fracture of piezoelectro-magnetic materials. Mech. Res. Commun., 2004, 31(1),65–73.

5 Gao, C. F., Tong, P., and Zhang, T. Y. Interfacial crackproblems in magneto–electroelastic solids. Int. J. Eng.Sci., 2003, 41(18), 2105–2121.

6 Gao, C. F., Kessler, H., and Balke, H. Fracture analysisof electromagnetic thermoelastic solids. Eur. J. Mech.A/Solid, 2003, 22(3), 433–442.

7 Gao, C. F., Kessler, H., and Balke, H. Crack problems inmagnetoelectroelastic solids. Part I: exact solution of acrack. Int. J. Eng. Sci., 2003, 41(9), 969–981.

8 Gao, C. F., Kessler, H., and Balke, H. Crack problemsin magnetoelectroelastic solids. Part II: general sol-ution of collinear cracks. Int. J. Eng. Sci., 2003, 41(9),983–994.

9 Spyropoulos, C. P., Sih, G. C., and Song, Z. F. Magne-toelectroelastic composite with poling parallel to planeof line crack under out-of-plane deformation. Theor.Appl. Fract. Mech., 2003, 39(3), 281–289.

10 Liu, J. X., Liu, X. L., and Zhao, Y. B. Green’s functionsfor anisotropic magnetoelectroelastic solids with anelliptical cavity or a crack. Int. J. Eng. Sci., 2001,39(12), 1405–1418.

11 Zhou, Z. G., Wu, L. Z., and Wang, B. The dynamicbehavior of two collinear interface cracks in magneto–electro–elastic composites. Eur. J. Mech. A/Solids,2005, 24(2), 253–262.

12 Zhou, Z. G., Wang, B., and Sun, Y. G. Two collinearinterface cracks in magneto–electro–elastic compo-sites. Int. J. Eng. Sci., 2004, 42, 1157–1167.

13 Takagi, K., Li, J. F., Yokoyama, S., and Watanabe, R.Fabrication and evaluation of PZT/Pt piezoelectriccomposites and functionally graded actuators. J. Eur.Ceramic Soc., 2003, 10, 1577–1583.

14 Jin, D. R. Functionally graded PZT/ZnO piezoelectriccomposites. J. Mater. Sci. Lett., 2003, 22, 971–974.

15 Chen, J., Liu, Z. X., and Zou, Z. Z. Electromechanicalimpact of a crack in a functionally graded piezoelectricmedium. Theor. Appl. Fract. Mech., 2003, 39, 47–60.

16 Jin, B. and Zhong, Z. A moving mode-III crack in func-tionally graded piezoelectric material: permeable pro-blem. Mech. Res. Commun., 2002, 29, 217–224.

17 Wang, B. L. A mode-III crack in functionally gradedpiezoelectric materials. Mech. Res. Commun., 2003,30, 151–159.

18 Kwon, S. M. Electrical nonlinear anti-plane shear crackin a functionally graded piezoelectric strip. Int. J. Solid.Struct., 2003, 40, 5649–5667.

19 Li, C. Y. and Weng, G. J. Antiplane crack problem infunctionally graded piezoelectric materials. J. Appl.Mech., 2002, 69(4), 481–488.

20 Sun, J. L., Zhou, Z. G., andWang, B.Dynamic behaviorof a crack in a functionally graded piezoelectric stripbonded to two dissimilar half piezoelectric materialplanes. ACTA Mech., 2005, 176(1–2), 45–60.

21 Zhou, Z. G. and Wang, B. Two parallel symmetry per-meable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear load-ing. Int. J. Solid. Struct., 2004, 41, 4407–4422.

22 Zhou, Z. G., Wu, L. Z., and Wang, B. The behavior of acrack in functionally graded piezoelectric/piezomag-netic materials under anti-plane shear loading. Arch.Appl. Mech., 2005, 74(8), 526–535.

23 Morse, P. M. and Feshbach, H. Methods of theoreticalphysics, vol. 1, 1958 (McGraw-Hill, New York).

24 Zhou, Z. G., Han, J. C., and Du, S. Y. Investigation ofa crack subjected to anti-plane shear by using thenon-local theory. Int. J. Solid. Struct., 1999, 36(26),3891–3901.

25 Soh, A. K., Fang, D. N., and Lee, K. L. Analysis of a bi-piezoelectric ceramic layer with an interfacial cracksubjected to anti-plane shear and in-plane electricloading. Eur. J. Mech. A/Solid, 2000, 19, 961–977.

Fig. 10 The stress intensity factor versus b(1) for

v=c1 ¼ 0:4, b ¼ 0:1, and b(2) ¼ 0:4 (material-I/

material-I)

Scattering of the harmonic anti-plane shear stress waves 145

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 10: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

26 Srivastava, K. N., Palaiya, K. N., and Karaulia, D. S.Interaction of shear waves with two coplanar Griffithcracks situated in an infinitely long elastic strip. Int.J. Fract., 1983, 23, 3–14.

27 Delale, F. and Erdogan, F. On the mechanical model-ing of the interfacial region in bonded half-planes.ASME J. Appl. Mech., 1988, 55, 317–324.

28 Fildis, H. and Yahsi, O. S. The axisymmetric crackproblem in a non-homogeneous interfacial regionbetween homogeneous half-spaces. Int. J. Fract., 1996,78, 139–163.

29 Ozturk, M. and Erdogan, F.Mode I crack problem in aninhomogeneous orthotropic medium. Int. J. Eng. Sci.,1997, 35, 869–883.

30 Gradshteyn, I. S. and Ryzhik, I. M. Table of integral,series and products, 1980 (Academic Press, New York).

31 Erdelyi, A. (Ed.) Tables of integral transforms, vol. 1,1954 (McGraw-Hill, New York).

APPENDIX 1

Notation

a0(i) the known constants

a1(i) the known constants

A1(s) an unknown functionA2(s) an unknown functionb the half-distance between two

collinear cracksbn the unknown coefficientsB1(s) an unknown functionB2(s) an unknown functionBk0(i) (x, y, t) in-plane magnetic flux

Bk(i) (x, y) the amplitude of Bk0

(i)(x, y, t)ci the shear wave velocitiesc440i the shear modulusC1 (s) an unknown functionC2 (s) an unknown functiond150(i) the magnetioelectric coefficients

Dk0(i)(x, y, t) in-plane electric displacement fields

Dk(i)(x, y) the amplitude of Dk0

(i)(x, y, t)e150(i) the piezoelectric coefficientsf(x) the jump of the displacements across

the crack surfacesg1(s) a known functiong2(s) a known functiong3(s) a known functionGn(s) the known functionsJn(x) the Bessel functionsKL the stress intensity factor at the left

tip of the right crackKR the stress intensity factor at the right

tip of the right crackKLB the magnetic flux intensity factor at

the left tip of the right crackKRB the magnetic flux intensity factor at

the right tip of the right crack

KLD the electric displacement intensity

factor at the left tip of the right crackKRB the electric displacement intensity

factor at the right tip of the rightcrack

Pn(1/2, 1/2)(x) the Jacobi polynomials

q150(i) the piezomagnetic coefficients

w0(i)(x, y, t) the mechanical displacements

w (i)(x, y) the amplitude of w0(i) (x, y, t)

b1 a known constantb2 a known constantb3 a known constantb(i) the functionally graded parametersg1(i) the known functions

g2(i) the known functions

g(x) the Gamma function1110(i) the dielectric parameters

m110(i) the magnetic permeability

m0(i) the known constants

r0(i) the mass densities

tzk0(i) (x, y, t) the anti-plane shear stress fieldstzk(i)(x, y) the amplitude of tzk0

(i) (x, y, t)t0 the magnitude of the incident wavef0(i)(x, y, t) the electric potentials

f(i)(x, y) the amplitude of f0(i)(x, y, t)

c0(i)(x, y, t) the magnetic potentials

c(i)(x, y) the amplitude of c0(i)(x, y, t)

v the circular frequency of the incidentwave

r2 the two-dimensional Laplaceoperator

APPENDIX 2

The functions of g1(s), g2(s), and g3(s) can be obtainedby the operation of the following matrixes

½X1� ¼1 0 0

a(1)0 1 0

a(1)1 0 1

264

375, ½X2� ¼

�1 0 0

�a(2)0 �1 0

�a(2)1 0 �1

264

375

½X3� ¼m(1)0 g(1)1 g(1)2 e(1)150 g(1)2 q(1)

150

0 g(1)2 1(1)110 g(1)2 d(1)110

0 g(1)2 d(1)110 g(1)2 m(1)

110

264

375

½X4� ¼m(2)0 g(2)1 g(2)2 e(2)150 g(2)2 q(2)

150

0 g(2)2 1(2)110 g(2)2 d(2)110

0 g(2)2 d(2)110 g(2)2 m(2)

110

264

375

½X5� ¼ ½X1� � ½X2�½X4��1½X3�

146 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 11: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

½X6� ¼�m(1)

0 g(1)1 �g(1)2 e(1)150 �g(1)2 q(1)150

0 g(1)2 1(1)110 g(1)2 d(1)110

0 g(1)2 d(1)110 g(1)2 m(1)

110

264

375

½X7� ¼x11(s) x12(s) x13(s)

x21(s) x22(s) x23(s)

x31(s) x32(s) x33(s)

264

375 ¼ ½X6�½X5��1

g1(s) ¼ x11(s), g2(s) ¼ x21(s), g3(s) ¼ x31(s)

The constants of b1, b2, and b3 can be obtained bythe operation of the following matrixes

½Y3� ¼m(1)0 e(1)150 q(1)

150

0 1(1)110 d(1)110

0 d(1)110 m(1)

110

264

375

½Y4� ¼m(2)0 e(2)150 q(2)

150

0 1(2)110 d(2)110

0 d(2)110 m(2)

110

264

375

½Y5� ¼ ½X1� � ½X2�½Y4��1½Y3�

½Y6� ¼�m(1)

0 �e(1)150 �q(1)150

0 1(1)110 d(1)110

0 d(1)110 m(1)

110

264

375

½Y7� ¼y11 y12 y13

y21 y22 y23

y31 y32 y33

264

375 ¼ ½Y6�½Y5��1

b1 ¼ y11, b2 ¼ y21, b3 ¼ y31

APPENDIX 3

From the relationships[30]

ð10

1

sJn(sa) sin (bs)ds ¼

sin½n sin�1 (b=a)�n

, a . b

an sin (np=2)

n½bþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p�n , a , b

8>><>>:

(45)

ð10

1

sJn(sa) cos (bs)ds ¼

cos½n sin�1 (b=a)�n

, a . b

an cos (np=2)

n½bþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p�n , a , b

8>><>>:

(46)

the semi-infinite integrals in equation (32) can bemodified as

ð10

1

sb1 þ

g1(s)

s� b1

� �� �Jnþ1 s

1� b

2

� �

� cos s1þ b

2

� �sin (sx)ds

¼ b1

2(nþ 1)

� ((1� b)=2)nþ1 sin ((nþ 1)p=2)

{x þ (1þ b)=2

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(x þ (1þ b)=2)2

p� ((1� b)=2)2}nþ1

8>>><>>>:

� sin (nþ 1) sin�1 1þ b� 2x

1� b

� �� �9>>>=>>>;

þð10

1

s

g1(s)

s� b1

� �Jnþ1 s

1� b

2

� �

� cos s1þ b

2

� �sin (sx)ds (47)

ð10

1

sb1 þ

g1(s)

s� b1

� �� �Jnþ1 s

1� b

2

� �

� sin s1þ b

2

� �sin (sx)ds

¼ b1

2(nþ 1)cos (nþ 1) sin�1 1þ b� 2x

1� b

� �� �8>>><>>>:

� ((1� b)=2)nþ1 cos ((nþ 1)p=2)

{x þ (1þ b)=2

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(x þ (1þ b)=2)2 � ((1� b)=2)2

p}nþ1

9>>>=>>>;

þð10

1

s

g1(s)

s� b1

� �Jnþ1 s

1� b

2

� �

� sin s1þ b

2

� �sin (sx)ds

It can be seen that the integrands in the right end ofequations (47) and (48) tend rapidly to zero.

APPENDIX 4

For brevity, equation (32) can be rewritten as

X1n¼0

bnEn(x) ¼ U(x), b 4 x 4 1 (49)

where En(x) and U(x) are known functions and co-efficients bn are unknown and will be determined.A set of functions Pn(x), which satisfies the orthogon-ality conditionsð1

b

Pm(x)Pn(x)dx ¼ Nndmn, Nn ¼ð1b

P2n(x)dx (50)

Scattering of the harmonic anti-plane shear stress waves 147

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from

Page 12: The scattering of the harmonic anti-plane shear stress waves by …ifcen.sysu.edu.cn/wangbiao_html_ifcen/paper_downloads/2006_Proc… · The scattering of the harmonic anti-plane

can be constructed from the function, En(x), suchthat

Pn(x) ¼Xni¼0

Min

MnnEi(x) (51)

where Mij is the cofactor of the element dij of Dn,which is defined as

Dn ¼

d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �dn0, dn1, dn2, � � � , dnn

2666666666664

3777777777775

dij ¼ð1b

Ei(x)Ej(x)dx (52)

Using equations (49) to (52), it can be obtained

bn ¼X1j¼n

qjMnj

Mjj, qj ¼ 1

Nj

ð1b

U(x)Pj(x)dx (53)

APPENDIX 5

cos s1þ b

2

� �cos (sx) ¼ 1

2cos s

1þ b

2� x

� �� ��

þ cos s1þ b

2þ x

� �� ��

sin s1þ b

2

� �cos (sx) ¼ 1

2sin s

1þ b

2� x

� �� ��

þ sin s1þ b

2þ x

� �� ��ð10

Jn(sa) cos (bs)ds

¼cos½n sin�1 (b=a)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2p , a . b

� an sin (np=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p½bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p�n , b . a

8>>><>>>:

ð10

Jn(sa) sin (bs)ds

¼sin½n sin�1 (b=a)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2p , a . b

an cos (np=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p½bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 � a2

p�n , b . a

8>>><>>>:

148 Z-G Zhou and B Wang

Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science JMES129 # IMechE 2006

at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from