the r-matrix method: phenomenological variant

37
1. Introduction 2. Derivation of the Β« phenomenological Β» R matrix 3. Observed vs calculated parameters 4. Applications of the Β« phenomenological Β» R matrix 5. Extension to inelastic scattering and transfer 6. Conclusions The R-matrix Method: phenomenological variant P. Descouvemont Physique NuclΓ©aire ThΓ©orique et Physique MathΓ©matique, CP229, UniversitΓ© Libre de Bruxelles, B1050 Bruxelles - Belgium 1

Upload: others

Post on 04-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The R-matrix Method: phenomenological variant

1. Introduction

2. Derivation of the Β« phenomenological Β» R matrix

3. Observed vs calculated parameters

4. Applications of the Β« phenomenological Β» R matrix

5. Extension to inelastic scattering and transfer

6. Conclusions

The R-matrix Method: phenomenological variant

P. Descouvemont

Physique NuclΓ©aire ThΓ©orique et Physique MathΓ©matique, CP229, UniversitΓ© Libre de Bruxelles, B1050 Bruxelles - Belgium

1

Page 2: The R-matrix Method: phenomenological variant

2

Main Goal: fit of experimental data

0 1 2 3 4

SE

2 (

ke

V b

)

10-1

101

102

100

10-2

103

16

8

7

6

6

8

16

7

18Ne+p elastic scattering resonance properties

Nuclear astrophysics: 12C(a,g)16O Extrapolation to low energies

1. Introduction

Page 3: The R-matrix Method: phenomenological variant

Experimental data: cross sections Theory: cross section scattering matrices π‘ˆβ„“ 𝐸 R matrices 𝑅ℓ 𝐸 Phenomenological R matrix:

β€’ Definition: 𝑅 𝐸 = π›Ύπœ†2

πΈπœ†βˆ’πΈ

𝑁

πœ†=1

β€’ Set of parameters πΈπœ†, π›Ύπœ†2 used as fitting parameters

Questions: β€’ Origin of the R-matrix definitions? Link with the calculable R-matrix? β€’ Link between the R-matrix parameters (Β« calculated Β») and the experimental

energies and widths (Β« observed Β»)?

1. Introduction

Page 4: The R-matrix Method: phenomenological variant

4

General input for R matrix calculations β€’ Channel radius a β€’ Set of N basis functions πœ™π‘– π‘Ÿ

General definition of the R matrix

𝑅 𝐸 =ℏ2π‘Ž

2πœ‡ πœ™π‘– π‘Ž

𝑖𝑗

(π·βˆ’1)π‘–π‘—πœ™π‘— π‘Ž

With β€’ Matrix element 𝐷𝑖𝑗 =< πœ™π‘– 𝐻 βˆ’ 𝐸 + β„’ 𝐿 πœ™π‘— >𝑖𝑛𝑑

β€’ Bloch operator β„’(𝐿) =ℏ2

2πœ‡π‘Žπ›Ώ π‘Ÿ βˆ’ π‘Ž

𝑑

π‘‘π‘Ÿβˆ’πΏ

π‘Ÿπ‘Ÿ

β€’ Constant 𝐿 = π‘˜π‘Žπ‘‚β€² π‘˜π‘Ž

𝑂 π‘˜π‘Ž= 𝑆 𝐸 + 𝑖𝑃 𝐸 (𝑆=shift factor, 𝑃=penetration factor)

Provides the scattering matrix π‘ˆ 𝐸 =𝐼 π‘˜π‘Ž

𝑂 π‘˜π‘Ž

1βˆ’πΏβˆ—π‘… 𝐸

1βˆ’πΏπ‘… 𝐸

2. Derivation of the phenomenological R-matrix

Page 5: The R-matrix Method: phenomenological variant

Defintion of the R matrix 𝑅 𝐸 =ℏ2π‘Ž

2πœ‡ πœ™π‘– π‘Žπ‘–π‘— (π·βˆ’1)π‘–π‘—πœ™π‘— π‘Ž

𝐷𝑖𝑗 =< πœ™π‘– 𝐻 βˆ’ 𝐸 + β„’ 𝐿 πœ™π‘— >𝑖𝑛𝑑

Valid for any basis (matrix D must be computed with the same phi) Particular choice: eigenstates of 𝐻 + β„’ 𝐿

π‘’πœ† defined by 𝐻 + β„’ 𝐿 π‘’πœ†(π‘Ÿ) = πΈπœ†π‘’πœ†(π‘Ÿ)

Then π·πœ†πœ†β€² =< π‘’πœ† 𝐻 βˆ’ 𝐸 + β„’ 𝐿 π‘’πœ†β€² >𝑖𝑛𝑑= πΈπœ† βˆ’ 𝐸 π›Ώπœ†πœ†β€²

(π·βˆ’1) πœ†πœ†β€²=1

πΈπœ†βˆ’πΈπ›Ώπœ†πœ†β€²

The R-matrix can be rewritten as 𝑅 𝐸 =ℏ2π‘Ž

2πœ‡ π‘’πœ† π‘Ž

2

πΈπœ†βˆ’πΈπœ† =

π›Ύπœ†2

πΈπœ†βˆ’πΈπœ†

With π›Ύπœ†2 =ℏ2π‘Ž

2πœ‡π‘’πœ† π‘Ž

2 = reduced width (always positive)

β€’ π›Ύπœ† is real and energy independent β€’ π›Ύπœ† ∼ wave function at the channel radius measurement of the clustering

β€’ dimensionless reduced width πœƒ2 =𝛾2

π›Ύπ‘Š2 where π›Ύπ‘Š

2 =3ℏ2

2πœ‡π‘Ž2 is the Wigner limit

(πœƒ2 < 1)

2. Derivation of the phenomenological R-matrix

Page 6: The R-matrix Method: phenomenological variant

Calculation of the eigenstates: expansion over a basis

π‘’πœ† π‘Ÿ = π‘π‘–πœ†πœ™π‘–(π‘Ÿ)

𝑖

𝐻𝑖𝑗 =< πœ™π‘– 𝐻 πœ™π‘— >𝑖𝑛𝑑= πœ™π‘– π‘Ÿ π»πœ™π‘— π‘Ÿ π‘‘π‘Ÿπ‘Ž

0

𝑁𝑖𝑗 =< πœ™π‘–|πœ™π‘— >𝑖𝑛𝑑= πœ™π‘– π‘Ÿ πœ™π‘— π‘Ÿ π‘‘π‘Ÿπ‘Ž

0

Determine the N eigenvalues and eigenvectors of

π‘π‘—πœ† 𝐻𝑖𝑗 βˆ’ πΈπœ†π‘π‘–π‘— = 0

𝑁𝑗=1 (simple matrix diagonalization)

with πœ† = poles: depend on a (matrix elements 𝐻𝑖𝑗 and 𝑁𝑖𝑗 depend on a)

2. Derivation of the phenomenological R-matrix

Page 7: The R-matrix Method: phenomenological variant

Main problem: what is the link between

β€’ The R matrix parameters (=β€œformal” parameters)

β€’ The physical parameters (=β€œobserved” parameters)

l=1

l=3

l=2

R-matrix energies El

Physical energies Ei

shift

General definition of the R-matrix: 𝑅 𝐸 = π›Ύπœ†2

πΈπœ†βˆ’πΈ

π‘πœ†=1

β€’ Calculable R-matrix: parameters πΈπœ†, π›Ύπœ†2 are calculated from basis functions

β€’ Phenomenological R-matrix: parameters are fitted to data (phase shifts, cross sections, etc.)

β€’ Must be done for each β„“ value adapted to low level densities

β€’ In general: single-pole approximation 𝑅 𝐸 β‰ˆπ›Ύ02

𝐸0βˆ’πΈ

7

2. Derivation of the phenomenological R-matrix

Page 8: The R-matrix Method: phenomenological variant

8

0

60

120

180

0 1 2 3E (MeV)

de

lta

(d

eg

.)Example : 12C+p

β€’ potential : V=-70.5*exp(-(r/2.70)2)

β€’ Basis functions: ui(r)=rl*exp(-(r/ai)2) with ai=x0*a0

(i-1)

10 basis functions, a=8 fm

10 eigenvalues

El gl2

-27.9454 2.38E-05

0.112339 0.392282

7.873401 1.094913

26.50339 0.730852

40.54732 0.010541

65.62125 1.121593

107.7871 4.157215

153.8294 1.143461

295.231 0.097637

629.6709 0.019883

-15

-10

-5

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8

E (MeV)

R matrix

pole energy

2. Derivation of the phenomenological R-matrix

Page 9: The R-matrix Method: phenomenological variant

9

Calculation: 10 poles Fit to data

Isolated pole (2 parameters)

Background (high energy): gathered in 1 term

E << El R0(E)~R0

In phenomenological approaches (one resonance):

pole El g

l2

1 -27.95 2.38E-05

2 0.11 3.92E-01

3 7.87 1.09E+00

4 26.50 7.31E-01

5 40.55 1.05E-02

6 65.62 1.12E+00

7 107.79 4.16E+00

8 153.83 1.14E+00

9 295.23 9.76E-02

10 629.67 1.99E-02

2. Derivation of the phenomenological R-matrix

Page 10: The R-matrix Method: phenomenological variant

10

12C+p

Approximations: R0(E)=R0=constant (background)

R0(E)=0: Breit-Wigner approximation: one term in the R matrix

Remark: the R matrix method is NOT limited to resonances (R=R0)

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8

E (MeV)

R0(E)

g02/(E0-E)

2. Derivation of the phenomenological R-matrix

Page 11: The R-matrix Method: phenomenological variant

Question: how to determine the resonance properties (energy, width) from the R-matrix data?

with

Resonance energy πΈπ‘Ÿ defined by 1 βˆ’ 𝑆 πΈπ‘Ÿ 𝑅 πΈπ‘Ÿ = 0 dR=90o

In general: must be solved numerically

Relation between the collision matrix and the R matrix

Hard-sphere

R-matrix

11

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 12: The R-matrix Method: phenomenological variant

12

-100

-50

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3

E (MeV)

de

lta

(d

eg

.)

delta_tot

Hard Sphere

delta_R

Resonance energy Er defined by 1 βˆ’ 𝑆 πΈπ‘Ÿ 𝑅 πΈπ‘Ÿ = 0 dR=90o

In general: must be solved numerically

pole resonance

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8

E (MeV)

R matrix

1/S

poleresonance

Plot of R(E), 1/S(E) for 12C+p

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 13: The R-matrix Method: phenomenological variant

Simple case: one pole (=β€œisolated” resonance):

𝑅 𝐸 =𝛾02

𝐸0 βˆ’ 𝐸

Example: 12C+p: ER=0.42 MeV

Resonance l=0: Er>0

13N

Question: link between E0 and ER? Breit-Wigner 13

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 14: The R-matrix Method: phenomenological variant

The Breit-Wigner approximation

Single pole in the R matrix expansion: 𝑅 𝐸 =𝛾02

𝐸0βˆ’πΈ

Phase shift:

Thomas approximation: shift function linear 𝑆 𝐸 β‰ˆ 𝑆 𝐸0 + 𝑆′(𝐸0)(𝐸 βˆ’ 𝐸0)

Then:

At the resonance: Ξ“π‘Ÿ = Ξ“ πΈπ‘Ÿ = 2π›Ύπ‘œπ‘π‘ 2 𝑃(πΈπ‘Ÿ): strongly depends on energy

Breit-Wigner = R-matrix with one pole

Generalization possible (more than one pole: interference effects)

14

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 15: The R-matrix Method: phenomenological variant

Phase shift for one pole

Breit-Wigner approximation: tan 𝛿𝑅 β‰ˆΞ“

2 πΈπ‘…βˆ’πΈ =one-pole R matrix

ER=resonance energy G=resonance width

p

3p/4

p/4

p/2

d(E)

ER ER+G/2 ER-G/2 E

β€’ Narrow resonance: G small

β€’ Broad resonance: G large

15

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 16: The R-matrix Method: phenomenological variant

16

Cross section

𝜎(𝐸) =πœ‹

π‘˜2 2β„“ + 1 exp 2𝑖𝛿ℓ βˆ’ 1

2 β„“ maximum for 𝛿 =πœ‹

2

Near the resonance: 𝜎 𝐸 β‰ˆ4πœ‹

π‘˜22ℓ𝑅 + 1

Ξ“2/4

πΈπ‘…βˆ’πΈ 2+Ξ“2/4, where ℓ𝑅=resonant partial wave

ER

s G

E

In practice: β€’ Peak not symmetric (G depends on E) β€’ Β« Background Β» neglected (other β„“ values) β€’ Differences with respect to Breit-Wigner

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 17: The R-matrix Method: phenomenological variant

17

Narrow vs broad resonances

Comparison of 2 caracteristic times a. Resonance lifetime πœπ‘… = ℏ/Ξ“ b. Interaction time (no resonance): πœπ‘π‘… = 𝑑/𝑣

Example1: 12C+p

Resonance properties: ER=0.42 MeV, G=32 keV lifetime: πœπ‘… = ~2x10-20 s

Interaction range d~10 fm interaction time πœπ‘π‘…~1.1x10-21 s

narrow resonance

Example 2: a+p

Resonance properties: ER=1.72 MeV, G=1.2 MeV lifetime: πœπ‘… = ~6x10-22 s Interaction range d~10 fm interaction time πœπ‘π‘…~5x10-22 s

broad resonance

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 18: The R-matrix Method: phenomenological variant

Comments on the Breit-Wigner approximation

tan 𝛿𝑅(𝐸) β‰ˆΞ“(𝐸)

2 𝐸𝑅 βˆ’ 𝐸

β€’ One-pole approximation, neglects background effects β€’ From a one-pole R matrix:

tan 𝛿𝑅 𝐸 =𝛾02 𝑃(𝐸, π‘Ž)

𝐸0 βˆ’ 𝐸 βˆ’ 𝛾02𝑆(𝐸, π‘Ž)

Depends on the channel radius a

β€’ Equivalent to

tan 𝛿𝑅 𝐸 =𝛾02 𝑃(𝐸,π‘Ž)

πΈπ‘…βˆ’πΈβˆ’π›Ύ02 𝑆 𝐸,π‘Ž βˆ’π‘† 𝐸𝑅,π‘Ž

additional term in the denominator

Using 𝑆 𝐸 β‰ˆ 𝑆 𝐸𝑅 + 𝐸 βˆ’ 𝐸𝑅 𝑆′(𝐸𝑅)

Equivalent to

tan 𝛿𝑅 𝐸 =π›Ύπ‘œπ‘π‘ 2 𝑃(𝐸,π‘Ž)

πΈπ‘…βˆ’πΈ=Ξ“(𝐸)

2 πΈπ‘…βˆ’πΈ, with π›Ύπ‘œπ‘π‘ 

2 =𝛾02

1+𝛾02𝑆′(𝐸𝑅)

If the energy dependence of Ξ“(𝐸) is neglected tan 𝛿𝑅(𝐸) β‰ˆΞ“(𝐸𝑅)

2 πΈπ‘…βˆ’πΈ

Several possible definitions of the Breit-Wigner approximation The parameters depend (to some extend) on the definition

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 19: The R-matrix Method: phenomenological variant

Link between β€œcalculated” and β€œobserved” parameters

One pole (N=1)

R-matrix parameters (calculated)

Observed parameters (=data)

Several poles (N>1)

Must be solved numerically

Generalization of the Breit-Wigner formalism: link between observed and formal parameters when N>1 C. Angulo, P.D., Phys. Rev. C 61, 064611 (2000) – single channel C. Brune, Phys. Rev. C 66, 044611 (2002) – multi channel

19

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 20: The R-matrix Method: phenomenological variant

20

Examples: 12C+p and 12C+a

Narrow resonance: 12C+p

-60

0

60

120

180

0 0.2 0.4 0.6 0.8 1 1.2

a=4

a=7

12C+p, l = 0

total

Hard sphere

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 21: The R-matrix Method: phenomenological variant

21

Broad resonance: 12C+a

-120

-60

0

60

120

180

0 1 2 3 4 5

12C+a, l = 1 a=5

a=8

a=5

a=8

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 22: The R-matrix Method: phenomenological variant

Extension to multi-resonances

Isolated resonances:

Treated individually

High-energy states with the same Jp

Simulated by a single pole = background (R0)

Energies of interest: E

In this case:

Non resonant calculations possible: 𝑅 𝐸 = 𝑅0

22

3. β€œObserved” vs β€œcalculated” R-matrix parameters

Page 23: The R-matrix Method: phenomenological variant

4. Applications to elastic scattering

Cross section

π‘‘πœŽ

𝑑Ω= 𝑓 πœƒ 2, with 𝑓 πœƒ =

1

π‘˜ (1 βˆ’ exp(2𝑖𝛿ℓ))β„“ (2β„“ + 1)𝑃ℓ(cos πœƒ)

How to obtain the phase shifts 𝛿ℓ General strategy: identify which resonances are important β€’ Resonant partial waves: R-matrix (parameters fitted or obtained from external

data) β€’ Non-resonant patial waves

β€’ 𝛿ℓ = 0 β€’ Or 𝛿ℓ= hard-sphere (consistent with R-matrix R=0)

Page 24: The R-matrix Method: phenomenological variant

Example: 12C+p: ER=0.42 MeV

Resonance l=0

13N

In the considered energy range: resonance J=1/2+ (l=0) Phase shift for l=0 is treated by the R matrix Other phase shifts are given by the hard-sphere approximation

4. Applications to elastic scattering

Page 25: The R-matrix Method: phenomenological variant

First example: Elastic scattering 12C+p Data from H.O. Meyer et al., Z. Phys. A279 (1976) 41

a ER G E0 g02 c2

4.5 0.4273 0.0341 -1.108 1.334 2.338

5 0.4272 0.0340 -0.586 1.068 2.325

5.5 0.4272 0.0338 -0.279 0.882 2.321

6 0.4271 0.0336 -0.085 0.745 2.346

0

100

200

300

400

500

600

700

800

900

1000

0.2 0.3 0.4 0.5 0.6 0.7

E (MeV)

s (

mb

)

q =146.9

0

500

1000

1500

2000

2500

0.2 0.3 0.4 0.5 0.6 0.7

E (MeV)

s (

mb

)

q =89.1

R matrix fits for different channel radii

ER, G very stable with a

global fit independent of a 25

4. Applications to elastic scattering

Page 26: The R-matrix Method: phenomenological variant

1st experiment

1/2+ state

Second example: 18Ne+p scattering at Louvain-la-Neuve

First Experiment : 18Ne+p elastic: C. Angulo et al, Phys. Rev. C67 (2003) 014308

β†’ search for the mirror state of 19O(1/2+)

Second experiment: 18Ne(p,p’)18Ne(2+): M.G. Pellegriti et al, PLB 659 (2008) 864

19 Na

1/2 +

3/2 +

3/2 +

5/2 +

5/2 +

1/2 +

(3/2 + )

(5/2 + )

19 O

18 O+n

18 Ne+p

E x (MeV)

0

1

2

3

7/2 +

0

1

2

3

E x (MeV)

0.745

0.120

-0.321

1.472

0.096

l=0

l=2

l=4

18Ne(2+)+p

2nd experiment

Other states

26

4. Applications to elastic scattering

Page 27: The R-matrix Method: phenomenological variant

0

100

200

300

400

500

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

qc.m. =120.2o (c)

0

100

200

300

400

500

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

qc.m. =170.2o (a)

0

100

200

300

400

500

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

qc.m. =156.6o (b)

dif

fere

nti

al c

ross

sec

tio

n [

mb

/sr]

c.m. energy [MeV]

18Ne+p elastic scattering

Final result ER = 1.066 Β± 0.003 MeV Gp = 101 Β± 3 keV

19 Na

1/2 +

3/2 +

5/2 +

1/2 +

(3/2 + )

(5/2 + )

19 O

18 Ne+p

0

1

0

1

0.745

0.120

-0.321

1.472

0.096

Very large Coulomb shift From G=101 keV, g2=605 keV, q2=23% Very large reduced width =β€œsingle-particle state” 27

4. Applications to elastic scattering

Page 28: The R-matrix Method: phenomenological variant

β€’ Several channels, several poles: most complicated

β€’ 𝑅𝑖𝑗 𝐸 = π›Ύπ‘–πœ†π›Ύπ‘—πœ†

πΈπœ†βˆ’πΈπœ†

β€’ one channel, one pole :elastric scattering only (isolated resonance)

β€’ 𝑅 𝐸 =𝛾02

𝐸0βˆ’πΈ

β€’ One channel, several poles: elastic scattering (more than 1 resonance)

β€’ 𝑅 𝐸 = π›Ύπœ†2

πΈπœ†βˆ’πΈπ‘πœ†=1

β€’ Several channels, one pole : transfer or inelastic cross sections (isolated resonance)

β€’ In practice: 2 channels (but could be larger)

β€’ 𝑅𝑖𝑗 𝐸 =𝛾𝑖𝛾𝑗

𝐸0βˆ’πΈ

Page 29: The R-matrix Method: phenomenological variant

Extension to one-pole, two channels (transfer reactions) Properties of the pole: energy 𝐸0 reduced width in the entrance channel 𝛾𝑖 reduced width in the exit channel 𝛾𝑖

R-matrix: 2x2 matrix 𝑅𝑖𝑖 𝐸 =𝛾𝑖2

𝐸0βˆ’πΈ associated with the entrance channel

𝑅𝑓𝑓 𝐸 =𝛾𝑓2

𝐸0βˆ’πΈ associated with the exit channel

𝑅𝑖𝑓 𝐸 =𝛾𝑖𝛾𝑓

𝐸0βˆ’πΈ associated with the transfer

Total width Ξ“ 𝐸 = Γ𝑖 𝐸 + Γ𝑓(𝐸) with Γ𝑖 𝐸 = 2𝛾𝑖

2𝑃𝑖(𝐸)

Γ𝑓 𝐸 = 2𝛾𝑓2𝑃𝑓(𝐸 + 𝑄)

Exit ch.

entrance

Q

resonance E

β€’ Previous formula can be easily extended β€’ β„“ values can be different in both channels β€’ From 2x2 R-matrix 2x2 scattering matrix U β€’ π‘ˆ11, π‘ˆ22 elastic cross sections β€’ π‘ˆ12,transfer cross section

Page 30: The R-matrix Method: phenomenological variant

30

Example: 3He(d,p)4He

a+p

3He+d

3/2-

3/2+

1/2-

3He(d,p)

4He

0

5

10

15

20

0.001 0.01 0.1 1

Ecm (MeV)

S (

Me

V-b

)

Zhichang 77

Krauss 87

Geist 99

3/2+ resonance:

β€’ Entrance channel: spin S=1/2,3/2, parity + l=0,2

β€’ Exit channel: spin S=1/2, parity + l=1

Q=18.4 MeV

Page 31: The R-matrix Method: phenomenological variant

31

Breit Wigner approximation

Nearly constant if Q is large

3He(d,p)

4He

0

5

10

15

20

0.001 0.01 0.1 1

Ecm (MeV)

S (

Me

V-b

)

Zhichang 77

Krauss 87

Geist 99

Width at half maximum=total width G

Amplitude: ~GiGf/G2

Page 32: The R-matrix Method: phenomenological variant

18Ne(p,p’)18Ne(2+) inelastic scattering

Combination of 18Ne(p,p)18Ne elastic and 18Ne(p,p’)18Ne(2+) inelastic

constraints on the R-matrix parameters

Generalization to 2 channels: 𝑅𝑖𝑗 𝐸 =𝛾𝑖𝛾𝑗

𝐸0βˆ’πΈ

i=1: 18Ne(0+)+p channel

i=2: 18Ne(2+)+p channel

each state has 3 parameters: E0, g1, g2

From R-matrix collision matrix Uij

Elastic cross section obtained from U11

Inelastic cross section obtained from U12

32

5. Extension to inelastic scattering and transfer

Page 33: The R-matrix Method: phenomenological variant

18Ne+p inelastic scattering: M.G. Pellegriti et al, PLB 659 (2008) 864

3.33.12.92.7 3.33.12.92.7 3.33.12.92.7

ECM (MeV)

20

15

10

5

140

120

100

80

ds

/dW

(m

b/s

r)

160

q lab=10.7Β° q lab=16.5Β°q lab=6.2Β°

a=4.6 fm

a=5.0 fm

a=5.4 fm

elastic

inelastic

19 Na

1/2 +

(3/2 + )

(5/2 + )

18 Ne+p

0

1

2

3

E x (MeV)

0.745

0.120

-0.321

Several angles fitted simultaneously

Presence of 2 states 6 parameters

dominant p+18Ne(2+) structure

18Ne(2+)+p

33

6. Phenomenological R matrix Method

Page 34: The R-matrix Method: phenomenological variant

18Ne+p elastic scattering: comparison with other experiments

q0 large ~23%

observable in elastic scattering

dominant p+18Ne(0+) structure

single-particle state

q2 large (2 states) ~40%, q0 small

difficult to observe in elastic scattering

dominant p+18Ne(2+) structure

single-particle states with excited core

Complete set of data up to 3.5 MeV

34

6. Phenomenological R matrix Method

Page 35: The R-matrix Method: phenomenological variant

35

6. Phenomenological R matrix Method

Recent application to 18F(p,p)18F and 18F(p,a)15O D. Mountford et al, to be published

simultaneous fit of both cross sections angle: 176o

for each resonance: π½πœ‹, 𝐸𝑅, Γ𝑝, Γ𝛼

8 resonances 24 parameters

Page 36: The R-matrix Method: phenomenological variant

36

Radiative capture

E Capture reaction= transition between an initial state at energy

𝐸 to bound states

Cross section 𝜎𝐢 𝐸 ∼ < Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 >2

Additional pole parameter: gamma width Γ𝛾𝑖

< Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 > = < Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 >𝑖𝑛𝑑 + < Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 >𝑒π‘₯𝑑

internal part: < Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 >π‘–π‘›π‘‘βˆΌ 𝛾𝑖 Γ𝛾𝑖

πΈπ‘–βˆ’πΈ

𝑁

𝑖=1

external part:

< Ψ𝑓 𝐻𝛾 Ψ𝑖 𝐸 >𝑒π‘₯π‘‘βˆΌ 𝐢𝑓 π‘Š 2π‘˜π‘“π‘Ÿ π‘Ÿπœ† 𝐼𝑖(π‘˜π‘Ÿ) βˆ’ π‘ˆπ‘‚π‘– π‘˜π‘Ÿ π‘‘π‘Ÿ

∞

π‘Ž

More complicated than elastic scattering!

But: many applications in nuclear astrophysics

6. Phenomenological R matrix Method

Page 37: The R-matrix Method: phenomenological variant

37

1. One R-matrix for each partial wave (limited to low energies)

2. Consistent description of resonant and non-resonant contributions (not limited to resonances!)

3. The R-matrix method can be applied in two ways

a) Calculable R-matrix: to solve the SchrΓΆdinger equation

b) Phenomenological R-matrix: to fit experimental data (low energies, low level densities)

4. Calculable R-matrix

β€’ Application in many fields of nuclear and atomic physics

β€’ Efficient to get phase shifts and wave functions of scattering states

β€’ 3-body systems

β€’ Stability with respect to the radius is an important test

5. Phenomenological R-matrix

β€’ Same idea, but the pole properties are used as free parameters

β€’ Many applications: elastic scattering, transfer, capture, beta decay, etc.

7. Conclusions