the potential of using magnetic fields in separation:...

25
The potential of using magnetic fields in separation: Magnetic Chromatography ? Professor Jeffrey Chalmers Department of Chemical and Biomolecular Engineering Director Analytical Cytometry Shared Resource The Ohio State University Comprehensive Cancer Center A Research Agenda for a New Era in SEPARATIONS SCIENCE May 7‐8, 2018, The Beckman Center, 100 Academy Way, Irvine, CA 92617

Upload: others

Post on 11-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

The potential of using magnetic fields in separation:

Magnetic Chromatography?

Professor Jeffrey ChalmersDepartment of Chemical and Biomolecular Engineering

Director Analytical Cytometry Shared ResourceThe Ohio State University Comprehensive Cancer Center

A Research Agenda for a New Era in SEPARATIONS SCIENCEMay 7‐8, 2018, The Beckman Center, 100 Academy Way, Irvine, CA 92617

Page 2: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Why am I here addressing you?• Along with my collaborator, Dr. Maciej Zborowski, a biophysicist at the Cleveland Clinic, we have

been conducting magnetic cell separation research since 1995.• Continuously funded by NIH, and approximately ¾ of this time by NSF, plus some VC and

commercialization money… • DARPA project (2008-2012): Large-scale human placenta progenitor cell-derived erythrocyte

production – continuous red blood cell production. Our part was to separate red blood cells, RBCs, based totally on the intrinsic magnetic susceptibility of deoxygenated RBCs…

- VERY weak signal, but clear difference between oxygenated and deoxygenated RBCs..

- this started us on our “quest” to push the limits of permanent magnet power and “engineering design”

Page 3: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Examples of “weak”

Begs the question:  Can we extend this to molecules??

Chalmers, J.J., Jin, X., Palmer, A., Yazer, M., Moore, L., Pan, J., Park, J. Zborowski, M., Femtogram resolution of iron content per cell: storage of red blood cells leads to loss of hemoglobin. Analytical Chemistry 89(6):3702-3709. 2017. NIHMSID918420

Page 4: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Fundamentals governing magnetic separation

H = magnetic field strengthB0 = magnetic flux density

,

Page 5: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Even more basic:

Intrinsic Human ingenuity 

Page 6: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

0 – 50 sec

100 μm

Demonstration of particle magnetophoresis by CTVin gadolinium solution such that 2medium1

00 1medium11 m

00 2medium22 m

Sm

Date performed: 6/06/01Composition: Duke 8.1 μm (16% CV)

and Margel MMC3 5.2 μm beadsConcentration: not providedSolution: 1:10 Magnevist (Berlex Labs)

in 0.1% Pluronic F-68Gd3+ concentration: 0.05MSolution mag. susceptibility (SI):

-0.82110-5

Solution viscosity: 1.0410-3 kg/m s

Duke beads (polystyrene)

Margel MMC3 beads

Keep Video Clip “MMC3_Duke8” in the same folder for moving images 

Page 7: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

0 – 50 sec100 μm

12 H B const

paramagneticdiamagnetic

Page 8: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Duke 8.1 & MMC3100 images: 20 frames/sec

Page 9: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

So, why am I here?

Page 10: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Can we separate molecules with magnetism??

• Conventional wisdom says: No!• Randomizing thermal energy to great for

entities smaller than 0.5 microns

Ferrohydrodynamics, by R.E. Rosensweg (1985)

Page 11: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Number of assumptions/problems with this analysis/approach

• New, relative to 1985, more powerful magnets available, relatively inexpensive

• While submicron particles were considered in the previous “rule of thumb” analysis, distances for very high magnetic fields were considered on the order of cm. 

• Assumed that to separate, you had to move the entity..  

Page 12: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

How about magnetic “chromatography”?

• We do not expect molecules to “move” to binding/active sites in chromatography! Let diffusion do the moving…

• Magnetic forces are highly Non‐linear, with very high forces at very short distances!

• The “magnetic energy” calculation above was made not taking into consideration these very high, non‐linear forces next to the magnetic dipole 

Page 13: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?
Page 14: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?
Page 15: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

H, A/m0.0 5.0e+4 1.0e+5 1.5e+5 2.0e+5 2.5e+5 3.0e+5 3.5e+5

B = 0

(H +

M),

T

0.0

0.5

1.0

1.5

2.0

2.5

B0, T0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1010 steel 1018 steelcast Fe VanPerM19 transformer steel Carpenter 49 (Ni Steel)

Page 16: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Now consider the  term in:

• This is where the “engineering design” comes in!

Page 17: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

3.2 by 25 mm needle magnet (N42 NdFeB magnet)

• Rapid drop in field • Localized gradients• symmetry 

Page 18: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Density Plot: |B|, Tesla

1.330e+000 : >1.400e+0001.261e+000 : 1.330e+0001.191e+000 : 1.261e+0001.122e+000 : 1.191e+0001.053e+000 : 1.122e+0009.830e-001 : 1.053e+0009.135e-001 : 9.830e-0018.440e-001 : 9.135e-0017.745e-001 : 8.440e-0017.050e-001 : 7.745e-0016.355e-001 : 7.050e-0015.660e-001 : 6.355e-0014.965e-001 : 5.660e-0014.270e-001 : 4.965e-0013.575e-001 : 4.270e-0012.880e-001 : 3.575e-0012.185e-001 : 2.880e-0011.490e-001 : 2.185e-0017.950e-002 : 1.490e-001<1.000e-002 : 7.950e-002

|B|, Tesla

Length, mm

2

1.5

1

0.5

00 0.05 0.1 0.15 0.2

1.6 mm

7.5 x 104 T/m1.5 x 104

3.0 x 103

Page 19: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Consider a Hallback array(developed mid 90’s)

25 mm

• Notice how field extends out on one side!• Non‐symmetry in the “z‐direction”

Page 20: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Electrospun fiber

4 x 107 T/m

3.6 x 106 T/m

200 nm

Page 21: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Some Sample Calculations

• Consider Hemoglobin, O2

• Hb, four “hemes”; one Fe each‐ 5‐9 nm diameter, 381 nm3

‐ volumetric magnetic susceptibility of 6.11x 10‐3 (deoxy form)

‐ for reference,  RBC (deoxy) is 2.8 x 10‐5

• O2 well documented paramagnetic properties‐ 8.2 x 10‐3 nm3

‐ volumetric magnetic susceptibility of 1.91 x 10‐6

Page 22: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

1/2 B del B

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8

New

tons

1e-231e-221e-211e-201e-191e-181e-171e-161e-151e-141e-131e-121e-111e-101e-91e-81e-7

HbRBCO2

Magnetic forces as a function of ½ B del B

Page 23: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

B* del B1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8

J/m

ol

1e-51e-41e-31e-21e-11e+01e+11e+21e+31e+41e+51e+61e+71e+81e+91e+101e+11

Hb RBC O2

Antibody-Antigen

Boltzmann thermal, 298 K

Measured charged amino acid interactions

Boltzman thermal, liquid N2

Van der Waals energies

“Energy” as a function of ½*B del B

Page 24: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?

Summary

• On small scale, we can move very weakly paramagnetic entities (on the order of microns)

• On small scale, we can separate very weakly paramagnetic entities (on order of micron)

• A couple of reports exist of systems to enrich O2 from air.• Advances in the power of permanent magnets has been significant over the last couple of decades.

• Advances/application in computer modeling, nanoparticle supply, magnet designs, and microfluids, allows for potential to scale up systems that have the potential to separate molecules from liquid and gas..

Page 25: The potential of using magnetic fields in separation: …nas-sites.org/dels/files/2018/05/Chalmers_Presentation.pdfThe potential of using magnetic fields in separation: Magnetic Chromatography?