the passage of ultrarelativistic neutralinos through matter€¦ · calculation of total &...

15
The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn SUSY08, Seoul in collaboration with M. Drees based on hep-ph/0603162 and 0704.3934 S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 1 / 15

Upload: others

Post on 28-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

The Passage of Ultrarelativistic Neutralinos throughMatter

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

SUSY08, Seoul

in collaboration with M. Drees

based on hep-ph/0603162 and 0704.3934

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 1 / 15

Outline

1 Introduction/Motivation

2 Transport equations

3 Event rates

4 Summary

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 2 / 15

Experiments...have shown the existence of ultra high energy (UHE) cosmic rayswith E >

∼ 1011 GeV

indicate that most UHE events are caused by protons

Protons with E >∼ 5 ·1010 GeV lose energy through inelastic scattering:

p + γ2.7K → n + π+

→ p + π◦ =⇒proton energy losslength ∼ 50 Mpc =⇒ local sources

Questions:B.-U. models: are there objects which have sufficiently large B · L?

are the arrival directions of UHE events homogeneouslydistributed? ⇒ exclusion of one or a few local point sources

are there local sources? AUGER indicates correlation betweennearby AGNs and the origin of UHE events ( arXiv: 0712.2843)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 3 / 15

One possible source: Top-Down Models (TDMs)existence and decay of very massive, long-lived X-particles(MX > 1012GeV ) ⇒ UHE events

X-particles could be associated with a Grand Unified Theory

Signature for Top-Down ModelsDecay chain in the framework of R-parity conserving SUSY:

(M.Drees and C.Barbot)

Stable particles:photons

neutrinos ν

electrons

protons

neutralinos χ̃01(LSPs)

⇒“smoking gun” for TDMs:Detection of χ̃0

1

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 4 / 15

Discrimination between ν and χ̃01?⇒

Possible measurement method for χ̃01:

Cross section for χ̃01

interactions with matter issmaller than that of ν

⇒ Using the Earth as a filterDetector

Neutrinos

Neutralinos

Necessary tools:calculation of total & differential cross section (⇒ hep-ph/0603162)

solution of the transport equations

calculation of event ratesS. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 5 / 15

Transport equation for s−channelscattering (bino-dominated χ̃

01)

∂Fχ̃

01(E , X )

∂X= −

Fχ̃

01(E , X )

λχ̃

01(E)

︸ ︷︷ ︸

decrease

+1

λχ̃

01(E)

∫ ymax

0

dy1 − y

Ks(E , y)Fχ̃

01(Ey , X )

︸ ︷︷ ︸

increase due to χ̃01+qi→χ̃

01+qi

,

Fχ̃

01(E , X ): differential χ̃0

1 flux where

E : χ̃01 energy and

X : matter depth.λ

χ̃01(E)−1 = NAσtot

χ̃01N

(E): interaction length

Ks(E , y) = σtots (E)−1dσs(Ey )/dy : kernel

Ey : E/(1 − y)

mSUGRA scenariowith mg̃ > mq̃ =⇒

σtots (χ̃0

1 + qi → X ) ≈σtot

s (χ̃01 + qi → χ̃0

1 + qi)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 6 / 15

Solution method...based on the first order Taylor expansion:

Fχ̃

01(E , X + dX ) = F

χ̃01(E , X ) + dX

∂Fχ̃

01(E , X )

∂X+ · · · where

the boundary condition Fχ̃

01(E , 0) is given by the incident χ̃0

1 flux(e.g. SHdecay: hep-ph/0211406).

Check of the results:

For s- and t-channel: χ̃01 + qi → · · · → χ̃0

1 + X

=⇒ Φχ̃

01=

∫ Emax

mχ̃

01

Fχ̃

01(E , X )dE = const.

Fχ̃

01(E , 0) = 0 for E > Emax

independent of X

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 7 / 15

Transport equation for s−channel scattering (bino-dominated χ̃01)

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E χ ~1

0[GeV]

1e-73

1e-72

1e-71

1e-70

1e-69

E χ ~

1 0. F

χ ~1 0(E

χ ~1 0)[

GeV

3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

xmax : maximalcolumn depth ofthe Earth

XXmax

Φχ̃

01(X)

Φχ̃

01(0)

0.09 1.0000.45 1.0001.00 1.001

(integrated from103 to 1012 GeV)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 8 / 15

Transport equation fort−channel scattering(higgsino-dominated χ̃

01)

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E χ ~1

0[GeV]

1e-73

1e-72

1e-71

1e-70

1e-69

E χ ~

1 0. F

χ ~1 0(E

χ ~1 0)[

GeV

3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

xmax : maximalcolumn depth ofthe Earth

XXmax

Φχ̃

01(X)

Φχ̃

01(0)

0.09 1.0020.45 1.0021.00 1.004

(integrated from105 to 1012 GeV)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 9 / 15

Event rates...can be calculated with the help of F

χ̃01(E , X ). For example, the

neutralino event rates for the s-channel are given by:

N =

∫ Emax

Emin

dEvis

∫ Xmax

Xmin

dX∫ ymax

0

dyy

dσs(Evisy )

dyF

χ̃01(Evis

y, X )V

V ∝ Veffǫdc t , whereVeff: w.e. effective volume,ǫdc : duty cycle,t : measurement period.However: One will need at least teraton scale targets to detectneutralinos...

Future satellite experiments

EUSO: stay on the ISS; monitors a surface area of O(105) km2 ⇒

target volume of ≈ 2.4 teratons

OWL: two satellites; monitors a surface area of O(106) km2 ⇒

target volume of ≈ 10.0 teratonsS. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 10 / 15

Event rates for higgsino–like χ̃01

Evis ≥ 106 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.19 3.87qq̃ 0.58 7.04l l̃ 7.37 14.17

5 × qq̃ 4.97 45.00

Evis ≥ 109 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.0089 0.0001qq̃ 0.0608 0.0001l l̃ 2.5121 0.0003

5 × qq̃ 0.2624 0.0006

Evis ≥ 106 GeV, MX = 1016 GeV Nχ̃

01

Nντ

qq̄ 0.0105 0.4448qq̃ 0.0078 0.3079l l̃ 0.0063 0.2917

5 × qq̃ 0.0124 0.4940

Evis ≥ 109 GeV, MX = 1016 GeV Nχ̃

01

Nντ

qq̄ 0.000927 0.000007qq̃ 0.001258 0.000005l l̃ 0.001735 0.000005

5 × qq̃ 0.001807 0.000005

Parameters of thegiven results:

target volume:10Tt

m. period: 1y

duty cycle: 10%

Detectable if:

mass of Xparticle close toits lower bound

large ratio ofneutralino andproton fluxes

experimentmust be able todetectCerenkov light

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 11 / 15

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E ν [GeV]

1e-72

1e-71

1e-70

1e-69

1e-68

E ν . F

ν (E

ν )[G

eV3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

Event rates for higgsino–like χ̃01

Evis ≥ 2 · 107 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.10 0.18qq̃ 0.35 0.03l l̃ 5.41 0.67

5 × qq̃ 2.78 1.80

Higher lower bound for Evis

leads to higher reduction ofχ̃0

1 fluxes compared to νfluxes due to the softerneutrino spectra.

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 12 / 15

Event rates for bino–like χ̃01

Evis ≥ 106 GeV, MX = 1012 GeV ND1 ND2 ND3

qq̄ 0.055 0.039 0.017qq̃ 0.130 0.099 0.051l l̃ 0.805 0.796 0.586

5 × qq̃ 1.294 0.944 0.434

Evis ≥ 109 GeV, MX = 1012 GeV ND1 ND2 ND3

qq̄ 0.0005 0.0034 0.0055qq̃ 0.0021 0.0142 0.0234l l̃ 0.0381 0.2551 0.4321

5 × qq̃ 0.0145 0.0992 0.1571

Evis ≥ 106 GeV, MX = 1016 GeV ND1 ND2 ND3

qq̄ 0.0026 0.0020 0.0010qq̃ 0.0020 0.0015 0.0007l l̃ 0.0018 0.0018 0.0007

5 × qq̃ 0.0032 0.0024 0.0012

Squark masses:

D1: 370 GeV

D2: 580 GeV

D3: 1000 GeV

Bino–like neutralino fluxes of many X decay scenarios remain invisible;even monitoring of the whole Earth’s surface “only” leads to Veff of5000 teratons

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 13 / 15

Use of the Moon as a detectorMoon’s surface covered by regolith(homogeneous dielectric medium) upto a height of 10m

UHE particles produce radio waves viaAskarayan effect and the emission ofCerenkov light, respectively(Dagkesamanskii and Zheleznyk)

Event rates for ν and χ̃01

Evis ≥ 1010 GeV, MX = 1012 GeV Nν

total Nχ̃

01

qq̄ 2.46 0.10qq̃ 4.25 1.10l l̃ 65.04 60.10

5 × qq̃ 11.29 1.22

Evis ≥ 1010 GeV, MX = 1016 GeV Nν

total Nχ̃

01

qq̄ 8.38 0.04qq̃ 5.52 0.05l l̃ 6.09 0.19

5 × qq̃ 4.97 0.07

Parameters of the givenresults:

target volume: 320 Tt

E threshold: 1010 GeV

duty cycle: 40%

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 14 / 15

Summary:

there are cosmic rays with E >∼ 1011 GeV

possible explanation within the scope of TDMs

detection of χ̃01’s would be a “smoking gun” for TDMs

detection of UHE χ̃01’s might be possible with aid of future satellite

experiments like EUSO or OWL if:neutralinos are higgsino–likeexperiments can detect Cerenkov lightmass of X particle is near its lower boundlarge ratio of neutralino and proton fluxes

detection of UHE ν ’s and χ̃01’s might be possible through

measurement of radio waves which are produced in the Moon’smatter via the Askarayan effect

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 15 / 15