the method of uniqueness: new application of a powerful technique …teber/talks/ilp-talk.pdf ·...

29
The Method of Uniqueness: new application of a powerful technique for multi-loop calculations Sofian Teber LPTHE Universit´ e Pierre et Marie Curie (Paris 6) Paris, november, 14 2014 ILP Thematic Day on ”Methods: Solutions and Challenges” (solution talk) Based on work with Anatoly V. Kotikov Phys. Rev. D 87, 087701 (2013); arXiv:1302.3939 The Method of Uniqueness 14-11-2014 1 / 16

Upload: others

Post on 18-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

The Method of Uniqueness:new application of a powerful technique

for multi-loop calculations

Sofian Teber

LPTHEUniversite Pierre et Marie Curie (Paris 6)

Paris, november, 14 2014

ILP Thematic Day on ”Methods: Solutions and Challenges”(solution talk)

Based on work with Anatoly V. Kotikov

Phys. Rev. D 87, 087701 (2013); arXiv:1302.3939

The Method of Uniqueness 14-11-2014 1 / 16

Page 2: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Outline

1 Introduction

2 The Method of Uniqueness

3 Applications

4 Conclusion

The Method of Uniqueness 14-11-2014 2 / 16

Page 3: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Outline

1 Introduction

2 The Method of Uniqueness

3 Applications

4 Conclusion

The Method of Uniqueness 14-11-2014 3 / 16

Page 4: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Massless propagator type 2-loop diagram

J(α1, α2, α3, α4, α5) =

∫ ∫dDk1 dDk2

k2α11 k2α2

2 (k2 − p)2α3 (k1 − p)2α4 (k2 − k1)2α5

Arbitrary indices αi and external momentum p in Euclidean space (D)

�pα1

α4

α2

α3

α5

Coefficient function (dimensionless):

I (α1, α2, α3, α4, α5) =(p2)

P5i=1 αi−D

πDJ(α1, α2, α3, α4, α5)

Goal of multi-loop computation:in D = n − 2ε (n ∈ N), compute I ({αi}) as a Laurent series in ε→ 0

The Method of Uniqueness 14-11-2014 4 / 16

Page 5: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Exact computation is crucial: to compute renormalization group functions(β-functions, anomalous dimensions, critical exponents, ...)Many applications: high-energy physics, statistical mechanics, condensedmatter physics...

The Method of Uniqueness 14-11-2014 5 / 16

Page 6: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Exact computation is crucial: to compute renormalization group functions(β-functions, anomalous dimensions, critical exponents, ...)Many applications: high-energy physics, statistical mechanics, condensedmatter physics...

The Method of Uniqueness 14-11-2014 5 / 16

Page 7: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Exact computation is crucial: to compute renormalization group functions(β-functions, anomalous dimensions, critical exponents, ...)Many applications: high-energy physics, statistical mechanics, condensedmatter physics...

Long history of the massless 2-loop diagram (basic building block):

αi = ni ∈ N (∀i): well-known and easy to compute, e.g. IBPVasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Tkachov, Phys. Lett. B 100 65 (1981)

Chetyrkin and Tkachov, Nucl. Phys. B 192 159 (1981)

αi = ni + aiε (∀i): non-trivial (combination of 2-fold series)Bierenbaum and Weinzierl, Eur. Phys. J. C 32 67 (2003)

αi ∈ R (for some i): simpler forms can be reached in particular casesVasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Kazakov, TMF 62 127 (1985)

Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Kotikov, Phys. Lett. B 375 240 (1996)

Broadhurst, Gracey and Kreimer, Z. Phys. C 75 559 (1997)

Broadhurst and Kotikov, Phys. Lett. B 441 345 (1998)The Method of Uniqueness 14-11-2014 5 / 16

Page 8: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Exact computation is crucial: to compute renormalization group functions(β-functions, anomalous dimensions, critical exponents, ...)Many applications: high-energy physics, statistical mechanics, condensedmatter physics...

Consider the simplest but important case of

J(1, 1, 1, 1, λ) = �p1

1

1

1

λ =πD

p2(2−λ)I (λ), λ =

D

2− 1

Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel and Stepanenko, TMF 94 179 (1993)

This talk:Kotikov and ST, PRD 87, 087701 (2013)

simpler derivation via the method of uniqueness in momentum space

application to an odd-dimensional QFT (reduced QED D = 3− 2ε)

The Method of Uniqueness 14-11-2014 5 / 16

Page 9: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Outline

1 Introduction

2 The Method of Uniqueness

3 Applications

4 Conclusion

The Method of Uniqueness 14-11-2014 6 / 16

Page 10: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

The Method of UniquenessAlso known as the star-triangle or Yang-Baxter relation

Origins:

first appeared in theories with conformal symmetryPolyakov, JETP Lett. 12 381 (1970)

D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)

basic notions in Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

first applications to multi-loop calculations:Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)

Idea of the method (algebraic, no explicit integration):

compute complicated Feynman diagramswith the help of a sequence of simple transformations

(finding such sequence is generally highly non trivial)

The Method of Uniqueness 14-11-2014 7 / 16

Page 11: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

The Method of UniquenessAlso known as the star-triangle or Yang-Baxter relation

Origins:

first appeared in theories with conformal symmetryPolyakov, JETP Lett. 12 381 (1970)

D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)

basic notions in Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

first applications to multi-loop calculations:Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)

Idea of the method (algebraic, no explicit integration):

compute complicated Feynman diagramswith the help of a sequence of simple transformations

(finding such sequence is generally highly non trivial)

The Method of Uniqueness 14-11-2014 7 / 16

Page 12: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

The Method of UniquenessAlso known as the star-triangle or Yang-Baxter relation

Origins:

first appeared in theories with conformal symmetryPolyakov, JETP Lett. 12 381 (1970)

D’Eramo, Parisi and Peliti, Let. Nuov. Cim. 2, 878 (1971)

basic notions in Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

first applications to multi-loop calculations:Usyukina, TMF 54 124 (1983), Kazakov, TMF 58 343 (1984)

Idea of the method (algebraic, no explicit integration):

compute complicated Feynman diagramswith the help of a sequence of simple transformations

(finding such sequence is generally highly non trivial)

The Method of Uniqueness 14-11-2014 7 / 16

Page 13: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Some Transformations (in momentum space)

Plain line with an arbitrary index α:

�α ⇐⇒ 1

k2α

Chains reduce to the product of propagators:

�α β= �α + β

Simple loops involve an integration:

αβ

= πD/2A(α, β) α + β − D/2

A(α, β) =a(α)a(β)

a(α + β − D/2), a(α) =

Γ(D/2− α)

Γ(α)

The Method of Uniqueness 14-11-2014 8 / 16

Page 14: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Some Transformations (in momentum space)

Plain line with an arbitrary index α:

�α ⇐⇒ 1

k2α

Chains reduce to the product of propagators:

�α β= α + β

Simple loops involve an integration:

�αβ

= πD/2A(α, β) �α + β − D/2

A(α, β) =a(α)a(β)

a(α + β − D/2), a(α) =

Γ(D/2− α)

Γ(α)

The Method of Uniqueness 14-11-2014 8 / 16

Page 15: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Some Transformations (in momentum space)

Plain line with an arbitrary index α:

�α ⇐⇒ 1

k2α

Chains reduce to the product of propagators:

�α β= �α + β

Simple loops involve an integration:

�αβ

= πD/2A(α, β) �α + β − D/2

A(α, β) =a(α)a(β)

a(α + β − D/2), a(α) =

Γ(D/2− α)

Γ(α)

The Method of Uniqueness 14-11-2014 8 / 16

Page 16: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Some Transformations (in momentum space)

Uniqueness relation (α = D/2− α):

�α3

α2

α1=P

iαi =D �α3

α2

α1

(Note: unique triangle has index∑

i αi = 2λ+ 2 = D)

Integration by parts (IBP):

(D − α2 − α3 − 2α5) �α1

α4

α2

α3

α5 = α2

[�+

− − �− + ]

+ α3

[�+

− − �− +

]

(Note: ± correponds to add or subtract 1 to index αi )

The Method of Uniqueness 14-11-2014 9 / 16

Page 17: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Some Transformations (in momentum space)

Uniqueness relation (α = D/2− α):

�α3

α2

α1=P

iαi =D �α3

α2

α1

(Note: unique triangle has index∑

i αi = 2λ+ 2 = D)

Integration by parts (IBP):

(D − α2 − α3 − 2α5) �α1

α4

α2

α3

α5 = α2

[�+

− − − + ]

+ α3

[!+

− − "− +

]

(Note: ± correponds to add or subtract 1 to index αi )

The Method of Uniqueness 14-11-2014 9 / 16

Page 18: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Outline

1 Introduction

2 The Method of Uniqueness

3 Applications

4 Conclusion

The Method of Uniqueness 14-11-2014 10 / 16

Page 19: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Application to J(1, 1, 1, 1, λ)

Replace line by loop to make right triangle unique (index 2 + 2λ = D):

#λ =1

πD/2A(1, 2λ) $2λ = %λ

λ

1

p2(1−λ)

Apply IBP to reduce the diagram to simple chains and loops:

(−2δ)&λ+ δ

λ+ δ

= 2(λ+ δ)

'λ+ δ + 1

λ+ δ

− (λ+ δ + 1

λ+ δ

=πD2(λ+ δ)

p2(1+2δ)A(1, 1)

[A(λ+ δ + 1, λ+ δ)− A(λ+ δ + 1, 1 + δ)

](Note: δ → 0 additional regularization parameter)

The Method of Uniqueness 14-11-2014 11 / 16

Page 20: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Application to J(1, 1, 1, 1, λ)

Replace line by loop to make right triangle unique (index 2 + 2λ = D):

)λ =1

πD/2A(1, 2λ) *2λ = +λ

λ

1

p2(1−λ)

Apply IBP to reduce the diagram to simple chains and loops:

(−2δ),λ+ δ

λ+ δ

= 2(λ+ δ)

-λ+ δ + 1

λ+ δ

− .λ+ δ + 1

λ+ δ

=πD2(λ+ δ)

p2(1+2δ)A(1, 1)

[A(λ+ δ + 1, λ+ δ)− A(λ+ δ + 1, 1 + δ)

](Note: δ → 0 additional regularization parameter)

The Method of Uniqueness 14-11-2014 11 / 16

Page 21: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Final resultVasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

I (λ) = 3Γ(λ)Γ(1− λ)

Γ(2λ)

[ψ′(λ)− ψ′(1)

](ψ′(x) is the trigamma function)

Even-dimensional QFT (λ→ 1 or D → 4), well-known result:

I (1) = 6 ζ(3)

Odd-dimensional QFT (λ→ 1/2 or D → 3):Kivel, Stepenenko and Vasil’ev, Nucl. Phys. B 424 619 (1994)

Vasiliev, Derkachov, Kivel, and Stepanenko, TMF 94 179 (1993)

I (1/2) = 6π ζ(2)

(odd-dimensional case is transcendentally more complex: ζ(2) = π2/6)

The Method of Uniqueness 14-11-2014 12 / 16

Page 22: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Application to graphene at IR fixed pointGraphene in a planar condensed matter system with an IR Lorentzinvariant fixed point Gonzalez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

Effective relativistic theory at the fixed point: reduced QED which is anice playground to study interaction effects beyond standard leading ordervia multi-loop techniques ST, PRD 86 025005 (2012)

Terminology reduced/pseudo QED from: Gorbar, Gusynin and Miransky PRD 64

105028 (2001) and Marino, Nucl. Phys. B408 551 (1993)

Basics of RQEDdγ ,de (de < dγ) RQED4,3

Fermion field in de-dimensions (mem-brane) ⇒ de = 2 + 1

Photon field in dγ-dimensions (bulk gauge field) ⇒ dγ = 3 + 1

The Method of Uniqueness 14-11-2014 13 / 16

Page 23: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Application to graphene at IR fixed pointGraphene in a planar condensed matter system with an IR Lorentzinvariant fixed point Gonzalez, Guinea and Vozmediano, Nucl. Phys. B 424 595 (1994)

Effective relativistic theory at the fixed point: reduced QED which is anice playground to study interaction effects beyond standard leading ordervia multi-loop techniques ST, PRD 86 025005 (2012)

Terminology reduced/pseudo QED from: Gorbar, Gusynin and Miransky PRD 64

105028 (2001) and Marino, Nucl. Phys. B408 551 (1993)

Feynman rules (photon propagator has a square-root branch cut)

2p=

i

/p 3µ = −ieγµ

4qµ ν =

i

2√−q2

(gµν − ξ qµqν

q2

)(ξ = ξ/2)

The Method of Uniqueness 14-11-2014 13 / 16

Page 24: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Optical conductivity of graphene at the fixed point

Optical conductivity from the polarization operator

σ(q0) = − lim~q→0

iq0

|~q|2Π00(q)

Perturbative expansion: interaction correction coefficients

σ(q0) = σ(0)(1 + C1αr + C2α

2r + · · ·

)Goal: compute C1 (C2 still unknown)

At 2-loop: Πµν has 1 non-integer index λ = 1/2

5 6 7The Method of Uniqueness 14-11-2014 14 / 16

Page 25: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Optical conductivity of graphene at the fixed point

Optical conductivity from the polarization operator

σ(q0) = − lim~q→0

iq0

|~q|2Π00(q)

Perturbative expansion: interaction correction coefficients

σ(q0) = σ(0)(1 + C1αr + C2α

2r + · · ·

)At 2-loops, using the expression of I (λ): Kotikov and ST, PRD 87, 087701 (2013)

C1(λ) = − 1

(3[ψ′(λ+ 2)− ψ′(1)

]+

4

1 + λ+

1

(1 + λ)2

)

C1(1/2) =92− 9π2

18π≈ 0.056

(final result in agreement with ST, PRD 86 025005 (2012))

The Method of Uniqueness 14-11-2014 14 / 16

Page 26: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Outline

1 Introduction

2 The Method of Uniqueness

3 Applications

4 Conclusion

The Method of Uniqueness 14-11-2014 15 / 16

Page 27: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Conclusion

The Method of Uniqueness: a powerful technique for multi-loopcalculations (important method to study higher dimensionalconformal field theories)

New application to the computation of I (λ)Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

I (λ) = 3Γ(λ)Γ(1− λ)

Γ(2λ)

[ψ′(λ)− ψ′(1)

]

New application to the computation of the interaction correction tothe optical conductivity of graphene at the IR fixed point (agreementwith experiments in the field)

C1 =92− 9π2

18π≈ 0.056

The Method of Uniqueness 14-11-2014 16 / 16

Page 28: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Conclusion

The Method of Uniqueness: a powerful technique for multi-loopcalculations (important method to study higher dimensionalconformal field theories)

New application to the computation of I (λ)Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

I (λ) = 3Γ(λ)Γ(1− λ)

Γ(2λ)

[ψ′(λ)− ψ′(1)

]New application to the computation of the interaction correction tothe optical conductivity of graphene at the IR fixed point (agreementwith experiments in the field)

C1 =92− 9π2

18π≈ 0.056

The Method of Uniqueness 14-11-2014 16 / 16

Page 29: The Method of Uniqueness: new application of a powerful technique …teber/Talks/ilp-talk.pdf · 2017. 2. 24. · Tkachov, Phys. Lett. B 100 65 (1981) Chetyrkin and Tkachov, Nucl

Conclusion

The Method of Uniqueness: a powerful technique for multi-loopcalculations (important method to study higher dimensionalconformal field theories)

New application to the computation of I (λ)Vasil’ev, Pismak and Khonkonen, TMF 47 291 (1981)

I (λ) = 3Γ(λ)Γ(1− λ)

Γ(2λ)

[ψ′(λ)− ψ′(1)

]New application to the computation of the interaction correction tothe optical conductivity of graphene at the IR fixed point (agreementwith experiments in the field)

C1 =92− 9π2

18π≈ 0.056

The Method of Uniqueness 14-11-2014 16 / 16