the material and metal security of low-carbon energy transitions · 2020. 4. 2. · arsenic (aroa)...

10
The Material and Metal Security of Low-Carbon Energy Transitions by Jordy M. Lee April 2 nd , 2020

Upload: others

Post on 19-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

The Material and Metal Security of Low-Carbon Energy Transitions

by Jordy M. Lee

April 2nd, 2020

Page 2: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

We are building a world-class public policy institute at one of the country’s finest research universities in the areas of natural resources, energy, and environment.

Page 3: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Material Needs for Renewable Technologies

(Sovacool, et. al, 2020)

Mineral growth as a percentage of 2017 production through 2050

Page 4: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Supply Chains: Environmental, Social, and Governance (ESG)

ESG reporting is complicated

Page 5: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Critical Minerals Strategies

2017 U.S. Net Import Reliance for Critical Minerals(U.S.DOI, 2019)

Page 6: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Everyone vs China

(European Commission 2017)

• E = Extraction

• P = Processing

• Green = Rare Earth Elements

• Grey = Platinum Metal Groups

Page 7: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Predicting the Energy Future

(Resources for the Future, 2019)

Global Electricity Generation by Fuel - 2040

Page 8: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Geopolitical Trends and Challenges

(IRENA, 2019)

Clean energy manufacturing value added (2014, US$ billion) Potential Impacts on selected countries

Page 9: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Politics and Policy

(Bazilian et. al. 2019)

• Where are we headed?

• What can we do?

Page 10: The Material and Metal Security of Low-Carbon Energy Transitions · 2020. 4. 2. · arsenic (aroa) cesium fluorspar gallium graphite natura indium manganese niobium rare earths rubidium

Thank you-

For more information about the Payne Institute please visithttps://payneinstitute.mines.edu/

or follow us @payneinstituteor https://www.linkedin.com/company/payne-institute