the mango tree project: energy audit and report

24
1 The Mango Tree Project Energy Audit and Recommendations AgahozoShalom Youth Village THE MANGO TREE PROJECT A joint project between students from United States Air Force Academy, Tufts University and Washington University in St Louis

Upload: cody-valdes

Post on 27-Dec-2014

324 views

Category:

Documents


1 download

DESCRIPTION

The report produced by the members of The Mango Tree Project for the Agahozo Shalom Youth Village in Rwamagana, Rwanda. The MTP was asked to conduct an energy evaluation for the village and list recommendations for advancing its renewable-energy and cost-savings goals.

TRANSCRIPT

Page 1: The Mango Tree Project: Energy Audit and Report

1

The  Mango  Tree  Project

Energy  Audit  and  RecommendationsAgahozo-­Shalom  Youth  Village

THE  MANGO  TREE  PROJECT

A  joint  project  between  students  from  United  States  Air  Force  Academy,  Tufts  University  and  Washington  University  in  St  Louis

Page 2: The Mango Tree Project: Energy Audit and Report

2

The  Mango  Tree  Project

3

The  Mango  Tree  Project

TABLE  OF  CONTENTSTufts  UniversityMichael  Sidebottom,  Tufts  B.S.  ‘10Cody  Valdes,  Tufts  B.A.  ‘13And  Contributors:  Fred  Huang,  Tufts  B.S.  ’10,  Dante  DeMeo,  Tufts  M.S.  ’10,  Patrick  Barber,  Tufts  B.S.  ’10,  Michael  Vizner,  Tufts  B.S.  ‘12

United  States  Air  Force  AcademySecond  Lieutenant  David  Pool,  USAFA  ‘10Cadet  First  Class  Leif  Lindblom,  USAFA  ‘11Cadet  Second  Class  David  Shrift,  USAFA  ‘12

Washington  University  in  St.  LouisTegan  Bukowski,  WUSTL  B.A.  ‘10,  Yale  ‘13

National  University  of  Rwanda/Brandeis  University

B.A.  Economics,  NUR.

The   Mango   Tree   Project   team   wishes   to   thank   its   many   generous   support-­ers,   partners,   and   friends   who   have   made   this   endeavour,   and   this   report,   pos-­

left   us   with   tremendous   insights   and   invaluable   friendships   after   an   entire   year  of   collaboration.   In   particular,   we   wish   to   thank   the   Agahozo-­Shalom   Youth   Vil-­lage,  whose   staff,   youth,   and   leaders  warmly   invited   us   into   their   community   and  their   homes   for   the   duration   of   our   three-­week   assessment   trip   in   January   2010.  Anne   Heyman,   Nir   Lahav,   and   Alain   Munyaburanga   deserve   special   thanks   for  their   generous   time   and   patience   with   us   as   we   navigated   our   way   through   the  humbling   process   of   understanding   a   new   community   in   an   unfamiliar   country.    

The   individual  groups  of   the  Mango  Tree  Project  wish   to   thank   their  own  support-­ers   as  well.   The  United  States  Air   Force  Academy  Mango  Tree  Project  members  would   like  to  thank  the  Dean  of  Faculty,  Brigadier  General  Dana  Born  for  her  sup-­port   and  encouragement   in   the   beginning   stages  of   the   project,   the  Civil   and  En-­vironmental   Engineering   Department   for   providing   engineering   guidance   and  resources,   the   Department   of   International   Programs   for   generously   funding  

-­port,   and   Ms.   Leslie   Christensen   for   her   help   navigating   the   approval   process.

The  Tufts  Mango  Tree  Project  members  wish  to  thank  the  Institute  for  Global  Leadership,  its  Director  Sherman  Teichman,  and  Assistant  Director  Heather  Barry  for  their  unwav-­ering  support  of  this  student-­led  initiative  from  its  conception  in  September  2009.  Their  guidance  and  enthusiasm  for  our  project,  which  attempted  to  bring  together  students  from  three  universities  and  multiple  departments  to  work  together  towards  a  single  

The  Washington  University  in  St  Louis  team  want  to  express  gratitude  to  the  Washington  University  Sam  Fox  School  of  Design  &  Visual  Arts  School  of  Architecture  for  their  im-­mense  generosity  in  providing  not  one  but  two  travel  grants  to  travel  to  and  from  Rwanda.    

Also,  Tegan  Bukowski  wishes  to  thank  the  Ghepardt  Institute  for  their  Civic  Engagement  Scholarship.  Without   these  contributions,   the  project  would  have  been   impossible.

THE  TEAM TO  OUR  SUPPORTERS

I.   Executive  Summary  II.   Rwanda  16  Years  OnIII.   Village  Energy  AuditIV.   Recommendations   A.   Renewable  Power  Production   B.   Strategic  Areas  for  Reduction  and  EducationV.   Conclusion

VI.   Appendices   A.   Hourly  Electricity  Usage  by  Building  Type     B.   Phase  1  Energy  Model  Assumptions   C.   Phase  2  Energy  Model  Assumptions   D.   Energy  Use  by  Appliance   E.   Experimental  Data  Phase  1  &  2   F.   Biogas  Production  Chart   G.   Biogas  Production  Calculations   H.   Thermosyphon  Analysis   I.   Thermosyphon  Energy  Savings   J.   References

Page 3: The Mango Tree Project: Energy Audit and Report

4

The  Mango  Tree  Project

5

The  Mango  Tree  Project

The  Mango  Tree  Project   is  an  endeavor  among  a  multidis-­ciplinary   team  of  university  students   to  understand  and   im-­prove   upon   the   current   patterns   of   electricity   consumption  of   the  Agahozo-­Shalom  Youth  Village   (ASYV),   a   youth   re-­habilitation  and  education  community  located  near  the  town  

initiative  of  partners  in  the  United  States,  Rwanda,  and  Israel  to  provide  a  safe  living  and  learning  environment  for  vulner-­able  and  orphaned  Rwandan  youth,   is   home   to  250   youth  and  approximately  100  staff,  a  number  which  will  double  to  a  full  capacity  of  700  in  two  years.  It  is  currently  facing  consid-­

of  high  electricity  and  fuel  costs,  both  of  which  were  antici-­pated   symptoms   of   Rwanda’s   developing   national   energy  infrastructure   at   the   village’s   conception,   but   nevertheless  remain  substantial  obstacles  now  and  even  more  so   in   the  immediate  future  as  the  village  expands.  As  a  team  of  stu-­dent  researchers  with  practical  experience  in  building  design,  sustainable  systems  design,  renewable  energy  and  curricula  design,  the  Mango  Tree  Project  (MTP)  team  set  out  with  the  goal   of   providing   the   village   with   a   comprehensive   under-­standing  of  its  current  (and,  where  possible,  future)  electricity  consumption  patterns,  and  then  to  provide  guidance  towards  implementing  new  systems  for  achieving  cost-­savings  in  the  near  future.    

Renewable  energy  technologies  have  advanced  in  sophis-­tication  and  affordability  in  the  global  energy  market  to  the  point  where  they  are  currently  the  only  reliable  and  afford-­able  route  to  achieving  long-­term  energy  independence  for  many  developing  communities.  Until  Rwanda’s  quickly  ex-­panding  national   electricity   infrastructure  has   reached   the  state  where  it  can  provide  economical  and  reliable  service  to   energy-­intensive   ventures   such   as   the   ASYV,   renew-­able  energy  sources  will   offer  a   secure  and  cost-­effective  means  to  sustaining  the  village’s  operations,  provided  that  

-­nanced  through  a  relatively  large  up-­front  injection  of  capi-­tal.  Our  energy  audit  has  shown  that  at  the  current  rates  of  electricity  consumption  and  purchase  exchange  from  Elec-­trogaz,  Rwanda’s  national  supplier,  the  village  will  be  paying  roughly  $55,000USD  per  year  in  two  years  time.  The  MTP  

-­taic  power  generation  system,  able  to  produce  electricity  for  various  scales  of  need,   to  be  designed  and  maintained   in  partnership  with  local  partners  such  as  Great  Lakes  Energy  Ltd.  and  the  Solar  Electric  Light  Fund  (SELF).

EXECUTIVE  SUMMARY

Page 4: The Mango Tree Project: Energy Audit and Report

6

The  Mango  Tree  Project

7

The  Mango  Tree  Project

As  a  uniquely  transformative  healing  and  rehabilitation  com-­munity,  ASYV  is   ideally  placed  to  become  a   truly  state-­of-­the-­art   educational   space   for   Rwanda’s   most   vulnerable  youth   by   specializing   in   these   renewable   technologies,  which  represent  the  future  for  its  under-­25  generation.  The  MTP   team  aims   to  provide  ASYV  with   its  expertise   in  as-­sessing   and   sourcing   renewable   technologies   in   order   to  

-­pirations.  The  recommendations  contained  within   this  pro-­posal  are  thus  intended  to  be  practical  and  actionable  while  remaining  modest  in  light  of  our  position  as  students,  as  out-­siders,  and  as  individuals  who  will  have  minimal  stake  in  any  action  taken  as  a  result  of  this  report.  

This  report  is  intended  to  be  read  by  any  and  all  individuals  living   or  working   in   the   village,   those   people  who   have   a  stake  or  interest  in  the  village  from  abroad,  and,  in  particu-­lar,   any   individuals  who  may   have   an   interest   in   support-­

steps  into  renewable  technologies  and  other  energy-­related  cost  savings  measures  over   the   immediate  and  near-­term  

-­tory  notes  on  Rwanda’s  immediate  history  and  the  context  in  which  ASYV  has  established  itself,  followed  by  the  MTP’s  energy  audit  of  the  village,  after  which  we  present  our  rec-­ommendations   for   the  production  of  energy,   the   reduction  of  energy  use,  and  the  concomitant  implementation  of  edu-­cational  systems  and  materials  surrounding  the  technology.  

tragedy  that  brought  it  infamy  in  April  1994,  when  in  just  100  days  more  than  800,000  Tutsis  and  Hutu  moderates  were  systematically  slaughtered  by  extremist  Hutus,  marking  the  nadir  of  a  decade  of   instability  within   the  heart  of   the  Afri-­can  continent.  The  scars  of  the  genocide  and  its  preceding  years  of  civil  war  have  settled  deep  in  the  fabric  of  Rwandan  society,   both   physically   and   spiritually.   While   these   scars  are  stored  most  viscerally  in  the  minds  of  the  men,  women,  and  children  who  partook  in  or  were  victim  to  the  genocide’s  inescapable  violence,  the  most  saddening  manifestation  of  the  pogroms’  destruction  was  the  unknowable  number  of  in-­nocent  children  who  came  of  age  in  its  aftermath.  For  these  

absence  of  familial  support,  or  the  well-­intentioned  efforts  of  

Today,  Rwanda  has  an  estimated  860,000  orphans  of  a  total  population  of  nearly  10  million.  What  many  see  as  Rwanda’s  saddest  statistic  presents  a  gargantuan  barrier  to  unlocking  the  immense  human  potential  of  the  country’s  under-­25  gen-­eration.  According  to  UNICEF,  Rwanda  is  believed  to  have  the   highest   concentrations   of   orphans   in   the  world.  Many  of  these  children  were  orphaned  during  the  genocide,  while  others   have   lost   parents   to   HIV/AIDS,   the   rates   of   which  have  increased  since  the  Hutu  militias  of  1994  used  mass  rape  as  a  systematic  weapon  of  war.  

At   the   same   time,   Rwanda   has   developed   at   a   remark-­

in   neighboring  Democratic  Republic   of   the  Congo   and   vi-­olently-­contested  elections  marring   the  Republic  of  Kenya  in  2007/8,  it  has  fast  risen  from  nothingness  to  emerge  as  somewhat  of  an  exemplar  for  the  Central  and  East  African  region.  According   to   the  World  Bank’s  2007  World  Gover-­nance   Indicators,   the  country  has  surpassed  expectations  of   political   stability,   government   effectiveness,   and   control  of  corruption,  and  has  rebuilt  its  governance  structures  with  remarkable   speed.  Rwanda  has   gained  a   reputation   as   a  leader   in   the   continent   in   the   reduction   of   corruption   and  promotion   of   government   accountability,   having   “built   up  a  culture  of  good  governance,   transparency  and  evidence  based  policy  making,”  according  to  the  Millennium  Develop-­ment  Goal  Monitor1.    With  Africa’s  largest  solar  power  farm  now  situated   just  seven  kilometers   from   the  capital  city  of  Kigali,  Rwanda  is  also  positioning  itself  to  become  a  leader  in  Africa’s  renewable  energy  sector.  And  as  part  of  its  con-­tinued  commitment  to  developing  its  core  infrastructure,  the  Rwandan  government  has  endeavored   to  make   its  capital  

broadband  coverage.

Nevertheless,   the   future   of   the   country’s   leadership   in   its  public,  private,  and  cultural   institutions   faces  considerable  challenges.   Some   have   characterized   the   post-­genocide  generation   as   a   lost   one,  made   passive   and   pliant   by   an  overabundance   of   paternalistic   aid   that   has   created   a              

 1.    Marie  Chene,  “Overview  of  Corruption  in  Rwanda,”  Transparency  International  Anti-­Corruption  Resource  Center.  Available  online  at  (http://www.u4.no/helpdesk/helpdesk/query.cfm?id=164).  Accessed  December  13,  2009.

AGAHOZO  SHALOM  YOUTH  VILLAGE RWANDA  16  YEARS  ON

Page 5: The Mango Tree Project: Energy Audit and Report

8

The  Mango  Tree  Project

9

The  Mango  Tree  Project

lacuna  where  Rwandan  self-­empowerment  need  take  root.  This  is  unlikely,  for  the  extraordinary  demands  imposed  on  the  individual  –  particularly  parentless  youth  –  in  the  wake  of   the  country’s  civil  war  have  often  been  beyond   fathom.  Others   would   argue,   more   convincingly,   that   President  Paul   Kagame’s   16-­year   tenure   (extended   in  August   2010  for  an  additional  7  years)  has  only  ingrained  the  passivity-­

and  which  continues  to  extend  beyond  the  country’s  closed  political  forum,  into  the  classroom  and  the  purviews  of  the  youth.  No  matter  how  much  truth  these  broad  characteriza-­tions  contain,   the   reality   is   that  hundreds  of   thousands  of  Rwanda’s  post-­genocide  youth  have  been  forced  to  come  of   age   as   heads   of   households,   street   orphans,   manual  laborers,   and  by   various  other   stunting  means  of   survival  that  have  diminished   their  prospects   for  positive  social   in-­tegration  and  personal  development.  While  the  country  has  

reconciliation,  these  developments  have  succeeded  despite  the  persistence  of   the  genocide’s  most   glaring  underlying  causes,  including  a  lack  of  positive  youth  engagement.  With  nearly  ten  percent  of   its  national  population  orphaned  and  a  greater  number  considered  to  be  vulnerable,  Rwanda  ur-­gently  requires  a  sustained,  concerted,  and  caring  effort  to  help  this  generation  reclaim  its  vitality,  trust,  and  entrepre-­neurial  spirit.    

This  is  the  context  in  which  ASYV  has  established  itself  as  a   true   leader   in   the   rehabilitation  and   leadership  develop-­ment   of  Rwanda’s   youth.  Of   the   challenges   currently   fac-­

as  a  primary  barrier   to   longevity  and  sustainability   in  pur-­

of  its  electricity  supply.  Through  our  direct  research  into  the  village’s   primary   points   of   electricity   consumption   and  our  conversations  and  interactions  with  the  directors  and  youth  of  the  village,  we  have  gained  a  detailed  understanding  of  the   village’s   current   electricity   use   patterns   as  well   as   an  informed  projection  of   its   future  demand.  We  have  shared  

http://www.mangotreeproject.org.  

The  scope  of  our  energy  audit  was  to  accomplish  the  following:  

                               consuming  devices  in  the  village

                               particlarly  with  respect  to  those  which  are

                               how  long  lights  are  kept  in  use

                               a  model  of  the  village’s  current  (Phase  1)  energy                                    use  over  a  typical  24-­hour  period                                (See  Figures  2  &  3)

                               future  (Phase  2)  energy  use,  factoring  in  future                                                buildings  and  a  population  at  maximum  capacity                                    (See  Figure  4)

Our  research  as  it  related  to  the  energy  consumption  of  the  village  had  a  straight   forward  goal.  This  was  to  produce  a  complete   energy   model   by   structure   and   by   hour-­of-­day  for  all  energy  usage  in  the  village,  which  could   inform  any  future   steps   taken   to   develop   a   renewable   energy   power  generation  system  by   the  village  and   its  partners.  Prior   to  our  assessment  of  the  village,  its  administrators  had  only  a  rough  idea  of  how  much  energy  the  village  was  using  and  which  points  were  drawing  on  the  most  energy  in  compari-­

much  money  was  being  spent  on  each  new  block  of  energy  credits  from  Electrogaz,  Rwanda’s  national  energy  supplier,  and  where   this  money  was  being  used.   (See  Figure  6   for  Electrogaz  Purchase  Record).  We  have  produced  a  working  model  of  energy  use  in  the  village  that  the  village  adminis-­trators  will  now  be  able  to  reference  when  talking  about  their  current  energy  use   to  potential   funders,  solar  photovoltaic  systems  experts,  and  other  relevant  parties.

The  ultimate  goal  of  our  assessment   is   to  provide   the  vil-­lage  with  sustainable  energy  design  alternatives  from  which  to  develop  a  strategic  plan  for  increasing  its  independence  from   the  national  grid.  The   funding  and   implementation  of  our  recommended  systems  will  allow  the  village  to  become  more  sustainable,  both  economically  and  in  terms  of  its  en-­vironmental  impact.

III.  VILLAGE  ENERGY  AUDIT

Page 6: The Mango Tree Project: Energy Audit and Report

10

The  Mango  Tree  Project

11

The  Mango  Tree  Project

the  quantity  and  energy  usage  rating  of  all   the  appliances  

layouts  that  would  each  serve  as  a  model  for  multiple  build-­ings.  We  recorded  as  much  information  about  each  energy-­consuming  device  as  possible,  particularly  the  manufacturer  information,  model  number,  and  wattage  of  each,  so  that  we  could  create  a  physical  layout  of  energy-­consuming  devices  by  structure.  Although  it  took  us  several  days  to  completely  map  out  the  village,  this  process  entailed  the  strictly  techni-­

was  addressed  when  analyzing  the  behavioral  observations  we  recorded.  This  data  is  available  in  Figure  1  and  Appendix  D.

Experimental  Data

The  third  task  of  the  on-­site  assessment  was  to  collect  ac-­tual  energy  usage  data.  Prior  to  our  assessment  of  the  vil-­lage,   the   only   estimate   that   village   administrators   had   of  how  much  energy  the  village  was  using  was  based  on  how  often   they   needed   to   buy   more   energy   credits.   Because  Electrogaz  sells  electricity  via  a  pre-­paid,  credit-­based  sys-­tem,   the  village  had  been  purchasing  a  certain  number  of  

kWh.

ON  SITE  ASSESSMENT BEHAVIORAL  OBSERVATIONS

The  second  task  of  the  on-­site  assessment  was  to  observe  the   behavioral   energy   usage   patterns   of   the   children   and  

The   need   to   observe   behavior   and   to   hold   focus   groups  with  the  community  members  was  the  most  critical  reason  for  travelling  to  Rwanda  to  perform  an  on-­site  assessment.  While   in   the   village,  we   spoke  with   new   students,   return-­ing  students,  administrators,  and  house  mothers  about  their  energy  usage.  Some  sample  questions  we  asked  were  the  following:

     they  normally  go  to  bed?

     ing  electric  kettles?  What  do  they  use  them  for?

       Which  ones?  For  how  long?

       hours?  Which  ones?  For  how  long?

What  we  learned  from  our  time  spent  with  the  village  youth  al-­-­

gram   depicting   how  many   of   each   type   of   energy-­consuming  device  are  in  use  for  each  hour  of  the  day.  (See  Figure  2)  This  schedule   became   the   backbone   for   the   energy   usage  model,  which  we  could  then  compare  against  the  experimental  data  we  had  gathered.

Unfortunately,  under  this  service  model,  the  village  did  and  does  not  receive  a  monthly  electricity  usage  statement,  as  is   common   practice   for   post-­paid   utility   service   providers.  Therefore,  we  gathered   this  data  on  an  hourly  basis   from  the   village’s   electricity   meter   to   create   a   more   accurate  measure  of  how  much  energy  is  being  used  every  hour  and  ensure  that  our  model  accurately  represented  the  village’s  energy  usage.  (See  Appendix  E  and  Figure  5  below  for  ac-­tual  data)

Figure  1  Children’s  Home  Energy  Usage  by  Appliance

Page 7: The Mango Tree Project: Energy Audit and Report

12

The  Mango  Tree  Project

13

The  Mango  Tree  Project

organized  the  village’s  structures  into  eight  units  based  on  their  usage  and  their  similarity  to  one  another.  (See  Figure  2  and  Appendix  A)  

The  eight  structures  are  as  follows:

The  label  “Typical”  indicates  a  structure  that  is  representa-­tive  of  two  or  more  near-­identical  structures  and  is  used  to  model  all  such  structures.  Each  of  these  structures  was  or-­

any  time  of  the  day,  which  gave  us  the  precise  control  nec-­

experimental  data  that  we  had  gathered.  (See  Appendix  B  for  the  assumptions  we  used  in  modeling  for  Phase  1’s  en-­ergy  usage)

ENERGY  MODELPHASE  1

Figure  2  Hourly  Energy  Usage  Model  by  Building

Page 8: The Mango Tree Project: Energy Audit and Report

14

The  Mango  Tree  Project

15

The  Mango  Tree  Project

We  used  our  gathered  data  to  create  a  high  and  a  low  estimate  of  hourly  energy  usage  and  used  the  average  of  these  two  as-­

generation  system  is  the  time  at  which  village  power  usage  spikes.  From  18:00  to  23:00  hours  the  village  uses  the  greatest  relative  amount  of  energy  during  a  given  day,  but  as  solar  power  generation  systems  can  not  produce  energy  at  this  time  (after  sunset),  the  village  will  still  be  forced  to  draw  upon  electricity  from  the  grid  or  electricity  stored  in  independent  batteries  from  the  day’s  solar  production.  This,  of  course,  will  incur  additional  costs  for  the  village  on  top  of  solar  power  production  systems.  

The  next  task  was  to  extrapolate  the  Phase  1  model  to  the  size  of  the  village  when  it  becomes  fully  operation  with  500  children  and  150  –  250  staff  and  several  new  structures  in  2012.  There  were  several  key  assumptions  that  allowed  us  to  do  this  effectively.  (See  Appendix  C  for  Phase  2  Assumptions)  In  particular  were  the  following:

double  (16  houses  to  32  houses).

children’s  houses,  so  the  increase  in  total  energy  consumption  will  be  nearly  proportional  to  the  percent  increase  in  children.

the  increase  in  children  or  staff  members  using  that  particular  type  of  structure.

of  occupants.

In  order  to  check  this  extrapolated  model,  we  scaled  up  the  experimental  data  we  had  gathered.  

Figure  3  Hourly  Energy  Usage  Phase  1

Figure  4  Hourly  Energy  Usage  Model  Phase  2

Page 9: The Mango Tree Project: Energy Audit and Report

16

The  Mango  Tree  Project

17

The  Mango  Tree  Project

Because  we  had  assumed  that  the  increase  in  total  energy  consumption  would  be  nearly  proportional  to  the  increase  in  the  number  of  children,  we  decided  to  scale  up  the  experimental  data  by  a  factor  of  two.  When  we  compared  this  Phase  2  experi-­mental  data  with  the  Phase  2  model  we  had  created,  the  two  sets  of  data  matched  up  well.  We  decided  to  keep  the  assumption  

There  are  several  key  points  and  conclusions  to  glean  from  our  energy  audit,  some  of  which  have  directly  informed  our  decision   process  while   assessing   various   sustainable   en-­ergy  systems,  and  others  that  will  support  the  village  in  un-­derstanding  and  curtailing  its  own  energy  usage.  

content  of   the  audit   itself.  The  village  now  has  a  concrete  model  of  how  much  energy  it  uses,  both  on  an  hourly  and  a  

uses  and  the  cost  associated  with  that  energy  use,  both  cur-­rently  and  when  the  village  begins  operating  at  full  capacity  in  roughly  two  years  time.  

The  second  is  that  the  majority  of  the  energy  use  is  due  to  lighting,  primarily  in  the  children’s  homes  and  primarily  dur-­

important  insight  for  the  village’s  staff  and  students,  inform-­ing   them  about  which  hours  of   the  day  contribute  most   to  the  village’s  energy  spending.  (See  Appendix  A  in  particu-­lar)  It  also  gave  us  guidance  regarding  where  to  focus  our  energies  in  the  reduction  portion  of  our  report,  which  led  us  to   concentrate  particularly  on  making   the  village’s   lighting  

Based  on  the  extrapolated  model,  when  the  village  is  fully  operational,   we   predict   the   cost   for   energy   will   be   nearly  31,000,000  RWF  (55,000  USD)  per  year.  (See  Figure  6  for  Cost  Summary)  With  the  ultimate  goal  to  foster  as  sustain-­

entirely  to  Rwandan  hands,  the  current  and  projected  costs  are   economically   unsustainable.   Therefore,   by   using   this  foresight  and  data  to  craft  potential  solutions,  the  village  and  its  partners  can  help  implement  smart  solutions  that  will  re-­duce   the  yearly  energy  cost   to  a   level   that   the  village  can  sustain  on  its  own  for  many  years  to  come.

CONCLUSIONS  AND  RECOMMENDATIONS

Figure  5  Hourly  Energy  Usage  Phase  2

Figure  6  Cost  Summary  Phase  1  &  2

Page 10: The Mango Tree Project: Energy Audit and Report

18

The  Mango  Tree  Project

19

The  Mango  Tree  Project

Problems  ApproachIn  order  to  provide  the  most  objective  and  holistic  renewable  energy  recommendations  to  ASYV,  the  Mango  Tree  Project  team  considered  multiple   forms  of   renewable   energy  pro-­duction  and  evaluated  each  on   their  economic,  social  and  engineering   value.   The   renewable   energy   methods   as-­

solar),  solar  hot  water,  geothermal,  wind,  and  biogas  energy  production.  Our  recommendations  for  the  production  of  renewable  en-­ergy  will   be   limited   to   the   direction  we   believe   the   village  should   take  when  and   if   it   decides   to   implement   a   power  generation  system,  at  which  time  it  will  behoove  the  village  to  obtain  a  realistic  cost-­quotation  from  a  local  partner  with  

Ltd.  While   presenting   an   accurate   price   for   the   landscap-­ing,  ground  preparation,  designing,  constructing,  and  main-­tenance  of  a  solar  array  farm  in  the  village  grounds  is  out  of  

-­able  and  consistent  supply  of  solar  electricity  to  the  village  and  that  our  energy  audit  will  greatly  inform  the  design  pro-­cess  that  accompanies  it.

Design  FactorsThe  Mango  Tree  Project  Team  considered   several   design  factors   to   rate   each   renewable   energy   method.   Among  these,  sustainability  was  determined  to  be  the  most  impor-­tant  factor.  

A  high   level  of  sustainability  ensures  the  production  meth-­od  will  produce  enough  energy   to   reduce  or  eliminate   the  village’s  reliance  upon  outside  sources  of  energy.  Sustain-­ability  also  prescribes  cradle-­to-­cradle  system  and  material  design.  The  system  must  utilize  local  materials  and  techni-­cal  support,  as  well  as  provide  adequate  supply  of  energy  to  the  village.  The  economic   feasibility  of  each  system  was  also  consid-­ered  while  evaluating  each  of  the  energy  production  meth-­ods.  This  factor  did  not  serve  as  a  decisive  factor  because  the  team  believed  it  best  to  leave  this  design  constraint  for  the  village  and  its  funders  to  assess,  balancing  the  weight  and   scope  of   this   requirement  with   the   long-­term   security  and  cost-­savings  that  such  systems  would  provide.  Finally,  each  production  system  was  evaluated   for  educa-­tional  and  social  value.  Again,   the   team  did  not  deem  this  design   constraint   a   controlling   requirement   but   kept   it   in  mind  while  determining  all  possible  solutions.  This  is  consid-­ered  to  be  the  social  sustainability  of  the  system.  It  must  be  

the  village.  We  have  supplemented  our   recommendations  here  for  the  production  of  energy  with  a  series  of  recommen-­dations  for  educational  materials  and  systems  adjoining  the  production  system,  which  will  help  bring  the  systems  ‘to  life’  for  the  youth,  the  primary  stakeholders  of  the  technology.    Each  of  these  design  constraints  was  applied  to  each  power  generation  system  to  evaluate  the  overall  sustainability  and  effectiveness.

IV.  RECOMMENDATIONS

A.  RENEWABLE  POWER  PRODUCTION

Figure  7  ASYV  Purchasing  History

Page 11: The Mango Tree Project: Energy Audit and Report

20

The  Mango  Tree  Project

21

The  Mango  Tree  Project

RESULTS

The  Mango  Tree  Project  Team  has  considered  several  dif-­ferent   design   solutions   for  ASYV.   These   design   solutions  comprised   of   vastly   different   energy   production   methods  that  would  be  implemented  in  different  ways.  The  most  eco-­

production.  Solar  PV  has  the  greatest  potential  for  payback  within   the  next  20  years,  has   lower   front-­end  cost,   and   is  easier  to  install  and  maintain  in  Rwanda.  Based  on  the  anal-­ysis  provided,  the  solar  photovoltaic  energy  production  sys-­tem  has  the  lowest  estimated  payback  period  of  all  available  

of  conjecture.2    Importantly,  similar  photovoltaic  systems  are  

for  the  photovoltaic  system.    3

 

 

SolarConcentrated   solar   is   not   a   viable   option   due   to   the   lack  of  expertise  and  maintenance  ability  already  established  in  Rwanda   (or   surrounding   countries).   The   long-­term   main-­

made  by  the  system.  Our  consultations  with  Antony  Simm  of   Stadtwerke   Mainz,   implementing   partner   of   Kigali   So-­laire,  the  largest  operational  Sub-­Saharan  photovoltaic  so-­

maintaining  a  concentrated  solar  power-­production  system  in  a  country  like  Rwanda,  where  the  topography  and  climate  prohibit  sustained  periods  of  direct  sunshine  over  the  course  of  an  entire  day.  While  concentrated  solar  systems  produce  intensely  under  direct  sunshine,  they  fail  to  deliver  sustained  

cloud  cover  that   frequents  Rwanda’s  skies   in  the  way  that  solar   photovoltaic   systems   do.   This   factor,   coupled   with  the  highly  advanced   technical  skills  and  materials  needed  to  maintain  concentrated  solar  systems   in   the   likely  even-­tual   case   of   overheating   or   breakdown,   tipped   the   scales  squarely  in  the  direction  of  solar  photovoltaics.  

 GeothermalGeothermal  energy  production  was  determined   to  be  cost  prohibitive   due   to   the   inability   for   a   reasonably   sized   (ie:  small)  system  to  provide  adequate  energy  for  the  village.  The  end-­goal  of  the  village  is  to  be  energy  neutral  and  a  geother-­mal  system  simply  would  not  be  able  to  produce  enough  en-­ergy  to  provide  for  all  energy  needs  of  the  village.  Six  factors  exclude  geothermal  electricity  production:  lack  of  available  equipment,   high   resource   temperature   requirements,   low  

power  requirements,  and  high  capital  cost.  Only  commercial  equipment   (>100kW)   for   geothermal   electricity   production  exists,  and  the  in  situ  resource  temperature  must  be  greater  than  220°F  (104  C),  while  lower  resource  temperatures  yield  

for  cooling,  feed  and  well  pumps.  Additionally,  a  geothermal  electricity  plant  costs  roughly  $1,500-­3,000  per  kW  capacity.  Due  to  low  in  situ  resource  temperatures  in  Rwanda,  geo-­thermal  electricity  production  is  not  a  viable  production  op-­tion  for  ASYV.  4

   

Wind-­

cient  wind  data  to  determine  whether  wind  electricity  produc-­tion  would  be  a  feasible  option  for  ASYV.  Because  this  data  is   inconclusive,   the  Mango  Tree  Project  Team  encourages  ASYV  to  follow  closely  as  3E,  the  European-­based  energy  

-­ergy  potential   to   the  Rwandan  Ministry  of   Infrastructure   in  December  2010.  A  full  wind  data  survey  will  adequately  de-­termine  wind  energy  production  potential,  and  while  it  may  prove  unfeasible  for  the  village  to  obtain  the  bulk  of  its  en-­ergy  needs  through  wind  power  given  its  topographical  loca-­tion,  a  single  wind  turbine  located  at  the  top  of  the  village’s  upper-­most  hill,  adjacent  to  the  children’s  school,  would  cer-­tainly  serve  as  an  invaluable  source  of  educational  material  and  skills-­development   for   the  youth,   if  not  a  valuable  but  modest  source  of  energy  for  the  school  as  well.  This,  how-­ever,  may  only  be  advisable  as  a  secondary  aspiration  for  the  village,  given  the  unknowability  of  the  economic  return  such  a  wind  turbine  would  provide.

2    Interview,  Antony  Simm,  Stadwerke  Mainz  &  Kigali  Solaire,  Kigali,  January  2010.3    Interview  and  email  correspondence,  Sam  Dargin,  Great  Lakes  Energy  Rwanda,  Kigali,  January  2010.   4    Rafferty,  Kevin.  “GEOTHERMAL  POWER  GENERATION.”  GeoHeat.  Geo-­Heat  Center,  Jan.  2000.  Web.  8  Sept.  2010.  <http://geoheat.

oit.edu/pdf/powergen.pdf>.

Page 12: The Mango Tree Project: Energy Audit and Report

22

The  Mango  Tree  Project

23

The  Mango  Tree  Project

Biogas-­

ergy  to  provide  electrical  energy  to  the  village  but  may  con-­

strain  on  village  staff  of  non-­stop  wood  burning  in  the  kitch-­en  facilities.5    ASYV  is  planning  to  acquire  40  head  of  cattle,  from  which  biogas  may  be  produced  with  the  construction  of  relatively  simple  biogas  digesters  located  near  to  the  kitchen  space  in  outdoor  pits.  (See  Figure  9  below)  According  to  the  Biogas  Production  Estimates   given   in  Appendices  F  &  G,  40  average  weight  dairy  cows  will  yield  approximately  0.13  kWh   electrical   power   production   or   49.6m3   of   biogas   per  day  in  a  system  such  as  that  pictured  in  Figure  8.  Questions  for  the  village  to  consider  before  pursuing  a  biogas  genera-­tion  system  include,  What  systems  will  be  erected  to  collect  and  consolidate  all  bovine  waste  into  the  biodigester,  What  will  be  done  with  the  treated  slurry  after  the  waste  has  been  digested,   and  Can   the   space   required   for   one   or  multiple  biodigesters  (multiple  smaller  digesters  providing  the  great-­

provide  accurate  estimates  of  what  ASYV  could  expect   to  produce  from  40  mature  cows,  a  guiding  principle  for  con-­sidering  a  biogas  system  should  be   that   “biogas   is  a  site-­

Energy  Ltd.  (a  private-­sector  enterprise  based  in  Kigali)  or  the  Kigali  Institute  for  Science  and  Technology,  a  leader  in  

design  and  implementation  of  any  biogas  system.6    

IMPLEMENTATION  METHODS

In  addition  to  engineering  and  economic  sustainability,   the  Mango  Tree  Project  team  also  desires  socio-­cultural  sustain-­ability.  The  team  is  conscious  of  ensuring  equal  investment  by  the  community,  which  will  augment  the  sustainability  and  

of  new  designs.  For  this  reason  the  team  believes  multiple  solutions  should  be  presented  to  ASYV  by  the  Mango  Tree  Project  team.  From  these  options  the  village  will  decide  what  solution  best  suits  their  needs  and  desires.  These  solutions  include  a  modular  solar  photovoltaic  system  for  each  house,  a  larger  system  incorporating  multiple  (16  to  32)  houses,  a  

both  Phase  1  and  Phase  2   (future)  construction.  Addition-­ally,  the  MTP  will  facilitate  the  education  of  ASYV  throughout  the  entire  process  including:  concept,  design,  construction,  and  sustainment.

Environmental  Studies  in  Israel,  a  report  by  Aashish  Meta  titled  “The  Economics  and  Feasibility  of  Electricity  Generation  Using  Manure  Digesters  on  Small  and  Mid-­size  Dairy  Farms,”  University  of  Wisconsin  –  Madison,  January  2002,  and  calculations  based  on  the  provided  information  by  the  Mango  Tree  Project  team.  Potential  respitory  

Project  to  consider.    6        Email  correspondence,  Mazen  Zoabi,  March  2010.  

Figure  9  Plastic  Tube  Biodigester,  Lowest-­Cost  on  Market

Figure  10  Thermosyphon  Design  Principles

Page 13: The Mango Tree Project: Energy Audit and Report

24

The  Mango  Tree  Project

25

The  Mango  Tree  Project

B.  STRATEGIC  AREAS  FOR  REDUCTION  &  EDUCATION

Separate  from  independent  power  generation  systems  con-­structed  by  the  village,  there  are  measures  that  the  village’s  youth  and  staff  can  consider  undertaking  to  reduce  their  use  of  energy  on  a  day-­to-­day  basis.  These   include   infrastruc-­ture  augmentation  of  each  children’s  home  using  solar  hot  water  devices  as  well  as  behavioral  changes  that  will  serve  as  much  as  an  educative  process   in   the  spirit   of   environ-­

opportunities  presented  by  any  action  taken  to  reduce  elec-­tricity  use  and,   in  particular,   to  produce   renewable  energy  on-­site,  are  many  and  invaluable  to  the  four  problem  areas  

usage  can  be  realized:  water  heating   in  children’s  homes,  phantom   loads   of   plugged-­in   appliances,   external   house  lighting,   and   dining   hall   lighting.  Each   of   these   areas   has  been  addressed  below.

Water  HeatingWater  heating  for  tea  and  coffee  (and  perhaps  for  hot  show-­ers   and   clothes   cleaning,   but   these  were   only   uses   iden-­

-­proximately  11%  of  the  electricity  used  by  a  single  children’s  home  in  a  given  day.  (See  Figure  1  above)  Solar  hot  water  is  a  viable  technology  using  local  materials  and  may  serve  as  simple  way   for   family  homes   to   invest   in  a  sustainable  energy  project  and  reduce  their  daily  energy  consumption.  This  method  requires  relatively  little  initial  cost,  infrequent

maintenance,   and   serves   as   a   great   way   to   educate   the  village   in   energy   savings  while   reducing   energy   use   from  in-­home  water  heating  devices.  According   to  our   technical  report   conducted   by  US  Air   Force   cadet   Leif   Lindblom,   a  simple   thermosyphon   for   each   home  may   be   constructed  using  local  materials  and  labor.  (See  Figure  10  and  Appen-­dices  H  &  I  for  diagrams  and  calculations)    A  thermosyphon  is   a   simple  water   heating   device   located   on   the   roof   of   a  home  that  uses  the  different  densities  of  water  at  different  temperatures   to   separate   hot   from   cold   water.   Assuming  water  enters  an  ASYV  house  at  16C,  a  thermosyphon  that  increases  the  water  source  to  65C  will  result  in  a  50%  de-­crease  in  energy  consumption  for  heating  water  (i.e.  for  tea).  

100C  while  the  same  amount  of  electricity  can  heat  20,  1L  

This  method  cannot  provide  electrical  energy  production  but  

water   usage  on  a  house-­by-­house  and  daily   basis.  More-­over,  if  it  is  true  that  the  village  youth  and  guests  frequently  use  the  Black  &  Decker  boilerplate  for  heating  water  for  use  in   showers   and   clothes-­cleaning   buckets,   a   large   enough  water   tank   built   into   a   thermosyphon   system  would  more  than  compensate  for  this  ‘extra’  hot  water  demand.  

Page 14: The Mango Tree Project: Energy Audit and Report

26

The  Mango  Tree  Project

27

The  Mango  Tree  Project

Phantom  Loads

load  electricity  is  completely  wasted.  The  village  currently  loses  an  estimated  6518  watts  per  day  due  to  phantom  loads  –  this  includes  desktop  computers  and  fully-­charged  laptop  computers  plugged  in  over  night,  radios  and  water  heaters  plugged  in  throughout  the  day,  and  printers,  fax  machines,  and  other  large  but  infrequently  used  appliances.  This  costs  the  village  over  314,000RWF  per  year.  Where  appropriate,  the  recommended  course  of  action  should  be  the  investment  in  power  strips  that  can  be  unplugged  and/or  turned  off  when  appliances  are  no  longer  being  used  and  the  education  of  youth  and  staff  about  the  importance  of  unplugging  their  home  appliances  immediately  after  use.  The  numbers  provided  

increase  their  awareness  and  passion  about  this  particular  cause  of  energy  waste.    

Figure  11  Phantom  Loads  by  Device  and  Building

Page 15: The Mango Tree Project: Energy Audit and Report

28

The  Mango  Tree  Project

29

The  Mango  Tree  Project

External  Light  Fixtures

While  the  MTP  team  remains  cognizant  of  the  security  mea-­sures  in  place  in  the  village  to  protect  the  youth  and  staff  after  

children’s  homes,  the  dining  hall  and  school,  we  have  pre-­sented  two  options  for  reducing  the  electricity  waste  of  out-­door  lights  that  the  village  can  consider  and  weigh  against  the  potential  security  implications  of  both.  The  homes  have  8   lights   turned  on  at  all   times  when   the  sun   is  down  until  the   children  go   to   sleep  at   around  10pm-­12am,  when   the  homes  diligently  turn  off  their  outside  lights  and  retire.  Some  of  these  lights  are  redundant,  for  example  when  two  lights  face  each  other   on   the   sides  of   two  different   homes,   and  others  are  simply  unnecessary  for  the  purpose  of  illuminat-­ing  ‘social  space’  for  the  youth,  as  they  fall  on  the  wrong  side  of  the  building.  It  is  problematic  that  all  lights  are  turned  on  

congregate  on  only  one  side  of  the  home  if  and  when  they  decide  to  go  outside  at  night,  which  is  not  always  frequently.  The  installation  of  either  motion  sensors  that  automatically  operate  the  external  lights  in  the  presence  of  people  or  mul-­tiple  independent  switch-­to-­light  circuits  that  allow  the  youth  

-­-­

ing  consumption  during  these  peak  hours.  

Watt  Stopper    and  similar  companies  manufacturing  remote  sensor  light  attachments  offer  sound  products  in  the  range  of   $13-­20USD   and   upwards   of   $75USD   for   the  mounting  of  motion-­sensor  lights.  7  Given  the  potential  range  of  each  sensor,  a  single  home  may  have  one  sensor  activated   for  multiple   lights   (or   across  multiple   homes,   for   that  matter).  For  the  outsides  of  the  school  and  dining  hall  and  security  

when  no  motion  is  sensed  and  returns  to  100%  when  motion  is  detected,  and  with  a  range  of  between  25’  and  50’,  could  provide  a  safe  and   ideal  alternative   to   the  current   lighting  system,  which  has  all  lights  on  at  all  hours  of  the  night.  Con-­sidering  these  middle-­ground  alternatives  while  keeping   in  mind  necessary  security  measures,  the  village  may  wish  to  investigate  and  invest  in  a  system  of  motion-­sensor  bi-­lumi-­naire  lights  for  the  outsides  of  its  buildings.  The  replacement  of   the   current   outdoor   lights  with  bi-­luminaire  motion   sen-­sor  lights  would  represent  less  of  a  loss  to  the  village  than  imagined,  as  all  DOP  36-­Watt  lights  taken  from  the  outsides  of  the  children’s  homes,  dining  hall,  and  school  could  serve  as  eventual  replacements  for  the  internal  lights  in  the  dining  hall  and  school.

http://www.wattstopper.com/products/details.html?id=39&category=63&type=Commercialand  http://www.wattstopper.com/products/details.html?id=108&category=64&type=Commercial  (Accessed  July  2010)  In  America,  Home  Depot  offers  a  sound  range  of  items  in  

Page 16: The Mango Tree Project: Energy Audit and Report

30

The  Mango  Tree  Project

31

The  Mango  Tree  Project

Dining  Hall  Internal  Light  Fixtures

Finally,  inside  the  dining  hall  are  over  100  36-­Watt  lights  that  illuminate  the  interior  as  the  youth  take  their  dinner  and  that  remain  on  well  after  most  have  left  for  their  homes  after  night-­fall.  Because  the  walls  of  the  dining  hall  are  painted  white,  

undertakes  an  experimental  period  of  two  weeks  whereby  a  full  half  of  the  main  hall’s  ceiling  lights  are  disconnected  and  

half  that  remain  in  use  after  dark  and  take  appropriate  steps  given  the  feedback  of  the  youth  and  kitchen  staff.  Given  that  

overall  consumption  of  58KWh/day  (7650RWF/day),  the  vil-­lage  might  expect  to  realize  a  daily  cost  savings  of  approxi-­mately  3800RWF/day  during  this  experiment.  

The  educative  value  of  steps  –  both  tangible  and  behavioral  –   taken   to   reduce   the  energy   consumption  of   each  home  

line.  The  MTP  team  observed  an  extraordinarily  high  sense  of   stewardship   and   commitment   to   the   village’s   collective  well-­being  among  the  students  during  its  assessment  trip  in  January  2010.  This,  with  little  surprise,  extended  to  the  task  of  turning  off  all  home  lights  at  bed  time,  which  was  a  topic  of  conversation  during  an  all-­village  meeting  during  our  as-­sessment  trip.

With  self-­initiated  and  competitive  initiatives  to  reduce  daily  energy  consumption,  which  can  and  should  be  devised  by  the  students  as  much  as  possible,   the  vil   lage  as  a  whole  would   realize   equal   parts   cost   savings   and   education   ex-­periences  worthy  of  its  investment.  Strategic  investments  in  this  area  might   include  energy-­use  monitoring  systems  for  each  home  that  can  display  data  in  live  time  and  feed  data  to  the  ASYV  website  which  all  youth  and  staff  can  see,  and  monitoring  systems  for  solar  photovoltaic  power  generation  systems  such  as  the  WEB  Log  device  offered  by  the  Ger-­man  company  Meteo  Control,  which  are  used  by  the  Kigali  Solaire  solar-­panel  farm  to  aggregate  and  show  data  on  the  farm’s  electricity  production.  

Creating  educational  curricula  around  the  renewable  power  generation   systems   and   energy   saving   systems   (such   as  the  photovoltaic  solar  farm  and  thermosyphon  systems)  will  be  crucial  to  generating  life-­long  passions  for  sustainability  and  familiarity  with  renewable  technologies.  Next  to  a  pho-­tovoltaic  solar  farm  could  be  a  wooden  billboard  display  with  LED  indicators  of  the  level  of  electricity  being  produced  by  the  panels  and  the  amount  of  electricity  being  drawn  from  the  grid,   if   any.  Such  an  LED  display  would   contextualize  the  overall   contribution  of   the  solar  panels   to   the  village’s  energy  supply,  and  further  incentivize  the  youth  and  staff  to  reduce  their  electricity  use  in  the  hours  when  the  village  is  consistently  relying  on  the  grid  as  a  supplement  to  its  pho-­tovoltaic  array.  This  wooden  billboard  would  also  contain  a  static  informational  display  about  the  inner-­workings  of  solar  photovoltaic  energy  systems.  

Figure  13  WEB  Log  Metering  Device  at  Kigali  Solaire

Page 17: The Mango Tree Project: Energy Audit and Report

32

The  Mango  Tree  Project

33

The  Mango  Tree  Project

VII.  CONCLUSIONS

of  its  energy  use  and  from  the  data  collected  during  the  Mango  Tree  Project  team’s  energy  audit  conducted  in  Janu-­ary  2010.  We  have  considered  the  most  relevant  renewable  energy  technologies  for  power  generation  in  the  village,  informing  our  analysis  with  insights  gained  through  interviews  and  consultations  with  four  leaders  in  Rwanda’s  renew-­

for  Science  and  Technology  (KIST),  whose  collective  knowledge  draws  upon  private  sector  experience  (Great  Lakes),  -­

ing  research  (KIST).  Our  conclusion  is  that  a  solar  photovoltaic  array  situated  on  the  face  of  the  village’s  hill  above  its  dining  hall  will  be  the  smartest  option  for  generating  power  and  reducing  dependency  on  the  unreliable  and  uneco-­nomical  national  grid.  Most  importantly,  the  local  capacity  for  quoting,  building,  and  maintaining  such  a  solar  array  is  in  abundant  supply  given  the  presence  of  the  above  four  organizations  and  institutes.  

Finally,  we  have   recommended  various  strategic  measures   the  village  can   take   to   reduce   its  energy  consumption  

the  children’s  homes  and  bi-­luminaire  motion-­sensor  lights  on  the  exteriors  of  the  village  buildings,  in  addition  to  an  experimental  removal  of  50%  of  the  interior  dining  hall  lights.  In  order  to  familiarize  the  village  youth  and  staff  with  all  renewable  technologies,  concepts,  and  systems  implemented  by  the  village  in  its  pursuit  of  energy  savings,  we  have  offered  our  ideas  for  the  education  of  all  community  members  whose  physical  living  space  will  be  altered  by  the  above  recommendations  and  whose  understandings  of  the  social,  habitual,  and  cultural  factors  that  impact  their  community’s  

APPENDICES

Page 18: The Mango Tree Project: Energy Audit and Report

34

The  Mango  Tree  Project

35

The  Mango  Tree  Project

Appendix  A  Hourly  Electricity  Usage  by  Building   Appendix  A  Hourly  Electricity  Usage  by  Building

Page 19: The Mango Tree Project: Energy Audit and Report

36

The  Mango  Tree  Project

37

The  Mango  Tree  Project

Appendix  A  Hourly  Electricity  Usage  by  Building  

APPENDIX  B  Phase  1  Assumptions

Page 20: The Mango Tree Project: Energy Audit and Report

38

The  Mango  Tree  Project

39

The  Mango  Tree  Project  Appendix  D  Energy  Use  by  Appliance

APPENDIX  C  Phase  2  Assumptions

Page 21: The Mango Tree Project: Energy Audit and Report

40

The  Mango  Tree  Project

41

The  Mango  Tree  Project

Appendix  E  Experimental  Data  Phase  1  &  2

 Appendix  D  Energy  Use  by  Appliance

Page 22: The Mango Tree Project: Energy Audit and Report

42

The  Mango  Tree  Project

43

The  Mango  Tree  Project

Biogas Production

Sorted by Biogas/kg animal

Animal

Type Duck Broiler Layer Pig Turkey Horse Sheep Beef Dairy Veal

Weight per animal

3 2 2 70 8 400 60 500 500 40 kg

Manure

Total 0.33 0.19 0.13 5.88 0.38 20.40 2.40 29.00 43.00 2.48 kg (per day)

TS 0.09 0.05 0.03 0.77 0.10 6.00 0.66 4.25 6.00 0.21 kg (per day)

VS 0.06 0.04 0.02 0.60 0.07 4.00 0.55 3.60 5.00 0.09 kg (per day)

Total Manure /kg animal

0.110 0.085 0.064 0.084 0.047 0.051 0.040 0.058 0.086 0.062 kg/kg animal (per day)

Output

T.Biogas 0.0267 0.0167 0.0110 0.3338 0.0330 1.62 0.1975 1.56 1.24 0.0230 m3 per day

T.Power 0.0072 0.0045 0.0030 0.0904 0.0089 0.44 0.0535 0.42 0.34 0.0062 kW

Biogas/kg manure 81.04 89.43 86.09 56.77 87.86 79.44 82.28 53.91 28.91 9.29 l/kg manure (per day)

Power/kg manure 21.95 24.22 23.32 15.38 23.80 21.51 22.28 14.60 7.83 2.52 W/kg manure (per day)

Biogas/kg animal 8.91 7.60 5.51 4.77 4.13 4.05 3.29 3.13 2.49 0.58 l/kg animal (per day)

Power/kg animal

2.41

2.06

1.49

1.29

1.12

1.10

0.89

0.85

0.67

0.16

W/kg animal (per day)

Biogas Equivalents (Numbers of animals "down" equal to one animal "across". Eg. 12.5 ducks = 1 pig)

Duck 1.00 0.63 0.41 12.48 1.24 60.59 7.38 58.46 46.49 0.86 Number of Animals

Broiler 1.60 1.00 0.66 19.96 1.98 96.90 11.81 93.49 74.35 1.38 Number of Animals

Layer

2.43 1.52 1.00 30.30 3.00 147.06 17.92 141.89 112.83 2.09 Number of Animals

Pig 0.08 0.05 0.03 1.00 0.10 4.85 0.59 4.68 3.72 0.07 Number of Animals

Turkey 0.81 0.51 0.33 10.10 1.00 49.05 5.98 47.33 37.63 0.70 Number of Animals

Horse 0.02 0.01 0.01 0.21 0.02 1.00 0.12 0.96 0.77 0.01 Number of Animals

Sheep 0.14 0.08 0.06 1.69 0.17 8.21 1.00 7.92 6.30 0.12 Number of Animals

Beef 0.02 0.01 0.01 0.21 0.02 1.04 0.13 1.00 0.80 0.01 Number of Animals

Dairy 0.02 0.01 0.01 0.27 0.03 1.30 0.16 1.26 1.00 0.02 Number of Animals

Veal 1.16 0.73 0.48 14.49 1.43 70.34 8.57 67.87 53.97 1.00 Number of Animals

Appendix  F  Biogas  Production  ChartAppendix  G  Biogas  Production  Calculations

Page 23: The Mango Tree Project: Energy Audit and Report

44

The  Mango  Tree  Project

45

The  Mango  Tree  Project

Appendix  H  Thermosyphon  Analysis   Appendix  H  Thermosyphon  Analysis  

Page 24: The Mango Tree Project: Energy Audit and Report

46

The  Mango  Tree  Project

47

The  Mango  Tree  Project

Appendix  I  Total  System  Load  by  Appliance  Full  Village