the lippmann equation for liquid metal electrodes · pdf fileweierstrass institute for applied...

61
Weierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer, Clemens Guhlke, Manuel Landstorfer, Rüdiger Müller Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

Upload: phungliem

Post on 06-Mar-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Weierstrass Institute forApplied Analysis and Stochastics

The Lippmann equation for liquid metal electrodes

Wolfgang Dreyer, Clemens Guhlke, Manuel Landstorfer, Rüdiger Müller

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

Page 2: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

doi:10.1351/goldbook.L03577

IUPAC Compendium of Chemical Terminology Copyright © 2014 IUPAC

Lippman's equationAn equation which gives the electric charge per unit area of an interface (electrode):

where is the interfacial tension, is the potential of a cell in which the referenceelectrode has an interfacial equilibrium with one of the ionic components of A, isthe charge on unit area of the interface, is the chemical potential of the combinationof species whose net charge is zero, is the thermodynamic temperature and isthe external pressure. Since more than one type of reference electrode may be chosen,more than one quantity may be obtained. Consequently cannot be considered asequivalent to the physical charge on a particular region of the interphase. It is in factan alternative way of expressing a surface excess or combination of surface excess ofcharged species.

Source:PAC, 1974, 37, 499 (Electrochemical nomenclature) on page 508PAC, 1986, 58, 437 (Interphases in systems of conducting phases (Recommendations1985)) on page 445

doi:10.1351/goldbook.L03577

IUPAC Compendium of Chemical Terminology Copyright © 2014 IUPAC

Lippman's equationAn equation which gives the electric charge per unit area of an interface (electrode):

where is the interfacial tension, is the potential of a cell in which the referenceelectrode has an interfacial equilibrium with one of the ionic components of A, isthe charge on unit area of the interface, is the chemical potential of the combinationof species whose net charge is zero, is the thermodynamic temperature and isthe external pressure. Since more than one type of reference electrode may be chosen,more than one quantity may be obtained. Consequently cannot be considered asequivalent to the physical charge on a particular region of the interphase. It is in factan alternative way of expressing a surface excess or combination of surface excess ofcharged species.

Source:PAC, 1974, 37, 499 (Electrochemical nomenclature) on page 508PAC, 1986, 58, 437 (Interphases in systems of conducting phases (Recommendations1985)) on page 445

Lippmann Equation · March 3. 2015 · Page 2 (29)

Page 3: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

ΩS

Ω−

+

γS

qS

LippmanndγdE = −Q

E well defined ?

Q = Q(qs, q+, q−)

γ = γ(γs, γ+, γ−)

differential capacity

C := dQdE = − d2γ

dE2

Lippmann Equation · March 3. 2015 · Page 3 (29)

Page 4: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

ΩS

Ω−

+

γS

qS

LippmanndγdE = −Q

E well defined ?

Q = Q(qs, q+, q−)

γ = γ(γs, γ+, γ−)

differential capacity

C := dQdE = − d2γ

dE2

Lippmann Equation · March 3. 2015 · Page 3 (29)

Page 5: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

ΩS

Ω−

+γ~+

q+~

γS

E ~−qqS

~γ−

LippmanndγdE = −Q

E well defined ?

Q = Q(qs, q+, q−)

γ = γ(γs, γ+, γ−)

differential capacity

C := dQdE = − d2γ

dE2

Lippmann Equation · March 3. 2015 · Page 3 (29)

Page 6: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

ΩS

Ω−

+γ~+

q+~

γS

E ~−qqS

~γ−

LippmanndγdE = −Q

E well defined ?

Q = Q(qs, q+, q−)

γ = γ(γs, γ+, γ−)

differential capacity

C := dQdE = − d2γ

dE2

Lippmann Equation · March 3. 2015 · Page 3 (29)

Page 7: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Outline

1 Ion transport in electrolyte bulkShortcomings of Nernst-Planck model

General continuum model for the bulk

2 Electrochemical double layerSurface balances and adsorption

Free energy models for metals

Double-layer capacity

3 Lippmann equation for liquid mercury electrodeMatched asymptotic analysis

Numerical results

Lippmann Equation · March 3. 2015 · Page 4 (29)

Page 8: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Shortcomings of Nernst-Planck model

diluted solution of anions A, cations C in solvet S

∂t(mαnα) + div(mαnαv + Jα) = 0 for α = A,C

−ε∆ϕ = zAnA + zCnC

Nernst-Plack (1890):

Jα = −M(∇nα + zαnα∇ϕ) for α = A,C

+

+

+

+

+

− +

+

+

−−electrolyte

ϕE

ϕs

metal

equilibrium→ Poisson-Boltzmann

0 = ∇nα + zαnα∇ϕ for α = A,C

−ε∆ϕ = zAnA exp(−zAϕ) + zC nC exp(−zCϕ)

0 10

0

0.5

1

1.5

ξL

y

y

A

yC

yS

−10 0ξ

R

Lippmann Equation · March 3. 2015 · Page 5 (29)

Page 9: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Shortcomings of Nernst-Planck model

diluted solution of anions A, cations C in solvet S

∂t(mαnα) + div(mαnαv + Jα) = 0 for α = A,C

−ε∆ϕ = zAnA + zCnC

Nernst-Plack (1890):

Jα = −M(∇nα + zαnα∇ϕ) for α = A,C

+

+

+

+

+

− +

+

+

−−electrolyte

ϕE

ϕs

metal

equilibrium→ Poisson-Boltzmann

0 = ∇nα + zαnα∇ϕ for α = A,C

−ε∆ϕ = zAnA exp(−zAϕ) + zC nC exp(−zCϕ)

0 10

0

0.5

1

1.5

ξL

y

y

A

yC

yS

−10 0ξ

R

Lippmann Equation · March 3. 2015 · Page 5 (29)

Page 10: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

“Extended” Nernst-Planck models

postulated layer structure[Stern:1924]

finite size of ions, volume exclusion

[Bikerman:1942], [Eigen,Wicke:1952], [Carnahan,Starling:1969],

[Borukhov,Andelman,Orlando:1997], [Ajdari,Bazant,Kilic:2007]

... molecular dynamics, statistical mechanics,

Langevin, Monte Carlo, DFT ...

→ Poisson-Fermi

+

+

+

+

+

− +

+

+

−−electrolyte

ϕE

ϕs

metal

layers not diluted

pressure dependence,

momentum balance

[Freise:1952], [Sanfeld:1968],

[DGM13] 0 100

100

200

300

400

ξL

p [M

Pa]

−10 0ξ

R

0 10

0

0.5

1

1.5

ξL

y

y

A

yC

yS

−10 0ξ

R

Lippmann Equation · March 3. 2015 · Page 6 (29)

Page 11: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

“Extended” Nernst-Planck models

postulated layer structure[Stern:1924]

finite size of ions, volume exclusion

[Bikerman:1942], [Eigen,Wicke:1952], [Carnahan,Starling:1969],

[Borukhov,Andelman,Orlando:1997], [Ajdari,Bazant,Kilic:2007]

... molecular dynamics, statistical mechanics,

Langevin, Monte Carlo, DFT ...

→ Poisson-Fermi

+

+

+

+

+

− +

+

+

−−electrolyte

ϕE

ϕs

metal

layers not diluted

pressure dependence,

momentum balance

[Freise:1952], [Sanfeld:1968],

[DGM13] 0 100

100

200

300

400

ξL

p [M

Pa]

−10 0ξ

R

0 10

0

0.5

1

1.5

ξL

y

y

A

yC

yS

−10 0ξ

R

Lippmann Equation · March 3. 2015 · Page 6 (29)

Page 12: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

“Extended” Nernst-Planck models

postulated layer structure[Stern:1924]

finite size of ions, volume exclusion

[Bikerman:1942], [Eigen,Wicke:1952], [Carnahan,Starling:1969],

[Borukhov,Andelman,Orlando:1997], [Ajdari,Bazant,Kilic:2007]

... molecular dynamics, statistical mechanics,

Langevin, Monte Carlo, DFT ...

→ Poisson-Fermi

+

+

+

+

+

− +

+

+

−−electrolyte

ϕE

ϕs

metal

layers not diluted

pressure dependence,

momentum balance

[Freise:1952], [Sanfeld:1968],

[DGM13] 0 100

100

200

300

400

ξL

p [M

Pa]

−10 0ξ

R

0 10

0

0.5

1

1.5

ξL

y

y

A

yC

yS

−10 0ξ

R

Lippmann Equation · March 3. 2015 · Page 6 (29)

Page 13: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

General Framework

non-equilibrium thermodynamics distinguishes

general balance laws

material dependent constitutive equations

constitutive equations restricted by

2nd law of thermodynamics (cf. [Bothe,Dreyer:2014])

principle of material frame indifference

Lippmann Equation · March 3. 2015 · Page 7 (29)

Page 14: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

General Framework

non-equilibrium thermodynamics distinguishes

general balance laws

material dependent constitutive equations

constitutive equations restricted by

2nd law of thermodynamics (cf. [Bothe,Dreyer:2014])

principle of material frame indifference

Lippmann Equation · March 3. 2015 · Page 7 (29)

Page 15: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Electrolyte bulk model

constituents: A0, A1, · · · , AN

atomic mass: m0,m1, · · · ,mN

charge number: z0, z1, · · · , zN

+ −

+

+

+

+

+

+−

+−

−−

+

+

fields of matterρ0, · · · , ρN mass density

ρv momentum

ρu internal energy

electromagnetic fieldsE

= −∇ϕ

electric field

B magnetic field

partial mass balances ∂tρα + div(ραv + Jα) = 0 for α = 0, 1, · · · , N

quasi-static momentum −div(Σ) = ρb

electrostatic Poisson eqn. −ε0(1 + χ)∆ϕ = nF

Lippmann Equation · March 3. 2015 · Page 8 (29)

Page 16: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Electrolyte bulk model

constituents: A0, A1, · · · , AN

atomic mass: m0,m1, · · · ,mN

charge number: z0, z1, · · · , zN

+ −

+

+

+

+

+

+−

+−

−−

+

+

fields of matterρ0, · · · , ρN mass density

ρv momentum

ρu internal energy

electromagnetic fieldsE = −∇ϕ electric field

B magnetic field

partial mass balances ∂tρα + div(ραv + Jα) = 0 for α = 0, 1, · · · , N

quasi-static momentum −div(Σ) = ρb

electrostatic Poisson eqn. −ε0(1 + χ)∆ϕ = nF

Lippmann Equation · March 3. 2015 · Page 8 (29)

Page 17: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Electrolyte bulk model

constituents: A0, A1, · · · , AN

atomic mass: m0,m1, · · · ,mN

charge number: z0, z1, · · · , zN

+ −

+

+

+

+

+

+−

+−

−−

+

+

fields of matterρ0, · · · , ρN mass density

ρv momentum

ρu internal energy

electromagnetic fieldsE = −∇ϕ electric field

B magnetic field

partial mass balances ∂tρα + div(ραv + Jα) = 0 for α = 0, 1, · · · , N

quasi-static momentum −div(Σ) = ρb

electrostatic Poisson eqn. −ε0(1 + χ)∆ϕ = nF

Lippmann Equation · March 3. 2015 · Page 8 (29)

Page 18: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Entropy production

[Guhlke:2015]

Lippmann Equation · March 3. 2015 · Page 9 (29)

Page 19: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Constitutive modeling

free energy ρψ = ρψ(T,ρ0,ρ1,··· ,ρN ,) + χ|E|2

µα =∂ρψ

∂ρα, p := −ρψ +

N∑α=0

ραµα (Gibbs-Duhem)

Jα = −N∑β=1

Mαβ

(∇(µβ−µ0T

)− 1

T

(zβe0mβ− z0e0

m0

)E)

, J0 = −N∑α=1

Σ = −p+ ε0(1 + χ)(E ⊗E − 12 |E|

21)

Lippmann Equation · March 3. 2015 · Page 10 (29)

Page 20: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Constitutive modeling

free energy ρψ = ρψ(T,ρ0,ρ1,··· ,ρN ,) + χ|E|2

µα =∂ρψ

∂ρα, p := −ρψ +

N∑α=0

ραµα (Gibbs-Duhem)

Jα = −N∑β=1

Mαβ

(∇(µβ−µ0T

)− 1

T

(zβe0mβ− z0e0

m0

)E)

, J0 = −N∑α=1

Σ = −p+ ε0(1 + χ)(E ⊗E − 12 |E|

21)

Lippmann Equation · March 3. 2015 · Page 10 (29)

Page 21: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy

ρψ =

N∑α=0

ραgRefα (T )︸ ︷︷ ︸

reference values

+kT

N∑α=0

nα lnnαn︸ ︷︷ ︸

entropy of mixing

+ρψM︸ ︷︷ ︸elastic energy

elastic law: p = pRef +K (∑N

α=0 vRefα nα − 1)

vRefα : specific volume of Aα

incompressible limit K →∞: ρψM = (p− pRef )(∑N

α=0 vRefα nα − 1)

µα = gRefα + kTmα

ln nαn + vRef

αmα

(p− pRef )

Jα = −Mα

(∇nα − mα

m0

nαn0∇n0 + vRefα

(1− mαv

Ref0

m0vRefα

)∇p+ zαe0∇ϕ

)

Nernst-Planck: Jα = −Mα (∇nα + zαe0∇ϕ),

Lippmann Equation · March 3. 2015 · Page 11 (29)

Page 22: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy

ρψ =

N∑α=0

ραgRefα (T )︸ ︷︷ ︸

reference values

+kT

N∑α=0

nα lnnαn︸ ︷︷ ︸

entropy of mixing

+ρψM︸ ︷︷ ︸elastic energy

elastic law: p = pRef +K (∑N

α=0 vRefα nα − 1)

vRefα : specific volume of Aα

incompressible limit K →∞: ρψM = (p− pRef )(∑N

α=0 vRefα nα − 1)

µα = gRefα + kTmα

ln nαn + vRef

αmα

(p− pRef )

Jα = −Mα

(∇nα − mα

m0

nαn0∇n0 + vRefα

(1− mαv

Ref0

m0vRefα

)∇p+ zαe0∇ϕ

)

Nernst-Planck: Jα = −Mα (∇nα + zαe0∇ϕ),

Lippmann Equation · March 3. 2015 · Page 11 (29)

Page 23: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy

ρψ =

N∑α=0

ραgRefα (T )︸ ︷︷ ︸

reference values

+kT

N∑α=0

nα lnnαn︸ ︷︷ ︸

entropy of mixing

+ρψM︸ ︷︷ ︸elastic energy

elastic law: p = pRef +K (∑N

α=0 vRefα nα − 1)

vRefα : specific volume of Aα

incompressible limit K →∞: ρψM = (p− pRef )(∑N

α=0 vRefα nα − 1)

µα = gRefα + kTmα

ln nαn + vRef

αmα

(p− pRef )

Jα = −Mα

(∇nα − mα

m0

nαn0∇n0 + vRefα

(1− mαv

Ref0

m0vRefα

)∇p+ zαe0∇ϕ

)

Nernst-Planck: Jα = −Mα (∇nα + zαe0∇ϕ),

Lippmann Equation · March 3. 2015 · Page 11 (29)

Page 24: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Solvated ions

solvent moleculesanion

cation

specific volumina:

A: vRefA

∗ + κA vRefS

C: vRefC

∗ + κC vRefS

S: vRefS

q =

∫ ∑α

zαnα dx

at ϕL − ϕR = 0.25V :

experiment: |q| ≈ (0− 50) µCcm2

Nernst-Planck: |q| ≈ 600 µCcm2

simple mixture: |q| ≈ 100 µCcm2

solvated ions: |q| ≈ 28 µCcm2

Lippmann Equation · March 3. 2015 · Page 12 (29)

Page 25: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Solvated ions

solvated anion

solvated cationbounded solvent

molecules

free solvent molecules

specific volumina:

A: vRefA∗ + κA vRefS

C: vRefC∗ + κC vRefS

S: vRefS

q =

∫ ∑α

zαnα dx

at ϕL − ϕR = 0.25V :

experiment: |q| ≈ (0− 50) µCcm2

Nernst-Planck: |q| ≈ 600 µCcm2

simple mixture: |q| ≈ 100 µCcm2

solvated ions: |q| ≈ 28 µCcm2

Lippmann Equation · March 3. 2015 · Page 12 (29)

Page 26: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Solvated ions

solvated anion

solvated cationbounded solvent

molecules

free solvent molecules

specific volumina:

A: vRefA∗ + κA vRefS

C: vRefC∗ + κC vRefS

S: vRefS

q =

∫ ∑α

zαnα dx

at ϕL − ϕR = 0.25V :

experiment: |q| ≈ (0− 50) µCcm2

Nernst-Planck: |q| ≈ 600 µCcm2

simple mixture: |q| ≈ 100 µCcm2

solvated ions: |q| ≈ 28 µCcm2

Lippmann Equation · March 3. 2015 · Page 12 (29)

Page 27: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Solvated ions

solvated anion

solvated cationbounded solvent

molecules

free solvent molecules

specific volumina:

A: vRefA∗ + κA vRefS

C: vRefC∗ + κC vRefS

S: vRefS

q =

∫ ∑α

zαnα dx

at ϕL − ϕR = 0.25V :

experiment: |q| ≈ (0− 50) µCcm2

Nernst-Planck: |q| ≈ 600 µCcm2

simple mixture: |q| ≈ 100 µCcm2

solvated ions: |q| ≈ 28 µCcm2

Lippmann Equation · March 3. 2015 · Page 12 (29)

Page 28: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

1 Ion transport in electrolyte bulkShortcomings of Nernst-Planck model

General continuum model for the bulk

2 Electrochemical double layerSurface balances and adsorption

Free energy models for metals

Double-layer capacity

3 Lippmann equation for liquid mercury electrodeMatched asymptotic analysis

Numerical results

Lippmann Equation · March 3. 2015 · Page 13 (29)

Page 29: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Surface balances

volume: A0, A1, · · · , AN surface: A0, A1, · · · , AN , · · · , ANS

bulk Ω±

∂tρα + div(ραv + Jα) = 0

−Σ = ρb

−ε0(1 + χ)∆ϕ = nF

surface S

∂tρsα + [[(ρα(v −w) +Jα) · ν]] = 0

−[[Σ ·ν]] = ρsbs

+ 2kMγsν

−ε0[[(1 + χ)∂nϕ]] = ns

F

ρψ = ρψ(T,ρ0,ρ1,··· ,ρN) + χ|E|2 ρsψs= ρ

sψs(Ts,ρs0,ρs1,··· ,ρ

sNS

)

µα =∂ρψ

∂ραµsα=

∂ρsψs

∂ρsα

p := −ρψ +

N∑α=0

ραµα γs:= ρ

sψs−

NS∑α=0

ρsαµsα

Lippmann Equation · March 3. 2015 · Page 14 (29)

Page 30: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Surface balances

volume: A0, A1, · · · , AN surface: A0, A1, · · · , AN , · · · , ANS

bulk Ω±

∂tρα + div(ραv + Jα) = 0

−Σ = ρb

−ε0(1 + χ)∆ϕ = nF

surface S

∂tρsα + [[(ρα(v −w) +Jα) · ν]] = 0

−[[Σ ·ν]] = ρsbs

+ 2kMγsν

−ε0[[(1 + χ)∂nϕ]] = ns

F

ρψ = ρψ(T,ρ0,ρ1,··· ,ρN) + χ|E|2 ρsψs= ρ

sψs(Ts,ρs0,ρs1,··· ,ρ

sNS

)

µα =∂ρψ

∂ραµsα=

∂ρsψs

∂ρsα

p := −ρψ +

N∑α=0

ραµα γs:= ρ

sψs−

NS∑α=0

ρsαµsα

Lippmann Equation · March 3. 2015 · Page 14 (29)

Page 31: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy of metal

incompressible simple mixture of metal ions M and electrons e

vRefe := 0, p = pe + pM

goal: ρψ = ρMψM (ρM ) + ρeψe(ρe), ρsψs(ρs

0, · · · , ρsN , ρ

se, ρsM )

ρMψM = pRef + vRefM nM , µe =(

38π

)2/3 h2me

n2/3e (Drude-Sommerfeld)

coupling to surface

Constitutive laws (fast adsoption limit)

0 =µ±α−µ±0

T −µsα−µ

s0

Ts

, 0 =µ±0T −

µs0

Ts

Lippmann Equation · March 3. 2015 · Page 15 (29)

Page 32: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy of metal

incompressible simple mixture of metal ions M and electrons e

vRefe := 0, p = pe + pM

goal: ρψ = ρMψM (ρM ) + ρeψe(ρe), ρsψs(ρs

0, · · · , ρsN , ρ

se, ρsM )

ρMψM = pRef + vRefM nM , µe =(

38π

)2/3 h2me

n2/3e (Drude-Sommerfeld)

coupling to surface

Constitutive laws (fast adsoption limit)

0 =µ±α−µ±0

T −µsα−µ

s0

Ts

, 0 =µ±0T −

µs0

Ts

Lippmann Equation · March 3. 2015 · Page 15 (29)

Page 33: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy of metal surface

Volume mixtureCation

SolventAnion

Solvation shell

Bound solvent

Cation

Partial solvation shell

Vacancy

SolventAnion

Surface mixtureadsorption sides

nsM = n

s

RefM

vacancies

nsV = n

sM −

∑α nsα

µsα = µ

s

Refα + kT

mαln

(nsα

nsV

)µsM = µ

s

RefM − aRef

MmM

γs

+ kTmM

ln

(nsV

nsM

)

[Kohn,Lang:1971]

metal – vacuum: ϕM − ϕV ∼ 7V

metal – surface: ϕM − ϕsV ∼ 2V

µse = µ

s

Refe (!) depending on surface orientation

Lippmann Equation · March 3. 2015 · Page 16 (29)

Page 34: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy of metal surface

Volume mixtureCation

SolventAnion

Solvation shell

Bound solvent

Cation

Partial solvation shell

Vacancy

SolventAnion

Surface mixtureadsorption sides

nsM = n

s

RefM

vacancies

nsV = n

sM −

∑α nsα

µsα = µ

s

Refα + kT

mαln

(nsα

nsV

)µsM = µ

s

RefM − aRef

MmM

γs

+ kTmM

ln

(nsV

nsM

)

[Kohn,Lang:1971]

metal – vacuum: ϕM − ϕV ∼ 7V

metal – surface: ϕM − ϕsV ∼ 2V

µse = µ

s

Refe (!) depending on surface orientation

Lippmann Equation · March 3. 2015 · Page 16 (29)

Page 35: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Free energy of metal surface

Volume mixtureCation

SolventAnion

Solvation shell

Bound solvent

Cation

Partial solvation shell

Vacancy

SolventAnion

Surface mixtureadsorption sides

nsM = n

s

RefM

vacancies

nsV = n

sM −

∑α nsα

µsα = µ

s

Refα + kT

mαln

(nsα

nsV

)µsM = µ

s

RefM − aRef

MmM

γs

+ kTmM

ln

(nsV

nsM

)

[Kohn,Lang:1971]

metal – vacuum: ϕM − ϕV ∼ 7V

metal – surface: ϕM − ϕsV ∼ 2V

µse = µ

s

Refe (!) depending on surface orientation

Lippmann Equation · March 3. 2015 · Page 16 (29)

Page 36: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Capacity

differential capacity: C :=dQ

dEQ := q

s+ q

G. Valette, J. Electroanal. Chem. 122 (1981), 285-297 W. Dreyer, C. Guhlke, M. Landstorfer, Electrochim. Acta, submitted,(2015)

Lippmann Equation · March 3. 2015 · Page 17 (29)

Page 37: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Electrochemical double layer

D. Kolb, Surface Science, 500(1-3),722-740, (2002)

W. Dreyer, C. Guhlke, M. Landstorfer, Electrochem. Commun., 43,75-78, (2014)

O. Stern, Z. Elektrochem. angew. phys. Chem., 20(21-22),508-516, (1924)

Lippmann Equation · March 3. 2015 · Page 18 (29)

Page 38: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Electrochemical double layer

D. Kolb, Surface Science, 500(1-3),722-740, (2002) W. Dreyer, C. Guhlke, M. Landstorfer, Electrochem. Commun., 43,75-78, (2014)

O. Stern, Z. Elektrochem. angew. phys. Chem., 20(21-22),508-516, (1924)

Lippmann Equation · March 3. 2015 · Page 18 (29)

Page 39: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

1 Ion transport in electrolyte bulkShortcomings of Nernst-Planck model

General continuum model for the bulk

2 Electrochemical double layerSurface balances and adsorption

Free energy models for metals

Double-layer capacity

3 Lippmann equation for liquid mercury electrodeMatched asymptotic analysis

Numerical results

Lippmann Equation · March 3. 2015 · Page 19 (29)

Page 40: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Challanges

Lippmann dγdE = −Q

Butler-Volmer Rs

= R0fs

exp(αf

e0kT ηS

)R0bs

exp(−αb e0kT ηS

)thermodynamic variable:E not ϕ

sharp boundary layers, Debye length: λLRef

−(1 + χ)ε0∂xxϕ = nF −λ2(1 + χ)∂ξξϕ = nF

λ =

√ε0kT

e20n

Ref (LRef )2, λδ =

ns

Ref

nRefLRef

LRef = 1cm, nRef = 6.022 · 1025 m−3, ns

Ref = 7.3 · 1018 m−2

λ ≈ 1.54 · 10−8 , λδ ≈ 1.21 · 10−5 , λ|b| ≈ 2.38 · 10−8 .

Lippmann Equation · March 3. 2015 · Page 20 (29)

Page 41: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Challanges

Lippmann dγdE = −Q

Butler-Volmer Rs

= R0fs

exp(αf

e0kT ηS

)R0bs

exp(−αb e0kT ηS

)thermodynamic variable:E not ϕ

sharp boundary layers, Debye length: λLRef

−(1 + χ)ε0∂xxϕ = nF −λ2(1 + χ)∂ξξϕ = nF

λ =

√ε0kT

e20n

Ref (LRef )2, λδ =

ns

Ref

nRefLRef

LRef = 1cm, nRef = 6.022 · 1025 m−3, ns

Ref = 7.3 · 1018 m−2

λ ≈ 1.54 · 10−8 , λδ ≈ 1.21 · 10−5 , λ|b| ≈ 2.38 · 10−8 .

Lippmann Equation · March 3. 2015 · Page 20 (29)

Page 42: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Challanges

Lippmann dγdE = −Q

Butler-Volmer Rs

= R0fs

exp(αf

e0kT ηS

)R0bs

exp(−αb e0kT ηS

)thermodynamic variable:E not ϕ

sharp boundary layers, Debye length: λLRef

−(1 + χ)ε0∂xxϕ = nF −λ2(1 + χ)∂ξξϕ = nF

λ =

√ε0kT

e20n

Ref (LRef )2, λδ =

ns

Ref

nRefLRef

LRef = 1cm, nRef = 6.022 · 1025 m−3, ns

Ref = 7.3 · 1018 m−2

λ ≈ 1.54 · 10−8 , λδ ≈ 1.21 · 10−5 , λ|b| ≈ 2.38 · 10−8 .

Lippmann Equation · March 3. 2015 · Page 20 (29)

Page 43: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Rescaled equations

Assumptions

equilibrium: ∂t· = 0, v = 0

δ ∼ O(1)

kM · λLRef 1

bulk Ω±

∇(µα + zαϕ) = 0

∂xΣ = λρb

−λ2(1 + χ)∂xxϕ = nF

surface S

(µα + zαϕ))± = µsα + zαϕ

s

[[Σ · ν]] = λδ(ρsbs

+ 2kMγs)

−[[λ(1 + χ)∂xϕν]] = δns

F

Lippmann Equation · March 3. 2015 · Page 21 (29)

Page 44: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Formal Asymptotic Expansion

r(s , s )

S

Ω−

Ω+

1 2

ν

x = r(s , s )1 2 + z ν

rescale in layer

u(r, z) := u(r + λzν)

formal asymptotics expansions for 0 < λ 1

in bulk: u = u(0) + λu(1) +O(λ2)

in layer: u = u(0) + λu(1) +O(λ2)

matching conditions:

u(0)(z)− u(0),±(x(0)S ) = o(1/|z|)

∂zu(0)(z) = o(1/|z|)

in higher order

u(1)(z)− z ∂νu(0),± − u(1),± = o(1/|z|)

∂zu(1)(z)−∂νu(0),± = o(1/|z|)

zu

S

(x)uλ

λ( )~

λ

Lippmann Equation · March 3. 2015 · Page 22 (29)

Page 45: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Formal Asymptotic Expansion

r(s , s )

S

Ω−

Ω+

1 2

ν

x = r(s , s )1 2 + z ν

rescale in layer

u(r, z) := u(r + λzν)

formal asymptotics expansions for 0 < λ 1

in bulk: u = u(0) + λu(1) +O(λ2)

in layer: u = u(0) + λu(1) +O(λ2)

matching conditions:

u(0)(z)− u(0),±(x(0)S ) = o(1/|z|)

∂zu(0)(z) = o(1/|z|)

in higher order

u(1)(z)− z ∂νu(0),± − u(1),± = o(1/|z|)

∂zu(1)(z)−∂νu(0),± = o(1/|z|)

zu

S

(x)uλ

λ( )~

λ

Lippmann Equation · March 3. 2015 · Page 22 (29)

Page 46: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Inner equations

∇u = λ−1∂zuν + |τ1|−1∂1u τ1 + |τ2|−1∂2u τ2 +O(λ) ,

div(u) = λ−1∂zu · ν + divτ (u) +O(λ) ,

−∆u = −λ−2∂zzu− λ−12kM∂zu+O(1) ,

Σνν = −p+ 1+χ2 |∂zϕ|

2 +O(λ2)

layer

λ−1(∂z p+ nF ∂zϕ) +O(λ) = λρb

−(1 + χ)(∂zzϕ+ λ 2kM∂zϕ) +O(λ2) = nF

S

−[[Σνν ]] = λ δ 2kM γs

+ λ2 δ ρsbs· ν +O(λ2)

−[[(1 + χ)∂zϕ]] = δns

F +O(λ)

Lippmann Equation · March 3. 2015 · Page 23 (29)

Page 47: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Leading order

layer: Σ(0)νν = −p(0) + 1+χ

2 |∂zϕ(0)|2 bulk: Σ

(0)νν = −p(0)

layer

−∂zΣ(0)νν = 0 ,

−(1 + χ)∂zzϕ(0) = nF,(0).

S

−[[Σ(0)νν ]] = 0 ,

−[[(1 + χ)∂zϕ(0)]] = δ n

s

F,(0)

Σ(0)νν (−∞) = Σ

(0)νν (∞) =⇒ [[[p(0)]]] = 0

∫∞−∞ ∂zzϕ

(0) dz = ∂zϕ(0)|0−∞ + ∂zϕ

(0)|∞0 = −[[∂zϕ(0)]]

q+ :=∫∞

0 nF,(0) dz, q− :=∫ 0−∞ n

F,(0) dz

global electro-neutrality of double layer: δ ns

F,(0) + q− + q+ = 0

Lippmann Equation · March 3. 2015 · Page 24 (29)

Page 48: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Leading order

layer: Σ(0)νν = −p(0) + 1+χ

2 |∂zϕ(0)|2 bulk: Σ

(0)νν = −p(0)

layer

−∂zΣ(0)νν = 0 ,

−(1 + χ)∂zzϕ(0) = nF,(0).

S

−[[Σ(0)νν ]] = 0 ,

−[[(1 + χ)∂zϕ(0)]] = δ n

s

F,(0)

Σ(0)νν (−∞) = Σ

(0)νν (∞) =⇒ [[[p(0)]]] = 0

∫∞−∞ ∂zzϕ

(0) dz = ∂zϕ(0)|0−∞ + ∂zϕ

(0)|∞0 = −[[∂zϕ(0)]]

q+ :=∫∞

0 nF,(0) dz, q− :=∫ 0−∞ n

F,(0) dz

global electro-neutrality of double layer: δ ns

F,(0) + q− + q+ = 0

Lippmann Equation · March 3. 2015 · Page 24 (29)

Page 49: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Higher order

Σ(1)νν = −p(1) + (1 + χ)∂zϕ

(0)∂zϕ(1)

layer

∂z p(1) + nF,(0)∂zϕ

(1) + nF,(1)∂zϕ(0) = 0 ,

−(1 + χ)(∂zzϕ

(1) + 2kM ∂zϕ(0))

= nF,(1)

S

−[[Σ(1)νν ]] = δ 2kM γ

s

∂zΣ(1)νν = −2kM (1 + χ)(∂zϕ

(0))2

γ+ :=∫∞

0 (1 + χ)(∂zϕ(0))2 dz , γ− :=

∫ 0−∞(1 + χ)(∂zϕ

(0))2 dz

Young-Laplace [[[p(1)]]] = 2kM (γs

+ γ+ − γ−)

Lippmann Equation · March 3. 2015 · Page 25 (29)

Page 50: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Higher order

Σ(1)νν = −p(1) + (1 + χ)∂zϕ

(0)∂zϕ(1)

layer

∂z p(1) + nF,(0)∂zϕ

(1) + nF,(1)∂zϕ(0) = 0 ,

−(1 + χ)(∂zzϕ

(1) + 2kM ∂zϕ(0))

= nF,(1)

S

−[[Σ(1)νν ]] = δ 2kM γ

s

∂zΣ(1)νν = −2kM (1 + χ)(∂zϕ

(0))2

γ+ :=∫∞

0 (1 + χ)(∂zϕ(0))2 dz , γ− :=

∫ 0−∞(1 + χ)(∂zϕ

(0))2 dz

Young-Laplace [[[p(1)]]] = 2kM (γs

+ γ+ − γ−)

Lippmann Equation · March 3. 2015 · Page 25 (29)

Page 51: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Higher order

Σ(1)νν = −p(1) + (1 + χ)∂zϕ

(0)∂zϕ(1)

layer

∂z p(1) + nF,(0)∂zϕ

(1) + nF,(1)∂zϕ(0) = 0 ,

−(1 + χ)(∂zzϕ

(1) + 2kM ∂zϕ(0))

= nF,(1)

S

−[[Σ(1)νν ]] = δ 2kM γ

s

∂zΣ(1)νν = −2kM (1 + χ)(∂zϕ

(0))2

γ+ :=∫∞

0 (1 + χ)(∂zϕ(0))2 dz , γ− :=

∫ 0−∞(1 + χ)(∂zϕ

(0))2 dz

Young-Laplace [[[p(1)]]] = 2kM (γs

+ γ+ − γ−)

Lippmann Equation · March 3. 2015 · Page 25 (29)

Page 52: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

interfacial tension γ := γs

+ γ+ − γ−

Ω+ metal, apply potential E := ϕs− ϕ−

µse = const. → constant layer in metal =⇒ d

dE γ+ = 0

γ− = (1 + χ)∫ 0−∞(∂zϕ

(0))2 dz

= (1 + χ)∫ 0E

√p(ϕ+ ϕ−) dϕ [DGM13]

ddE γ

− = −(1 + χ)√p|−S = −q− [DGL2014pre]

ddEγ

s= d

dE

(ρsψs−∑nsαµsα

)= d

dE

(ρsψs−∑

α∈Ω− nα(µα|−S + zαE))

= −qs

[Guhlke2015]

double layer charge: Q := qs

+ q− Lippmann: ddEγ = −Q

Lippmann Equation · March 3. 2015 · Page 26 (29)

Page 53: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

interfacial tension γ := γs

+ γ+ − γ−

Ω+ metal, apply potential E := ϕs− ϕ−

µse = const. → constant layer in metal =⇒ d

dE γ+ = 0

γ− = (1 + χ)∫ 0−∞(∂zϕ

(0))2 dz

= (1 + χ)∫ 0E

√p(ϕ+ ϕ−) dϕ [DGM13]

ddE γ

− = −(1 + χ)√p|−S = −q− [DGL2014pre]

ddEγ

s= d

dE

(ρsψs−∑nsαµsα

)= d

dE

(ρsψs−∑

α∈Ω− nα(µα|−S + zαE))

= −qs

[Guhlke2015]

double layer charge: Q := qs

+ q− Lippmann: ddEγ = −Q

Lippmann Equation · March 3. 2015 · Page 26 (29)

Page 54: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

interfacial tension γ := γs

+ γ+ − γ−

Ω+ metal, apply potential E := ϕs− ϕ−

µse = const. → constant layer in metal =⇒ d

dE γ+ = 0

γ− = (1 + χ)∫ 0−∞(∂zϕ

(0))2 dz

= (1 + χ)∫ 0E

√p(ϕ+ ϕ−) dϕ [DGM13]

ddE γ

− = −(1 + χ)√p|−S = −q− [DGL2014pre]

ddEγ

s= d

dE

(ρsψs−∑nsαµsα

)= d

dE

(ρsψs−∑

α∈Ω− nα(µα|−S + zαE))

= −qs

[Guhlke2015]

double layer charge: Q := qs

+ q− Lippmann: ddEγ = −Q

Lippmann Equation · March 3. 2015 · Page 26 (29)

Page 55: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Lippmann equation

interfacial tension γ := γs

+ γ+ − γ−

Ω+ metal, apply potential E := ϕs− ϕ−

µse = const. → constant layer in metal =⇒ d

dE γ+ = 0

γ− = (1 + χ)∫ 0−∞(∂zϕ

(0))2 dz

= (1 + χ)∫ 0E

√p(ϕ+ ϕ−) dϕ [DGM13]

ddE γ

− = −(1 + χ)√p|−S = −q− [DGL2014pre]

ddEγ

s= d

dE

(ρsψs−∑nsαµsα

)= d

dE

(ρsψs−∑

α∈Ω− nα(µα|−S + zαE))

= −qs

[Guhlke2015]

double layer charge: Q := qs

+ q− Lippmann: ddEγ = −Q

Lippmann Equation · March 3. 2015 · Page 26 (29)

Page 56: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Numerical results

Interfacialtension

γInt[1

0−3N/m

]

Potential E (vs. UR) [V]

cNaClO4=0.005

cNaClO4=0.01

cNaClO4=0.02

cNaClO4=0.04

cNaClO4=0.1

−0.4 −0.2 0 0.2 0.4 0.6160

170

180

190

200

210

220

230

240

Salt concentration: c = 0.01M

Interfacialtension

γInt[1

0−3N/m

]

Potential E (vs. UR) [V]

NaF

NaClO4

KPF6

−0.4 −0.2 0 0.2 0.4 0.6160

170

180

190

200

210

220

230

240

Lippmann Equation · March 3. 2015 · Page 27 (29)

Page 57: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Numerical results

Interfacialtension

γInt[1

0−3N/m

]

Potential E (vs. UR) [V]

cNaClO4=0.005

cNaClO4=0.01

cNaClO4=0.02

cNaClO4=0.04

cNaClO4=0.1

−0.4 −0.2 0 0.2 0.4 0.6160

170

180

190

200

210

220

230

240

Salt concentration: c = 0.01M

Interfacialtension

γInt[1

0−3N/m

]

Potential E (vs. UR) [V]

NaF

NaClO4

KPF6

−0.4 −0.2 0 0.2 0.4 0.6160

170

180

190

200

210

220

230

240

Lippmann Equation · March 3. 2015 · Page 27 (29)

Page 58: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Validity of asymptotic results

rS = 25nm , c = 0.1 M

Bound

arylayertension

γE BL[1

0−3N/m

]

Cell voltage E [V] (vs. SCE)

asymp. approximationε0(1 + χ)

´

(rS/r)E2r dr (numercial solution)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−250

−200

−150

−100

−50

0

rS = 5nm , c = 0.04 M

Bound

arylayertension

γE BL[1

0−3N/m

]

Cell voltage E [V] (vs. SCE)

asymp. approximationε0(1 + χ)

´

(rS/r)E2r dr (numercial solution)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−250

−200

−150

−100

−50

0

Lippmann Equation · March 3. 2015 · Page 28 (29)

Page 59: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Validity of asymptotic results

rS = 25nm , c = 0.1 M

Bound

arylayertension

γE BL[1

0−3N/m

]

Cell voltage E [V] (vs. SCE)

asymp. approximationε0(1 + χ)

´

(rS/r)E2r dr (numercial solution)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−250

−200

−150

−100

−50

0

rS = 1nm , c = 0.04 M

Bound

arylayertension

γE BL[1

0−3N/m

]

Cell voltage E [V] (vs. SCE)

asymp. approximationε0(1 + χ)

´

(rS/r)E2r dr (numercial solution)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−250

−200

−150

−100

−50

0

Lippmann Equation · March 3. 2015 · Page 28 (29)

Page 60: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Summary & Conclusions

pressure dependence, momentum balance necessary

thermodynamically consistent complete model derived

incompressible mixture model for metal surface; µse = const.

qualitative & quantitative prediction of differential capacity

jump conditions by formal asymptotic analysis

electric field contributes to interfacial tension

Lippmann equation recovered within asymptotic limit

asymptotic not valid in nm range

Thank you for your attention! Questions?

Lippmann Equation · March 3. 2015 · Page 29 (29)

Page 61: The Lippmann equation for liquid metal electrodes · PDF fileWeierstrass Institute for Applied Analysis and Stochastics The Lippmann equation for liquid metal electrodes Wolfgang Dreyer,

Summary & Conclusions

pressure dependence, momentum balance necessary

thermodynamically consistent complete model derived

incompressible mixture model for metal surface; µse = const.

qualitative & quantitative prediction of differential capacity

jump conditions by formal asymptotic analysis

electric field contributes to interfacial tension

Lippmann equation recovered within asymptotic limit

asymptotic not valid in nm range

Thank you for your attention! Questions?

Lippmann Equation · March 3. 2015 · Page 29 (29)