the laplace transform - wordpress.com filesolve 𝐿sin2 using laplace transform 𝐿sin2 = ......

65
The Laplace Transform www.asyrani.com

Upload: tranque

Post on 09-Mar-2019

290 views

Category:

Documents


14 download

TRANSCRIPT

The Laplace Transform

www.asyrani.com

INTRODUCTION

Definition

Let 𝑓 be a function defined for 𝑑 β‰₯ 0. Then the integral

𝐿 𝑓 𝑑 = π‘’βˆ’π‘ π‘‘π‘“ 𝑑 π‘‘π‘‘βˆž

0

Notation

Examples 𝐿 𝑓 𝑑 = 𝐹 𝑠

𝐿 𝑔 𝑑 = 𝐺 𝑠

𝐿 𝑦 𝑑 = π‘Œ 𝑠

Let see some examples 𝐿 1

Solve 𝐿 1 using Laplace Transform

𝐿 1 = π‘’βˆ’π‘ π‘‘(1)π‘‘π‘‘βˆž

0

= π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

= βˆ’π‘’βˆ’π‘ π‘‘

𝑠 ∞0

= βˆ’π‘’βˆ’π‘  ∞

π‘ βˆ’ βˆ’

𝑒0

𝑠

= 0 +1

𝑠=

1

𝑠

Let see some examples 𝐿 𝑑

Solve 𝐿 𝑑 using Laplace Transform

𝐿 𝑑 = π‘’βˆ’π‘ π‘‘(𝑑)π‘‘π‘‘βˆž

0

= π‘‘π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

π‘‘π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

=π‘‘π‘’βˆ’π‘ π‘‘

βˆ’π‘ βˆ’

π‘’βˆ’π‘ π‘‘

𝑠2 ∞0

=(∞)π‘’βˆ’π‘ (∞)

βˆ’π‘ βˆ’

π‘’βˆ’π‘ (∞)

𝑠2

βˆ’0 π‘’βˆ’π‘  0

βˆ’π‘ βˆ’

π‘’βˆ’π‘  0

𝑠2=

1

𝑠2

DIff Integr

+ 𝑑 π‘’βˆ’π‘ π‘‘

- 1 π‘’βˆ’π‘ π‘‘

βˆ’π‘ 

+

0 π‘’βˆ’π‘ π‘‘

𝑠2

Let see some examples 𝐿 π‘’βˆ’5𝑑

Solve 𝐿 π‘’βˆ’5𝑑 using Laplace Transform

𝐿 π‘’βˆ’5𝑑 = π‘’βˆ’π‘ π‘‘(π‘’βˆ’5𝑑)π‘‘π‘‘βˆž

0

= π‘’βˆ’(𝑠+5)π‘‘π‘‘π‘‘βˆž

0

π‘’βˆ’(𝑠+5)π‘‘π‘‘π‘‘βˆž

0

=π‘’βˆ’(𝑠+5)𝑑

βˆ’(𝑠 + 5) ∞0

=π‘’βˆ’(𝑠+5)∞

βˆ’(𝑠 + 5)βˆ’

π‘’βˆ’ 𝑠+5 0

βˆ’(𝑠 + 5)=

1

𝑠 + 5

Let see some examples 𝐿 sin 2𝑑

Solve 𝐿 sin 2𝑑 using Laplace Transform

𝐿 sin 2𝑑 = π‘’βˆ’π‘ π‘‘(sin 2𝑑)π‘‘π‘‘βˆž

0

= (sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

(sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

= βˆ’ sin 2π‘‘π‘’βˆ’π‘ π‘‘

π‘ βˆ’ 2 cos 2𝑑

π‘’βˆ’π‘ π‘‘

𝑠2

βˆ’ 4sin 4𝑑 π‘’βˆ’π‘ π‘‘

𝑠2 π‘‘π‘‘βˆž

0

1 +4

𝑠2 (sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

= βˆ’ sin 2π‘‘π‘’βˆ’π‘ π‘‘

π‘ βˆ’ 2 cos 2𝑑

π‘’βˆ’π‘ π‘‘

𝑠2

∞0

DIff Integr

+ sin 2𝑑 π‘’βˆ’π‘ π‘‘

- 2 cos 2𝑑 π‘’βˆ’π‘ π‘‘

βˆ’π‘ 

+

βˆ’4 sin 2𝑑 π‘’βˆ’π‘ π‘‘

𝑠2

Let see some examples 𝐿 sin 2𝑑 cont

1 +4

𝑠2 (sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘

∞

0

= βˆ’sin 2π‘‘π‘’βˆ’π‘ π‘‘

π‘ βˆ’ 2 cos 2𝑑

π‘’βˆ’π‘ π‘‘

𝑠2

∞0

0 βˆ’ 0 βˆ’ 2 =2

s2

Thus

1 +4

𝑠2 (sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘

∞

0

=2

𝑠2

And

(sin 2𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘βˆž

0

=2

𝑠2 + 4

Let see some examples (piecewise)

Try this

β€’ 𝐿 cos 4𝑑

β€’ 𝐿 𝑑𝑒2𝑑

β€’ 𝐿 𝑑2π‘’βˆ’π‘‘ + sin 𝑑

TRANSLATION THEOREM

Translation on the s-Axis

Examples

Translation on the t-Axis

Example

Solution

Evaluate

CONVOLUTION AND TRANSFORM OF PERIODIC FUNCTION

Transform of Derivatives

Transform of Derivatives

Contoh:- 𝑦′′ + 2𝑦′ + 𝑦 = 0

Then 𝐿*𝑦′′+ = 𝑠2π‘Œ 𝑠 βˆ’ 𝑠𝑦 0 βˆ’ 𝑦′ 0

And 𝐿*𝑦′+ = π‘ π‘Œ 𝑠 βˆ’ 𝑦 0

And 𝐿*𝑦+ = π‘Œ(𝑠)

Thus ,𝑠2π‘Œ 𝑠 βˆ’ 𝑠𝑦 0 βˆ’ 𝑦′ 0 - + 2 π‘ π‘Œ 𝑠 βˆ’ 𝑦 0 + π‘Œ 𝑠 = 0

Convolution

Convolution

Transform of Periodic Function

Example

Solution

Solution(cont.)

INVERSE LAPLACE TRANSFORM

Example

Inverse Laplace transform

Solve πΏβˆ’1 2

π‘ βˆ’

1

𝑠3

2

First, try to expand it

πΏβˆ’14

𝑠2βˆ’

4

𝑠4+

1

𝑠6

= πΏβˆ’14

𝑠2βˆ’ πΏβˆ’1

4

𝑠4+ πΏβˆ’1

1

𝑠6

Inverse Laplace transform

Step 2nd

πΏβˆ’14

𝑠2βˆ’ πΏβˆ’1

4

𝑠4+ πΏβˆ’1

1

𝑠6

= 4πΏβˆ’11

𝑠2βˆ’ 4πΏβˆ’1

1

𝑠4+ πΏβˆ’1

1

𝑠6

Now, let solve one by one

Inverse Laplace transform

Given 4πΏβˆ’1 1

𝑠2 , we need to find which theorem

in your laplace table match this Laplace Transform

So, we know that 𝑑𝑛 =𝑛!

𝑠𝑛+1

Then since we knew that 𝑠𝑛+1 = 𝑠2

We can conclude that 𝑛 + 1 = 2, 𝑑𝑕𝑒𝑠 𝑛 = 1

Inverse Laplace transform

Now, we know n=1

So,

𝑑1 =1!

𝑠2=

1

𝑠2

Eh!, the laplace that we are trying to solve is 4

𝑠2 , so we need to modify a bit.

Inverse Laplace transform

Try to match:-

𝐿 𝛼𝑑 =𝛼

𝑠2=

4

𝑠2

Wow, obviously, 𝛼 = 4,

So

4πΏβˆ’11

𝑠2= 4𝑑

Inverse Laplace transform

Try to solve others:-

4πΏβˆ’11

𝑠4

𝑛 + 1 = 4, 𝑑𝑕𝑒𝑠 𝑛 = 3

𝛽𝑑3 =𝛽3!

𝑠4=

6𝛽

𝑠4

4πΏβˆ’11

𝑠4=

6𝛽

𝑠4

𝛽 =2

3

Thus

4πΏβˆ’11

𝑠4=

2

3𝑑3

Inverse Laplace transform

Try to solve others:-

πΏβˆ’11

𝑠6

𝑛 + 1 = 6, 𝑑𝑕𝑒𝑠 𝑛 = 5

𝛾𝑑5 =𝛾5!

𝑠6=

120𝛾

𝑠6

πΏβˆ’11

𝑠6=

120𝛾

𝑠6

𝛾 =1

120

Thus

4πΏβˆ’11

𝑠4=

1

120𝑑5

Inverse Laplace transform

Final answer

πΏβˆ’12

π‘ βˆ’

1

𝑠3

2

= 4𝑑 βˆ’2

3𝑑3 +

1

120𝑑5

Try this

Solution

Solution (cont)

PROPERTIES OF INVERSE LAPLACE TRANSFORM

Inverse of 1st and 2nd translation

Example of 1st translation inverse

Solution

Example of 2nd translation inverse

Inverse of…

Example

Solution

SOLUTION OF INITIAL VALUE PROBLEM

Application

Example

Solution

Solving Linear ODE

Application

Figure 1

𝑖1

𝑖3

𝑖2

𝐿

𝐢

Application

Solve the system Figure 1 under the conditions E(t) = 60 V, L = 1 h, R = 50 Ohm, C = 10βˆ’4 f, and the currents 𝑖1 π‘Žπ‘›π‘‘ 𝑖2 are initially zero.

Given that:-

𝐿𝑑𝑖1𝑑𝑑

+ 𝑅𝑖2 = 𝐸 𝑑

𝑅𝐢𝑑𝑖2𝑑𝑑

+ 𝑖2 βˆ’ 𝑖1 = 0

Application

How to solve it?

1st step

𝐿𝑑𝑖1𝑑𝑑

+ 𝑅𝑖2 = 𝐸 𝑑

𝑑𝑖1𝑑𝑑

+ 50𝑖2 = 60

And

𝑅𝐢𝑑𝑖2𝑑𝑑

+ 𝑖2 βˆ’ 𝑖1 = 0

50 10βˆ’4𝑑𝑖2𝑑𝑑

+ 𝑖2 βˆ’ 𝑖1 = 0

Application

How to solve it? 2nd Step Applying the Laplace transform to each equation of the system and simplifying gives

𝑑𝑖1𝑑𝑑

+ 50𝑖2 = 60

=> ,𝑠𝐼1 𝑠 βˆ’ 𝑖1(0)- + 50𝐼2 𝑠 =60

𝑠

50 10βˆ’4𝑑𝑖2𝑑𝑑

+ 𝑖2 βˆ’ 𝑖1 = 0

0.005,𝑠𝐼2 𝑠 βˆ’ 𝑖2(0)- + 𝐼2 𝑠 βˆ’ 𝐼1 𝑠 = 0

Application

How to solve it? 2nd Step (Cari 𝐼2 𝑠 )

𝑠𝐼1 𝑠 + 50𝐼2 𝑠 =60

𝑠

0.005𝑠𝐼2 𝑠 + 𝐼2 𝑠 = 𝐼1 𝑠

𝑠 0.005𝑠𝐼2 𝑠 + 𝐼2 𝑠 + 50𝐼2 𝑠 =60

𝑠

𝐼2 𝑠𝑠2 + 200𝑠 + 10000

200=

60

𝑠

𝐼2 𝑠 =12000

𝑠 𝑠 + 100 2

Application

How to solve it?

2nd Step (Cari 𝐼1 𝑠 ) 0.005𝑠𝐼2 𝑠 + 𝐼2 𝑠 = 𝐼1 𝑠

0.005𝑠12000

𝑠 𝑠 + 100 2+

12000

𝑠 𝑠 + 100 2= 𝐼1 𝑠

𝐼1 𝑠 =60𝑠

𝑠 𝑠 + 100 2+

12000

𝑠 𝑠 + 100 2

𝐼1 𝑠 =60𝑠 + 12000

𝑠 𝑠 + 100 2

Application

How to solve it?

3rd Step

Solving the system for 𝐼1 and 𝐼2 and decomposing the results into partial fractions gives

𝐼1 𝑠 =60𝑠 + 12000

𝑠 𝑠+100 2 =6

5π‘ βˆ’

6

5 𝑠+100βˆ’

60

𝑠+100 2

𝐼2 𝑠 =12000

𝑠 𝑠 + 100 2=

6

5π‘ βˆ’

6

5 𝑠 + 100βˆ’

120

𝑠 + 100 2

Application

How to solve it?

4th step

𝑖1 t =6

5βˆ’

6

5eβˆ’100t βˆ’ 60teβˆ’100𝑑

𝑖2 t =6

5βˆ’

6

5eβˆ’100t βˆ’ 120teβˆ’100𝑑