the inverters

67
Digital Integrated Circuits © Prentice Hall 1995 Inverter Inverter THE INVERTERS

Upload: kristy

Post on 05-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

THE INVERTERS. DIGITAL GATES Fundamental Parameters. Functionality Reliability, Robustness Area Performance Speed (delay) Power Consumption Energy. Noise in Digital Integrated Circuits. DC Operation: Voltage Transfer Characteristic. Mapping between analog and digital signals. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

THE INVERTERS

Page 2: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DIGITAL GATES Fundamental Parameters

Functionality Reliability, Robustness Area Performance

» Speed (delay)» Power Consumption» Energy

Page 3: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Noise in Digital Integrated Circuits

VDDv(t)

i(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground

noise

Page 4: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DC Operation: Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

V(y)V(x)

Page 5: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Mapping between analog and digital signals

"1"

"0"

VOH

VIH

VIL

VOL

UndefinedRegion

V(x)

V(y)

VOH

VOL

VIH

VIL

Slope = -1

Slope = -1

Page 6: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Definition of Noise Margins

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Noise Margin High

Noise Margin Low

Page 7: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...

Page 8: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Fan-in and Fan-out

N

M

(a) Fan-out N

(b) Fan-in M

Page 9: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Ideal Gate

Vin

Vout

g=

Ri =

Ro = 0

Page 10: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vo

ut (V

)

VMNMH

NML

Page 11: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Page 12: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Ring Oscillator

v0 v1 v2 v3 v4 v5

v0 v1 v5

T = 2 tp N

Page 13: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Power Dissipation

Page 14: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS INVERTER

Page 15: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The CMOS Inverter: A First Glance

VDD

Vin Vout

CL

Page 16: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 17: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Switch Model of CMOS Transistor

Ron

|VGS| < |VT||VGS| > |VT|

|VGS|

Page 18: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Page 19: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 20: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Properties

Full rail-to-rail swing Symmetrical VTC Propagation delay function of load

capacitance and resistance of transistors No static power dissipation Direct path current during switching

Page 21: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Voltage TransferCharacteristic

Page 22: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

PMOS Load Lines

VDSp

IDp

VGSp=-5

VGSp=-2VDSp

IDnVin=0

Vin=3

Vout

IDnVin=0

Vin=3

Vin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Vout

IDnVin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Page 23: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Load Characteristics

In,pVin = 5

Vin = 4

Vin = 3

Vin = 0

Vin = 1

Vin = 2

NMOSPMOS

Vin = 0

Vin = 1

Vin = 2Vin = 3

Vin = 4

Vin = 4

Vin = 5

Vin = 2Vin = 3

Page 24: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter VTC

Vout

Vin1 2 3 4 5

12

34

5

NMOS linPMOS off

NMOS satPMOS sat

NMOS offPMOS lin

NMOS satPMOS lin

NMOS linPMOS sat

Page 25: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

0.0

2.0

4.0

Vo

ut (V

)

Page 26: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Gate Switching Threshold

0.1 0.3 1.0 3.2 10.01.0

2.0

3.0

4.0

kp/kn

VM

Page 27: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

MOS Transistor Small Signal Model

rogmvgsvgs

+

-

S

DG

Page 28: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Determining VIH and VIL

Page 29: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay

Page 30: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 31: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Propagation Delay

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~

Page 32: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CL

SimplifiedModel

Page 33: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 34: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Miller Effect

Vin

M1

Cgd1Vout

V

V

Vin

M1

Vout V

V

2Cgd1

“A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.”

Page 35: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

Page 36: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact of Rise Time on Delayt p

HL(n

sec

)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Page 37: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

Page 38: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Page 39: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Dynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd , and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Page 40: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact ofTechnology

Scaling

Page 41: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Evolution

Page 42: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (1)

Minimum Feature Size

Page 43: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (2)

Number of components per chip

Page 44: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay Scaling

Page 45: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Page 46: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Relationships for Long Channel

Devices

Page 47: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling of Short Channel

Devices

Page 48: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

BIPOLAR INVERTERS

Page 49: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Resistor-Transistor Logic

Vin

Vout

Vcc

RB

RC

Q1

Vin

Vout

SaturationCutof f

Forward-active

VCE(sat)

VCC

VB E(on) V in(eos)

VTC of nonsaturating gate

Page 50: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of RTL Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin

0.0

1.0

2.0

3.0

4.0

5.0V

ou

t

FO=5

FO=2

FO=1

FO=0

VOH is function of fan-out

Page 51: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Transient Response of RTL Inverter

0.00e+00 5.00e-10 1.00e-09 1.50e-09 2.00e-09t

0.0

1.0

2.0

3.0

4.0

5.0V

ou

t

tp = 290 psec !!!!

Page 52: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The ECL Gate at a GlanceVcc

RC

Q1

Vc c

RC

Q2 VrefVin

Vout2Vout1

IEE

VEE

Vx

Core of gate:The differential pairor “current switch”

Page 53: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Single-ended versus Differential Logic

VinVin

Vout1 Vout2

Vout1

Vout2

Vout1Vout2 Vout2Vout1

DifferentialSingle-ended

Page 54: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Complete ECL Gate

Vcc

RC

Q1

Vc c

RC

Q2 Vre fVin

IEE

VEE

Vx

Vc cVcc

VEE

RB

Vout2Vout1

Q4Q3

VC1 VC2

Emitter-followeroutput driver

Page 55: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Bias Network

Q5

R1

R2R3

D1

D2

Vref

VCC

VEE

Issues:•Temperature variations•Device variations

Page 56: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Photomicrograph of early ECL Gate (1967)

Page 57: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

VCC – VBE (on)

VCC – VBE(on) – IEERC

Vin

Vout

Vout2

Vout1

V r ef

+/– n T

Q1 saturates

Page 58: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

Vswing = IEE RC

Page 59: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC of ECL Gate

–1.5 –1.3 –1.1 –0.9 –0.7 –0.5Vin (V)

–1.30

–1.20

–1.10

–1.00

–0.90

–0.80

–0.70V

out (

V)

Vout1 Vout2

Page 60: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Gate with Single Fan-out

Vcc

RC

Q1Vin

IE E

VE E

Vx

Vc c

Q3

Vcc

RC

Q1

IEE

VEE

RB

VE E

Cd Cbe

Cc s

Cbc Cbc

CbeCd

CbeVout1

FAN-OUT

VC1

Cbc

Page 61: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Collector Currents of Differential

Pair

0 0.1 0.2Time (nsec)

–1

0

1

Col

lect

or

curr

ent

(nor

mal

ized

)

10 mA 5 mA

1 mA

0.5 mA

IC1

IC2

Page 62: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay of ECL Gate

Page 63: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Transient Response of ECL Inverter

0 0.2 0.4 0.6 0.8 1.0

t (nsec)

–1.30

–1.10

–0.90

–0.70V

(V

olt)

Vout1V in

Page 64: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay as a Function of Bias Current

0 5 10 15 200

50

100

150

200

IE E (mA)

t pLH

(pse

c)

Page 65: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Power Dissipation

Page 66: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Model for Bipolar Inverter

Page 67: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Bipolar Scaling