the interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly...

9
299 ISSN 1758-1907 10.2217/DMT.11.3 © 2011 Future Medicine Ltd Diabetes Manage. (2011) 1(3), 299–307 SUMMARY Type 2 diabetes results from the complex interplay of adverse lifestyle exposures and genetic predisposition. Accordingly, genetic information might one day facilitate personalized medical interventions for diabetes prevention, thus minimizing treatment costs, reducing patient exposure to ineffective therapies and improving patient adherence to treatment recommendations and their prognosis. Here, we briefly overview the roles that obesity, physical activity and dietary factors play in Type 2 diabetes; define common approaches used to discover genetic risk factors and gene–lifestyle interactions; provide relevant examples of gene–lifestyle interactions; and speculate on the application of genetics to the prediction, prevention and treatment of diabetes. 1 Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden 2 Harvard School of Public Health, Boston, MA, USA 3 Umeå University Hospital, Umeå, Sweden Author for correspondence: Tel.: +46 4039 1149; Fax: +46 4039 1222; [email protected] Current risk algorithms containing information on common genetic variation are of little clinical utility owing to their poor predictive ability. It is likely that common genetic variants convey different levels of risk for Type 2 diabetes depending on the environmental risk factors to which a person is exposed. Where genetic risk varies across environmental contexts, it may be possible to harness this information to improve the performance of genetic risk algorithms. At present, the most effective risk algorithms are those that do not include genetic information. However, the inclusion of information on first-degree family history of diabetes, which to some extent reflects a person’s genetic background, does meaningfully increase the predictive ability of many diabetes risk algorithms. Human genetics research is moving at a very rapid pace. The continuing discovery of novel genetic risk variants for Type 2 diabetes should be anticipated. The implementation of this information into prediction algorithms may further enhance the clinical relevance of these tools. Genetic information may also prove valuable for the delineation of the molecular mechanisms that cause Type 2 diabetes and reveal opportunities for the development of drug targets to prevent or treat the disease. Practice Points The interplay of lifestyle and genetic susceptibility in Type 2 diabetes risk REVIEW Paul W Franks †1,2,3 & Dmitry Shungin 1,3

Upload: others

Post on 24-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

299ISSN 1758-190710.2217/DMT.11.3 © 2011 Future Medicine Ltd Diabetes Manage. (2011) 1(3), 299–307

Summary Type  2 diabetes results from the complex interplay of adverse lifestyle exposures and genetic predisposition. Accordingly, genetic information might one day facilitate personalized medical interventions for diabetes prevention, thus minimizing treatment costs, reducing patient exposure to ineffective therapies and improving patient adherence to treatment recommendations and their prognosis. Here, we briefly overview the roles that obesity, physical activity and dietary factors play in Type 2 diabetes; define common approaches used to discover genetic risk factors and gene–lifestyle interactions; provide relevant examples of gene–lifestyle interactions; and speculate on the application of genetics to the prediction, prevention and treatment of diabetes.

1Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, 20502 Malmö, Sweden2Harvard School of Public Health, Boston, MA, USA3Umeå University Hospital, Umeå, Sweden†Author for correspondence: Tel.: +46 4039 1149; Fax: +46 4039 1222; [email protected]

� Current risk algorithms containing information on common genetic variation are of little clinical utility owing to their poor predictive ability.

� It is likely that common genetic variants convey different levels of risk for Type 2 diabetes depending on the environmental risk factors to which a person is exposed.

� Where genetic risk varies across environmental contexts, it may be possible to harness this information to improve the performance of genetic risk algorithms.

� At present, the most effective risk algorithms are those that do not include genetic information. However, the inclusion of information on first-degree family history of diabetes, which to some extent reflects a person’s genetic background, does meaningfully increase the predictive ability of many diabetes risk algorithms.

� Human genetics research is moving at a very rapid pace. The continuing discovery of novel genetic risk variants for Type 2 diabetes should be anticipated. The implementation of this information into prediction algorithms may further enhance the clinical relevance of these tools.

� Genetic information may also prove valuable for the delineation of the molecular mechanisms that cause Type 2 diabetes and reveal opportunities for the development of drug targets to prevent or treat the disease.

Prac

tice

Poi

nts

The interplay of lifestyle and genetic susceptibility in Type 2 diabetes risk

Review

Paul W Franks†1,2,3 & Dmitry Shungin1,3

Page 2: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

Diabetes Manage. (2011) 1(3) future science group300

review Franks & Shungin

Type 2 diabetes is a disease of relative insulin defi-ciency. Persons with well-managed diabetes can live long and otherwise healthy lives, but when management fails, diabetes has truly awful con-sequences such as loss of limbs, blindness, kid-ney failure and damage to the heart and vessels; tragically, around 75% of people with diabetes eventually die from cardiovascular disease [1,2]. 

Diabetes  takes  a  grip  when  the  pancreatic b cells are no longer able to secrete sufficient vol-umes of insulin to maintain whole-body glucose homeostasis. Although an individual with fail-ing b cells can transition quickly from impaired glucose regulation (sometimes referred to as pre-diabetes) to full-blown diabetes  [3], the decline in b-cell function and glucose uptake that pre-cedes diabetes tends to gradually manifest over many years, with an accelerated deterioration in glucose control in the later stages [4]. The factors that contribute to this decline are numerous, but often involve obesogenic lifestyle behaviors such as physical inactivity and dietary excess. Indeed, at the point of diagnosis, approximately 80% of people with Type 2 diabetes are estimated to be obese [5,6]. 

Randomized  controlled  trials  of  intensive lifestyle modification or drug monotherapy that result in weight loss substantially reduce the pro-gression to diabetes in high-risk individuals [7,8] and bariatric surgery in people who are morbidly obese and diabetic can result in almost immedi-ate remission from the disease  [9]. Nevertheless, diabetes is by no means an inevitable consequence of obesity, as many people who are obese never develop the disease, suggesting the involvement of one or more catalysts present in some people but not in others, that are triggered by obesity or its correlates. The relatively high familial risk of diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is therefore the consequence of complex interactions between genetic and lifestyle factors. 

In this article we discuss the relative contribu-tions of obesity, genetics and lifestyle factors to the etiology of Type 2 diabetes. We then exam-ine selected studies that implicate gene–lifestyle interactions in the disease and ask how valuable knowledge of gene–lifestyle interactions is likely to be for the prediction and prevention of diabetes. 

Obesity & Type 2 diabetes One  of  the  major  modifiable  risk  factors  for Type  2  diabetes  is  obesity,  which  is  conven-tionally defined as a BMI of at least 30 kg/m2. 

Although many obese people never develop dia-betes, of those with the disease, most are obese at the time of diagnosis. Largely because BMI is easily measured, it  is widely used in clinical research and practice to quantify a person’s level of  overweight  or  obesity.  However,  BMI  is  a proxy for several components of body compo-sition, such as adipose mass, subtype and dis-tribution, skeletal muscle mass, bone mass and organ size. Because BMI is not a perfect correlate of these traits, two people with the same BMI may have radically different body compositions [13] and underlying metabolic risk profiles  [14]. Nevertheless, in diabetes research, where we are often interested in adipose mass and distribution, the correlation between BMI and  these  traits is sufficiently strong  [15]  to permit meaningful inferences about their relationships with diabetes risk to be made using BMI as a proxy measure of adiposity. 

There  are  numerous  mechanisms  through which obesity causes Type 2 diabetes, many of which include insulin resistance brought about by factors that detrimentally impact the sensi-tivity of the body’s cells to insulin, such as lipid accumulation in and around myocytes, adipocyte hypertrophy, macrophage infiltration of adipo-cytes and cellular inflammation. These processes are augmented by elevations in adipocyte-derived hormones such as resistin, retinol binding pro-tein 4, TNF-a and IL-6 and a diminution in adiponectin concentrations  [16]. Obesity is also highly heritable [17] and has a complex genetic and epigenetic [18] basis that is only partially defined at present [19].

Lifestyle factors & Type 2 diabetesAs obesity is a consequence of chronic positive energy balance,  there  is a real opportunity  to impact diabetes risk through programs of inten-sive  lifestyle modification  that  lead  to weight loss.  Indeed,  numerous  randomized  clinical trials have clearly shown that diet and exercise interventions that result in weight loss can sub-stantially reduce the progression to Type 2 dia-betes when compared against the incidence in a normal care control group  [7,8]. Studies from the 1980s of exercise training in Swedish men with or without Type 2 diabetes provided some of the first evidence that exercise can transiently normalize blood glucose concentrations even in persons with deficient pancreatic b cells [20]. The reasons why exercise is so effective at restoring glucose homeostasis is because the mechanisms 

Page 3: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

The interplay of lifestyle & genetic susceptibility in Type 2 diabetes risk review

future science group www.futuremedicine.com 301

for glucose disposal during exercise are largely independent of those by which insulin operates [21]. Dietary factors, on the other hand, impact both insulin- and noninsulin-mediated glucose disposal pathways  [22]. Thus, dietary interven-tions  may  have  a  greater  capacity  to  prevent diabetes than exercise intervention, although a recent synthesis of clinical trial evidence suggests that the combination of diet and exercise regimes are probably required for diabetes risk reduction, with neither proving tremendously efficacious when acted on alone [23]. 

Approaches to discovering the genetic basis to Type 2 diabetesThe  initial  methods  that  were  used  to  iden-tify  genetic  loci  influencing  Type  2  diabetes risk included family-based linkage studies and studies of biologic candidate genes. The linkage approach involves studying the segregation of a disease or trait within family pedigrees that have been genotyped  for  a panel of  (conven-tionally ~500)  microsatellite  markers  spaced equally across the genome. In the event that the trait and genetic markers co-segregated and a linkage signal emerged, the respective genomic region would  then be  sequenced  in  the hope that the disease-causing locus could be mapped. Although linkage studies proved successful for the detection of rare, highly penetrant disease-causing mutations, they failed almost entirely for the detection of Type 2 diabetes loci. The only exception is for TCF7L2, which was discovered by fine mapping a  linkage peak  identified on chromosome 11 [24]. Ironically though, the gene variants that emerged from this effort, which have now been widely replicated for their asso-ciation with Type 2 diabetes in multiple popula-tions from around the world, were independent of the linkage signal, appearing to have been a largely serendipitous discovery. 

A second approach to detect Type 2 diabetes-associated  loci  involves collating biologic evi-dence for the role of a gene in a given disease and subsequently genotyping variants within the selected gene within population-based or case–control cohorts and testing these  for an asso-ciation with diabetes or a related trait. Only a handful of loci detected using this approach have been robustly replicated. Although it is possible that  variants within other biologic  candidate genes will  subsequently be  replicated,  for  the time being this approach has not been terribly successful, primarily because the  information 

used to define candidate loci may have been unre-liable and because most studies were probably  underpowered to detect association signals.

The third most widely deployed approach is often referred to as  the genome-wide associa-tion study (GWAS). This method is relatively new (the first GWAS for Type 2 diabetes were published  in 2007)  [25–27], but has  facilitated truly remarkable discoveries with regard to the genetic basis of Type 2 diabetes. The approach completely contrasts the biologic candidate gene approach in that it is agnostic to prior knowledge about  the  role of a gene  in a  specific disease. The GWAS method is essentially quite simple, beginning with genotyping hundreds of thou-sands or even millions of gene variants in very large  cohort  collections  (sometimes  in  excess of 100,000  samples), with  the  imputation of 2–3 million more variants per individual. The associations between each of  these gene vari-ants and the trait of interest are then tested [28]. Because the multiple hypothesis testing burden is enormous, GWAS apply very stringent sig-nificance thresholds (p < 1 × 10-8)  in order to determine whether a variant  is reliably associ-ated with the disease trait; the level of statistical significance used in GWAS is roughly equivalent to a p-value below 0.01 after experiment-wide Bonferroni correction.

Although progress in the discovery of Type 2 diabetes predisposing loci was painfully slow for many years, the discovery of TCF7L2 in 2006 [24] and the subsequent emergence of the paradigm-leaping GWAS approach transformed this situ-ation. Prior to 2006, only two adequately repli-cated Type 2 diabetes loci (PPARG Pro12Ala [29] and KCNJ11 E23K [30]) had been discovered in roughly a decade of single nucleotide polymor-phism (SNP)-based genetic research. However, since 2006, SNPs in almost 40 loci have been robustly replicated, many emerging from GWAS experiments [31]. Nevertheless, none of the dis-covered loci have conveyed particularly large risk effects and the aggregate predictive ability of all confirmed Type 2 diabetes  loci remains fairly modest  [31,32]. It is possible that the remaining variability in a person’s heritable risk of diabetes can be explained in part by rare genetic vari-ants (with an allele frequency less than 1% in a population) that are inadequately detected by existing GWAS techniques [28,33]. Rare genetic variants may have  large  effect  sizes  and  thus may explain much of the ‘missing heritability’ that GWAS failed to detect. Rapidly emerging 

Page 4: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

Diabetes Manage. (2011) 1(3) future science group302

review Franks & Shungin

next-generation sequencing technologies, which allow high-resolution  characterization of  the nuclear genome, may shed light on the genetic basis of Type 2 diabetes and may also be of value when studying the role of gene–environment (or treatment) interactions.

Genetic  information  can  also  be  used  to infer casual relationships between lifestyle fac-tors  and diseases  such  as Type 2 diabetes  in observational data using an approach termed Mendelian randomization  [34]. Because alleles are randomly assorted during meiosis  in dip-loid organisms, rendering associations between SNPs and phenotypes free from many forms of confounding common to nongenetic exposures, this characteristic can be leveraged to quantify the presence  and magnitude of  relationships between biologic traits that are associated with each other as well  as with  the  index SNP. A recent example of how this approach has been applied to metabolic traits involved the exami-nation of BMI, C-reactive protein  levels and Type 2 diabetes  [35,36]. The  authors  of  those studies convincingly showed that the relation-ship between C-reactive protein  and BMI  is likely to be driven by BMI and that C-reactive protein  is unlikely  to cause Type 2 diabetes, which is all but impossible to determine using nongenetic observational data alone. 

Approaches to studying the interaction of genetic & lifestyle factors in Type 2 diabetes etiologyLifestyle  interventions  vary  in  complexity, emphasis,  cost  and  effectiveness. Two of  the most successful diabetes prevention randomized clinical trials, deploying almost  identical pro-grams of behavioral modification for weight loss, are the Finnish Diabetes Prevention Study and the Diabetes Prevention Program [7,8]. In both studies, emphasis was placed on 7% body weight reduction by increased habitual physical activ-ity and structured exercise training, decreased total calorie intake (e.g., by reducing dietary fat and sugar intake) and improved dietary quality (e.g., by increasing consumption of fresh fruit and vegetables and fiber-rich foods). A total of 16 instructor-led classes were delivered to each participant to enhance the effectiveness of the intervention and to help participants achieve these goals. Since the publication of the main findings from the Finnish Diabetes Prevention Study and the Diabetes Prevention Program, numerous  other  studies  have  followed,  some 

of which have translated the core protocol into the primary care setting with some success [37]. Nevertheless, a universal aspect of lifestyle inter-vention studies is that responses to such inter-ventions differ markedly from one person to the next. Although adherence to the  intervention is an important source of variation, even when this is accounted for, some variance in response persists  [38].  These  findings,  in  combination with  family-based exercise  intervention stud-ies, where responses to  interventions correlate more strongly between family members  than between members of different families [39], indi-cate that genetic factors may underlie an indi-vidual’s  response  to  lifestyle  interventions.  If this is true and the specific genetic variants that predict an individual’s response to intervention can be localized, it might be possible to use this information to aid the prevention and treatment of Type 2 diabetes. 

The process of  translating the three differ-ent genetics approaches described above (link-age, biologic candidate gene and GWAS) to the investigation of gene–lifestyle  interactions has met with  limited success so far. The majority of biological candidate gene studies and linkage studies that have explored gene–lifestyle interac-tion effects have yielded results that remain to be adequately replicated. The most promising example of an interaction involving a biologic candidate gene is for the Pro12Ala variant at the PPARG gene [40]. Several studies have reported on interactions between this variant and dietary fat intake on insulin resistance or obesity. The first study reporting on this effect was published almost a decade ago  [41] and showed that  in a small cohort of people from the UK (n = 592), the  Pro12Ala  variant  modified  the  relation-ships of polyunsaturated to saturated dietary fat intake with obesity and insulin resistance. A study from the US also reported similar inter-action effects, but in that example the dietary exposure  was  monosaturated  fats  [42].  Since then,  more  than  20  follow-up  studies  have been reported on related topics, but the extent to which the initial observation can be said to have been replicated needs to be considered in the context of the variability in study designs, the specific nature of the hypothesis tests and the nature of the reported interaction effects, all  of which  vary  to  some degree  across  the follow-up studies. Indeed, a recent attempt to retrospectively meta-analyze the published lit-erature on this topic [43] concluded that because 

Page 5: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

The interplay of lifestyle & genetic susceptibility in Type 2 diabetes risk review

future science group www.futuremedicine.com 303

of  publication  and  measurement  biases  and heterogeneous  study designs and approaches to  reporting data, no meaningful conclusion could be made by pooling published  studies of interaction. 

An alternative approach to testing hypo theses of gene–lifestyle interactions is to carry forward top ranking loci discovered in GWAS and exam-ine whether they modify the relationships of life-style exposures with Type 2 diabetes or related traits. As we describe below, several studies that have taken this approach have been published. For example, Li et al. observed statistically robust interactions between a genetic risk score com-prised of 12 GWAS-derived obesity predisposing loci and physical activity on the risk of obesity in a large cohort of British adults [44]. However, this approach also has its  limitations, not least that the methods for conducting conventional GWAS experiments are probably biased towards the detection of  loci that do not interact with other factors. This is because such studies typi-cally utilize the probability statistic (p-value) to rank loci, which is influenced by a combination of  factors  including  the  heterogeneity  of  the effect estimate; because interactions increase the heterogeneity of the component marginal effects, genetic  loci that express their effects via inter-actions will tend to be ranked lower in GWAS experiments than those that do not. Although methods exist to overcome these limitations, they are not widely implemented at this time, as they require the  incorporation of  interaction terms (rather than just main effects) into the models, which is a relatively time-consuming process. 

examples of gene–lifestyle interactions in Type 2 diabetes & related traitsThe largest and most comprehensive study test-ing GWAS defined  loci  for  interactions with lifestyle  factors  in Type 2 diabetes  involved around 16,000  initially nondiabetic Swedish adults who were followed for a median dura-tion of 25 years during which  time approxi-mately  2000  incidences  of  Type  2  diabetes occurred [45]. Each of the 17 confirmed Type 2 diabetes gene variants included in the study were tested for  interaction with the baseline physi-cal activity level. After correction for multiple hypothesis testing, there was only one interac-tion effect that remained statistically significant. In that example, physical activity was strongly protective of incident Type 2 diabetes in people carrying neither copy of  the risk allele at  the 

HNF1B rs4430796 variant. However, in persons with one or both copies of the risk allele at this locus, the protective effects of physical activity were substantially diminished. 

Elsewhere, Jablonski et al. studied the inter-action of roughly 1590 SNPs (tagging 40 loci) with placebo, metformin or lifestyle modifica-tion interventions on Type 2 diabetes incidence in the Diabetes Prevention Program  [46]. The selected loci  included biologic candidate genes as well as variants discovered in recent GWASs. Overall,  there was no convincing evidence of interactions between gene variants and the life-style  intervention,  with  the  most  convincing results being an interaction between a variant in SLC47A1 (encoding the OCT1 metformin transporter) and metformin treatment. 

One of the most exciting examples of a gene–lifestyle interaction reported to date involves a gene variant at the FTO locus (rs9939609). FTO was first implicated in Type 2 diabetes in 2007 as part of the Wellcome Trust’s Case Control Consortium study [47]. The authors found that the rs9939609 variant raised Type 2 diabetes risk, but that this effect was mediated by obe-sity. In other words, by virtue of an association between the minor A allele at  the rs9939609 variant and obesity risk, Type 2 diabetes risk was also elevated. The initial study to report evi-dence of gene–physical activity interactions at this locus was conducted in a population-based cohort of  approximately 5500 Danish  adults from the Inter99 Study [48]. The authors found that in physically inactive individuals, BMI dif-fered by around 2 kg/m2 units between the high (AA) and low (TT) risk homozygotes. However, in people reporting moderate to high levels of physical activity, the magnitude of this genetic effect was reduced to approximately 0.5 kg/m2, which was reflected by a statistically significant gene–physical activity interaction. Several other studies published since this original report have yielded variable results. A study in around 700 Amish adults [49] reported a statistically signifi-cant  interaction for another FTO SNP that  is in low linkage disequilibrium with the variant reported  in  the  Danish  study.  Although  the study was relatively small, it included objective physical activity measures and the interaction effect was generally consistent in direction and magnitude with the Danish findings. Clinical trial data from the Diabetes Prevention Program also  support  the  presence  of  gene–lifestyle interactions on 1-year changes in subcutaneous 

Page 6: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

Diabetes Manage. (2011) 1(3) future science group304

review Franks & Shungin

adipose mass [50], but several other large epide-miological studies and small clinical trials were unable  to  confirm  these  results.  Because  few studies of gene–lifestyle interaction are, on an individual basis,  likely  to be adequately pow-ered  to detect  effects,  a  large  consortia-based effort was undertaken  in which all published and unpublished data pertinent to this hypoth-esis (n ~ 240,000 individual observations) were collated and analyzed using a standardized ana-lytical approach  [Kilpelainen T, Pers. Comm.]. The results of the study were pooled using meta-ana-lysis and confirmed the initial reports of inter-action. Nevertheless, the interaction effect sizes were considerably smaller  than those reported in the original studies, which is possibly owing to the so-called ‘winner’s curse’. Very recently, the CHARGE consortium reported findings on gene–nutrient interactions and wholegrain food intake on glucose and insulin levels. The study consisted of roughly 48,000 individual observa-tions from 14 cohorts. The strongest evidence for interaction was for the putatively functional rs780094 variant at GCKR [51], whereby each copy of the Type 2 diabetes-associated allele dimin-ished the protective effects of wholegrain food intake on fasting insulin levels by roughly half. 

How might information on gene–lifestyle interactions aid the prediction & prevention of Type 2 diabetes?Scientists and practitioners have long since been aware of the considerable interindividual differ-ences in susceptibility to specific diabeto genic exposures  or  responses  to  antidiabetic  treat-ments. Many have recognized that  these dif-ferences may be related to  individual genetic variation, but to  identify the specific variants underlying these  interactions has proven very difficult. Despite this, there is widespread opti-mism  that genetics has  an  important  role  to play in personalized medical therapy [52]. Proof of  this concept already exists  for sulfonylurea tablet therapy as a replacement for daily insu-lin  injections  in diabetic carriers of MODY2 mutations [53] and in African–Americans with heart failure for which the US FDA specifically approves the use of the drug BiDil®, which it does not for other ethnic groups [101].

The use of genetics  to tailor medical  treat-ments and preventive interventions in other sce-narios will require adequate replication of results from  studies  of  gene–treatment  interactions. 

These examples will not only require extensive replication, but will  also need  to convey  suf-ficiently  large effects,  such that  the  inclusion of  genetic  information  into  prediction  algo-rithms out-performs nongenetic risk algorithms. Despite  these hurdles,  it  seems quite possible that genetics will find its way into prevention and treatment paradigms for Type 2 diabetes before too long, perhaps as part of more complex screening approaches that combine other demo-graphic, biologic and behavioral information to identify  individuals who are  likely to respond well or poorly to specific antidiabetic therapies.

ConclusionAs we explained earlier, genetic and lifestyle fac-tors do not act  independently on Type 2 dia-betes risk. Our understanding of how genetic and lifestyle risk factors combine to influence Type 2 diabetes risk is far from perfect, but we can at least envisage a framework within which these  factors operate, allowing us to conceive research paradigms that should help define in fine  detail  the  specific  components  of  these interactions, the manner in which the interac-tions manifest and the strategies  that we will need to adopt to utilize this  information in a way where it helps prevent the development or limit the consequences of Type 2 diabetes. If the evidence base becomes strong enough to war-rant  the  inclusion of  information on  interac-tions of genetic and environmental factors into prediction algorithms for Type 2 diabetes, this may facilitate the tailoring of medical therapies to the  individual,  thus minimizing treatment costs and exposure to ineffective therapies and improving patient  treatment compliance and treatment outcomes. 

Future perspectiveType 2 diabetes  is a preventable disease. The major modifiable  risk  factors  are  known and clinical  trials have shown that  intervening on these risk factors substantially reduces the risk of Type 2 diabetes. However, despite the gen-eral success of these studies, a ‘one size fits all’ intervention is suboptimal in several senses, not least from the point of view of the patient’s wel-fare and the economic burden created by inef-fective treatments. It is conceivable that genetic information might help guide the development of personalized medical  interventions for dia-betes prevention,  thus minimizing  treatment costs, reducing the extent to which patients are 

Page 7: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

The interplay of lifestyle & genetic susceptibility in Type 2 diabetes risk review

future science group www.futuremedicine.com 305

exposed to ineffective therapies and improving patient motivation and treatment outcomes. In the past 4 years, personal genome testing kits have become widely available,  a  trend  that  is almost certainly set to continue. Nevertheless, evidence to support the application of genome profiling for the prediction, prevention or treat-ment of Type 2 diabetes  is generally  lacking. In the next 5–10 years, we should expect to see the publication of well-designed scientific stud-ies that provide reliable data on the  identities of  genetic  risk  factors  that modify  a person’s response to antidiabetic interventions. The avail-ability of such information will help guide the 

development of personal genome testing kits, which  may  aid  the  optimization  of  diabetes prevention and care. 

Financial & competing interests disclosureThe  authors  have  no  relevant  affiliations  or  financial involvement with any organization or entity with a finan-cial interest in or financial conflict with the subject matter or materials discussed  in  the manuscript. This  includes employment, consultancies, honoraria, stock ownership or options,  expert  t estimony,  grants  or  patents  received  or  pending, or royalties.

No writing assistance was utilized in the production of this manuscript. 

BibliographyPapers of special note have been highlighted as:� of interest�� of considerable interest

1  Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339(4), 229–234 (1998). 

�� One of the first studies to illustrate the substantial burden of cardiovascular mortality in people with Type 2 diabetes. The study’s findings prompted re-evaluation of the way people with diabetes are treated for cardiovascular risk factors.

2  Fox CS, Coady S, Sorlie PD et al.: Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 115(12), 1544–1550 (2007). 

3  Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26(Suppl. 1), S5–S20 (2003). 

4  Mason CC, Hanson RL, Knowler WC: Progression to Type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes 56(8), 2054–2061 (2007). 

5  Astrup A: Healthy lifestyles in Europe: prevention of obesity and Type II diabetes by diet and physical activity. Public Health Nutr. 4(2B), 499–515 (2001). 

6  Hu FB, Manson JE, Stampfer MJ et al.: Diet, lifestyle, and the risk of Type 2 diabetes mellitus in women. N. Engl. J. Med. 345(11), 790–797 (2001). 

�� Published around the time of two major clincial trials showing that intensive lifestyle modification can markedly delay the onset of Type 2 diabetes in high-risk persons. Thus,

although the study was observational, it provided important evidence supporting lifestyle modification for diabetes prevention.

7  Knowler WC, Barrett-Connor E, Fowler SE et al.: Reduction in the incidence of Type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346(6), 393–403 (2002). 

�� Major randomized clinical trial of intensive lifestyle modification versus control intervention that showed that weight loss through lifestyle modification reduces the 3-year risk of developing diabetes by 58% compared with control intervention.

8  Tuomilehto J, Lindstrom J, Eriksson JG et al.: Prevention of Type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344(18), 1343–1350 (2001).

�� Major randomized clinical trial of intensive lifestyle modification versus control intervention that showed that weight loss through lifestyle modification reduces the 3-year risk of developing diabetes by 58% compared with control intervention.

9  Klein S, Ghosh A, Cremieux PY, Eapen S, McGavock TJ: Economic impact of the clinical benefits of bariatric surgery in diabetes patients with BMI ≥35 kg/m2. Obesity (Silver Spring) 19(3), 581–587 (2010).

� Demonstrates, amongst other things, the remarkable effects bariatric surgery can have on Type 2 diabetes, where remission from the disease is frequently observed immediately after surgery.

10  Meigs JB, Cupples LA, Wilson PW: Parental transmission of Type 2 diabetes: the Framingham Offspring Study. Diabetes 49(12), 2201–2207 (2000). 

11  Barroso I: Genetics of Type 2 diabetes. Diabet. Med. 22(5), 517–535 (2005). 

12  Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H: Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia 42(2), 139–145 (1999). 

� One of the first studies to report heritability estimates for Type 2 diabetes in twins from Denmark.

13  WHO Expert Consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403), 157–163 (2004). 

14  Sims EA: Are there persons who are obese, but metabolically healthy? Metabolism 50(12), 1499–1504 (2001). 

�� Describes a subpopulation of morbidly obese individuals who apparently evade the adverse metabolic consequences frequently seen in obese persons. Many have since sought to identify the specific mechansims that enable these persons to remain disease free, in the hope that this information might be harnessed and applied to the remainder of the obese population to enhance their health.

15  Gradmark AM, Rydh A, Renstrom F et al.: Computed tomography-based validation of abdominal adiposity measurements from ultrasonography, dual-energy X-ray absorptiometry and anthropometry.  Br. J. Nutr. 104(4), 582–588 (2010). 

16  Rabe K, Lehrke M, Parhofer KG, Broedl UC: Adipokines and insulin resistance. Mol. Med. 14(11–12), 741–751 (2008). 

17  Stunkard AJ, Harris JR, Pedersen NL, McClearn GE: The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322(21), 1483–1487 (1990). 

Page 8: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

Diabetes Manage. (2011) 1(3) future science group306

review Franks & Shungin

18  Franks PW, Ling C: Epigenetics and obesity: the devil is in the details. BMC Med. 18(1), 88 (2010). 

19  Speliotes EK, Willer CJ, Berndt SI et al.: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42(11), 937–948 (2010). 

20  Allenberg K, Johansen K, Saltin B: Skeletal muscle adaptations to physical training in Type II (non-insulin-dependent) diabetes mellitus. Acta Med. Scand. 223(4), 365–373 (1988). 

�� Classic exercise intervention study in which glucose homeostasis was normalized in people with full-blown diabetes through exercise training.

21  Goodyear LJ, Kahn BB: Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 49, 235–261 (1998). 

22  Klein S, Sheard NF, Pi-Sunyer X et al.: Weight management through lifestyle modification for the prevention and management of Type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am. J. Clin. Nutr. 80(2), 257–263 (2004). 

23  Orozco LJ, Buchleitner AM, Gimenez-Perez G, Roque IFM, Richter B, Mauricio D: Exercise or exercise and diet for preventing Type 2 diabetes mellitus. Cochrane Database Syst. Rev. 3, CD003054 (2008). 

24  Grant SF, Thorleifsson G, Reynisdottir I et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet. 38(3), 320–323 (2006). 

�� Landmark study that saw the start of a new generation of genetic discoveries in human Type 2 diabetes. The study by the DeCode group showed that a variant localized to the TCF7L2 gene was robustly associated with Type 2 diabetes. This finding has since been widely replicated and remains, in most populations, the strongest genetic risk factor for Type 2 diabetes discovered to date.

25  Saxena R, Voight BF, Lyssenko V et al.: Genome-wide association ana lysis identifies loci for Type 2 diabetes and triglyceride levels. Science 316(5829), 1331–1336 (2007). 

� Landmark study illustrating the power of genome-wide association scans for the discovery of novel genetic risk factors for Type 2 diabetes.

26  Zeggini E, Weedon MN, Lindgren CM et al.: Replication of genome-wide association signals in UK samples reveals risk loci for Type 2 diabetes. Science 316(5829), 1336–1341 (2007). 

� Landmark study illustrating the power of genome-wide association scans for the discovery of novel genetic risk factors for Type 2 diabetes.

27  Scott LJ, Mohlke KL, Bonnycastle LL et al.: A genome-wide association study of Type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829), 1341–1345 (2007). 

� Landmark study illustrating the power of genome-wide association scans for the discovery of novel genetic risk factors for Type 2 diabetes.

28  McCarthy MI, Abecasis GR, Cardon LR et al.: Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9(5), 356–369 (2008). 

29  Altshuler D, Hirschhorn JN, Klannemark M et al.: The common PPARg Pro12Ala polymorphism is associated with decreased risk of Type 2 diabetes. Nat. Genet. 26(1), 76–80 (2000). 

� Synthesis of evidence showing irrefutably that the minor allele at the PPARG Pro12Ala variant is protective of Type 2 diabetes risk. This was the first widely confirmed example of a Type 2 diabetes susceptibility single nucleotide polymorphism (SNP) locus.

30  van Dam RM, Hoebee B, Seidell JC: Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6. 2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet. Med. 22(5), 590–598 (2005). 

� Synthesis of evidence showing irrefutably that the minor allele at the KCNJ11 E23K variant raises Type 2 diabetes risk. This was the second widely confirmed example of a Type 2 diabetes susceptibility SNP locus.

31  Voight BF, Scott LJ, Steinthorsdottir V et al.: Twelve Type 2 diabetes susceptibility loci identified through large-scale association ana lysis. Nat. Genet. 42(7), 579–589 (2010).

�� Most recent synthesis of data from genome-wide association studies, revealing or confirming the identities of nearly 40 independent loci.

32  de Miguel-Yanes JM, Shrader P, Pencina MJ et al.: Genetic risk reclassification for Type 2 diabetes by age below or above 50 years using 40 Type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34(1), 121–125 (2010). 

33  Manolio TA, Collins FS, Cox NJ et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009). 

34  Smith GD, Lawlor DA, Harbord R: Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 4(12), e352 (2007). 

35  Timpson NJ, Nordestgaard BG,  Harbord RM et al.: C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 35(2), 300–308 (2010). 

�� Eloquent example showing how an adapted Medelian randomization method (called reciprocal Mendelian randomization) can be used to infer causal relationships in observational data.

36  Brunner EJ, Kivimaki M, Witte DR et al.: Inflammation, insulin resistance, and diabetes – Mendelian randomization using CRP haplotypes points upstream. PLoS Med. 5(8), e155 (2008). 

37  Eriksson MK, Franks PW, Eliasson M:  A 3-year randomized trial of lifestyle intervention for cardiovascular risk reduction in the primary care setting: the Swedish Bjorknas study. PLoS ONE 4(4), e5195 (2009). 

�� First published example sucessfully applying the Diabetes Prevention Program’s program of intensive lifestyle modification to a low-cost, primary-care setting. The study showed considerable improvements in waist circumference, blood pressure, physical activity and aerobic fitness levels in people randomized to lifestyle intervention compared with those assigned to the standard care control intervention.

38  Hamman RF, Wing RR, Edelstein SL et al.: Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 29(9), 2102–2107 (2006). 

39  An P, Perusse L, Rankinen T et al.: Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE family study. Int. J. Sports Med. 24(1), 57–62 (2003). 

40  Franks PW, Mesa JL, Harding AH, Wareham NJ: Gene–lifestyle interaction on risk of Type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 17(2), 104–124 (2007). 

41  Luan J, Browne PO, Harding AH et al.: Evidence for gene–nutrient interaction at the PPARg locus. Diabetes 50(3), 686–689 (2001). 

Page 9: The interplay of lifestyle and genetic susceptibility in ...€¦ · diabetes [10–12] strongly suggests that those cata-lysts may be genetic in nature and that Type 2 diabetes is

future science group www.futuremedicine.com 307

The interplay of lifestyle & genetic susceptibility in Type 2 diabetes risk review

�� First study to report on the interaction between the PPARG Pro12Ala variant and dietary fat intake in relation to insulin levels and BMI. Several studies provided varying levels of replication for these findings.

42  Memisoglu A, Hu FB, Hankinson SE et al.: Interaction between a peroxisome proliferator-activated receptor g gene polymorphism and dietary fat intake in relation to body mass. Hum. Mol. Genet. 12(22), 2923–2929 (2003). 

� Study providing additional evidence that dietary fat intake modifies the association between the Pro12Ala variant at PPARG and body mass.

43  Palla L, Higgins JP, Wareham NJ, Sharp SJ: Challenges in the use of literature-based meta-ana lysis to examine gene–environment interactions. Am. J. Epidemiol. 171(11), 1225–1232 (2010). 

�� Demonstrates why retrospective meta-analyses of published data on gene–environment interactions is unlikely to be appropriate owing to excessive bias and error.

44  Li S, Zhao JH, Luan J et al.: Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med. 7(8), pii: e1000332 (2010). 

�� One of the largest and most comprehensive examples of gene–lifestyle interaction studies reported to date. The authors observed a strong interaction between an obesity genetic risk score and physical activity levels in relation to obesity risk, whereby the genetic risk appeared to be attenuated by increased physical activity.

45  Brito EC, Lyssenko V, Renstrom F et al.: Previously associated Type 2 diabetes variants may interact with physical activity to modify 

the risk of impaired glucose regulation and Type 2 diabetes: a study of 16,003 Swedish adults. Diabetes 58(6), 1411–1418 (2009). 

46  Largest study of gene–lifestyle interaction in relation to Type 2 diabetes reported to date. The study showed that a variant at the HNF1B gene may reduce the beneficial effects of physical activity on diabetes risk.

47  Jablonski KA, McAteer JB, de Bakker PI et al.: Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 59(10), 2672–2681 (2010). 

�� Most comprehensive investigation of genetic risk factors for Type 2 diabetes within the context of a clinical trial. The study confirmed that a variant at the gene encoding the OCT1 metformin transporter modifies the effect of metformin treatment on diabetes incidence.

48  Frayling TM, Timpson NJ, Weedon MN et al.: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826), 889–894 (2007).

� One of three studies to simultaneous report the discovery of FTO as an obesity-predisposing locus in humans. FTO harbors the most strongly associated common risk allele for obesity.

49  Andreasen CH, Stender-Petersen KL, Mogensen MS et al.: Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 57(1), 95–101 (2008). 

�� One of the most promising examples of gene–lifestyle interactions published to date. The study showed that physical activity may attenuate the genetic risk conveyed by an FTO SNP. Subsequent studies have confirmed this interaction effect.

50  Rampersaud E, Mitchell BD, Pollin TI et al.: Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch. Intern. Med. 168(16), 1791–1797 (2008). 

51  Franks PW, Jablonski KA, Delahanty LM et al.: Assessing gene–treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program. Diabetologia 51(12), 2214–2223 (2008). 

52  Nettleton JA, McKeown NM, Kanoni S et al.: Interactions of dietary wholegrain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-ana lysis of 14 cohort studies. Diabetes Care 33(12), 2684–2691 (2010).

�� Largest study of gene–nutrient interactions on quantitative diabetes traits reported to date. The study showed evidence of interaction between a GCKR variant and dietary wholegrain intake, whereby the protective effect of wholegrains was substantially diminished in carriers of the diabetes-predisposing allele at this GCKR SNP.

53  Hamburg MA, Collins FS: The path to personalized medicine. N. Engl. J. Med. 363(4), 301–304 (2010). 

54  Pearson ER, Flechtner I, Njolstad PR et al.: Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6. 2 mutations. N. Engl. J. Med. 355(5), 467–477 (2006). 

� website101  US FDA Press Announcement 

www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2005/ucm108445.htm