the importance of software testing

19
The Importance of Software Testing (cc) Jan Erik Finlander 1 The Importance of Software Testing 1. Software Testing Techniques The importance of software testing and its impact on software cannot be underestimated. Software testing is a fundamental component of software quality assurance and represents a review of specification, design and coding. The greater visibility of software systems and the cost associated with software failure are motivating factors for planning, through testing. It is not uncommon for a software organisation to spent 40% of its effort on testing. 1.1 Software Testing Fundamentals During testing the software engineering produces a series of test cases that are used to “rip apart” the software they have produced. Testing is the one step in the software process that can be seen by the developer as destructive instead of constructive. Software engineers are typically constructive people and testing requires them to overcome preconceived concepts of correctness and deal with conflicts when errors are identified. 1.1.1 Testing objectives A number of rules that act as testing objectives are: Testing is a process of executing a program with the aim of finding errors. A good test case will have a good chance of finding an undiscovered error. A successful test case uncovers a new error. 1.1.2 Test information flow Information flow for testing follows the pattern shown in the figure below. Two types of input are given to the test process: (1) A software configuration (2) A test configuration Tests are performed and all outcomes considered test results are compared with expected results. When erroneous data is identified error is implied and debugging begins. The debugging procedure is the most unpredictable element of the testing procedure. An “error” that indicates a discrepancy of 0.01 percent between the expected and the actual results can take hours, days or months to identify and correct. It is the uncertainty in debugging that causes testing to be difficult to schedule reliability.

Upload: jan-erik-finlander

Post on 13-Nov-2014

18.299 views

Category:

Documents


3 download

DESCRIPTION

The Importance of Software Testing

TRANSCRIPT

The Importance of Software Testing   

(cc) Jan Erik Finlander  

The Importance of Software Testing 

1. Software Testing Techniques The importance of software testing and its impact on software cannot be underestimated.  Software testing is a fundamental component of software quality assurance and represents a review of specification, design and coding.  The greater visibility of software systems and the cost associated with software failure are motivating factors for planning, through testing.  It is not uncommon for a software organisation to spent 40% of its effort on testing.   

1.1 Software Testing Fundamentals 

During testing the software engineering produces a series of test cases that are used to “rip apart” the software they have produced.  Testing is the one step in the software process that can be seen by the developer as destructive instead of constructive.  Software engineers are typically constructive people and testing requires them to overcome preconceived concepts of correctness and deal with conflicts when errors are identified. 

1.1.1 Testing objectives 

A number of rules that act as testing objectives are: 

• Testing is a process of executing a program with the aim of finding errors. • A good test case will have a good chance of finding an undiscovered error. • A successful test case uncovers a new error. 

 

1.1.2 Test information flow 

Information flow for testing follows the pattern shown in the figure below.  Two types of input are given to the test process:  

(1) A software configuration (2) A test configuration   

 

Tests are performed and all outcomes considered test results are compared with expected results.  When erroneous data is identified error is implied and debugging begins. The debugging procedure is the most unpredictable element of the testing procedure. An “error” that indicates a discrepancy of 0.01 percent between the expected and the actual results can take hours, days or months to identify and correct.  It is the uncertainty in debugging that causes testing to be difficult to schedule reliability.   

 

 

  

The Importance of Software Testing   

(cc) Jan Erik Finlander  

Test information flow 

1.1.3 Test case design 

The design of software testing can be a challenging process.  However software engineers often see testing as an afterthought, producing test cases that feel right but have little assurance that they are complete.  The objective of testing is to have the highest likelihood of finding the most errors with a minimum amount of timing and effort.  A large number of test case design methods have been developed that offer the developer with a systematic approach to testing.  Methods offer an approach that can ensure the completeness of tests and offer the highest likelihood for uncovering errors in software.   

Any engineering product can be tested in two ways:  

(1) Knowing the specified functions that the product has been designed to perform, tests can be performed that show that each function is fully operational  

(2) Knowing the internal workings of a product, tests can be performed to see if they jell.    

The first test approach is known as a black box testing and the second white box testing. 

Black box testing relates to the tests that are performed at the software interface.  Although they are designed identify errors, black box tests are used to demonstrate that software functions are operational; that inputs are correctly accepted and the output is correctly produced.  A black box test considers elements of the system with little interest in the internal logical arrangement of the software.  White box testing of software involves a closer examination of procedural detail.  Logical paths through the software are considered by providing test cases that exercise particular sets of conditions and/or loops.  The status of the system can be identified at diverse points to establish if the expected status matches the actual status. 

1.2 White Box Testing 

White box testing is a test case design approach that employs the control architecture of the procedural design to produce test cases.  Using white box testing approaches, the software engineering can produce test cases, that: 

Test configuration 

 

Software configuration 

Testing 

Test Results

Expected results 

Evaluation 

Reliability  

Model

Debug 

Errors 

Error rate data 

Corrections

Predicted reliability 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

(1) Guarantee that all independent paths in a module have been exercised at least once (2) Exercise all logical decisions  (3) Execute all loops at their boundaries and in their operational bounds (4) Exercise internal data structures to maintain their validity 

 

1.3 Basis Path Testing 

Basic path testing is a white box testing techniques that allows the test case designer to produce a logical complexity measure of procedural design and use this measure as an approach for outlining a basic set of execution paths.  Test cases produced to exercise each statement in the program at least one time during testing. 

1.3.1 Flow Graphs 

The flow graph can be used to represent the logical flow control and therefore all the execution paths that need testing.  To illustrate the use of flow graphs consider the procedural design depicted in the flow chart below.  This is mapped into the flow graph below where the circles are nodes that represent one or more procedural statements and the arrow in the flow graph called edges represent the flow control.  Each node that includes a condition is known as a predicate node, and has two or more edges coming from it. 

 

 

 

 

 

 

 

Flow chart 

 

 

 

 

 

2

46 

57  8

11 

10 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

Flow graph 

1.3.2 Cyclomatic Complexity  

Cyclomatic complexity is a software‐metric that offers an indication of the logical complexity of a program.  When used in the context of the basis path testing approach, the value is determined for cyclomatic complexity defines the number of independent paths in the basis set of a program and offer upper bounds for number of tests that ensures all statements have been executed at least once.  An independent path is any path through the program that introduces at least one new group of processing statements or new condition.  A set of independent paths for the example flow graph are: 

Path 1: 1‐11 Path 2: 1‐2‐3‐4‐5‐10‐1‐11 

Path 3: 1‐2‐3‐6‐8‐9‐10‐11 

1.3.3 Deriving Test Cases  

The basis path testing method can be applied to a detailed procedural design or to source code.  Basis path testing can be seen as a set of steps.   

• Using the design or code as the basis, draw an appropriate flow graph. • Determine the cyclomatic complexity of the resultant flow graph. • Determine a basis set of linear independent paths • Prepare test cases that will force execution of each path in the basis set. 

 

Edges 

2,3 

7  4,5 

10 

11 

Region 

Node 

Predicate N d

The Importance of Software Testing   

(cc) Jan Erik Finlander  

Date should be selected so that conditions at the predicate nodes are tested.  Each test case is executed and contrasted with the expected result.  Once all test cases have been completed, the tester can ensure that all statements in the program are executed at least once.   

 1.3.4 Graphical Matrices 

The procedure involved in producing the flow graph and establishing a set of basis paths can be mechanised.  To produce a software tool that helps in basis path testing, a data structure, called a graph matrix, can be quite helpful.  A graph matrix is a square matrix whose size is the same as the identified nodes, and matrix entries match the edges between nodes.  A basic flow graph and its associated graph matrix are shown below. 

 

 

 

 

 

 

 

 

Flow graph 

     

Connection to node 

Node  1  2  3  4  5 

1    a        

2      b     

3        d, c  f 

4           

5    e    g   

Graph Matrix 

 

In the graph and matrix each node is represented with a number and each edge a letter.  A letter is entered into the matrix related to connection between the two nodes.  By adding a link weight for each matrix entry 

5  3

d

c

The Importance of Software Testing   

(cc) Jan Erik Finlander  

the graph matrix can be used to examine program control structure during testing.  In its basic form the link weight is 1 or 0.   

The link weights can be given more interesting characteristics: 

• The probability that a link will be executed. • The processing time expanded during traversal of a link • The memory required during traversal of a link 

 

Represented in this form the graph matrix is called a connection matrix. 

  Connection to node 

Node  1  2  3  4  5  Connections 

1    1        1‐1=0 

2      1      1‐1=0 

3        1,1  1  3‐1=2 

4            0 

5    1    1    2‐1=1 

Cyclomatic complexity is 2+1=3 

Graph matrix 

1.4 Control Structure Testing  Although basis path testing is simple and highly effective, it is not enough in itself.  Next we consider variations on control structure testing that broaden testing coverage and improve the quality of white box testing.   

1.4.1 Condition Testing 

Condition testing is a test case design approach that exercises the logical conditions contained in a program module.  A simple condition is a Boolean variable or a relational expression, possibly with one NOT operator.  A relational expression takes the form 

21 E>operatorrelational<E -  

where  21 EE and  are arithmetic expressions and relational operator is one of the following <, =,  ≤,≠ , 

(nonequality) >, or ≥. A compound condition is made up of two or more simple conditions, Boolean operators, and parentheses.  We assume that Boolean operators allowed in a compound condition include OR, AND and NOT.   

 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

The condition testing method concentrates on testing each condition in a program.  The purpose of condition testing is to determine not only errors in the conditions of a program but also other errors in the program.  A number of condition testing approaches have been identified.  Branch testing is the most basic.  For a compound condition, C, the true and false branches of C and each simple condition in C must be executed at least once.   

Domain testing needs three and four tests to be produced for a relational expression.  For a relational expression of the form  

21 E>operatorrelational<E -  

Three tests are required the make the value of  1E  greater than, equal to and less than  2E , respectively.   

1.4.2 Data Flow Testing 

The data flow testing method chooses test paths of a program based on the locations of definitions and uses of variables in the program.  Various data flow testing approaches have been examined.  For data flow testing each statement in program is allocated a unique s6atement number and that each function does not alter its parameters or global variables.  For a statement with S as its statement number,  

DEF(S) = {X| statement S contains a definition of X} 

USE(S) = {X| statement S contains a use of X} 

If statement S is an if or loop statement, ifs DEF set is left empty and its USE set is founded on the condition of statement S.  The definition of a variable X at statement S is live at statement S’ if there is a path from statement S to S’ which does not contain any condition of X.   

A definition‐use chain (or DU chain) of variable X is of the type [X,S,S’] where S and S’ are statement numbers, X is in DEF(S), USE(S’), and the definition of X in statement S is live at statement S’. 

One basic data flow testing strategy is that each DU chain be covered at least once.  Data flow testing strategies are helpful for choosing test paths of a program including nested if and loop statements.   

1.4.3 Loop Testing 

Loops are the basis of most algorithms implemented using software.  However, often we do consider them when conducting testing.  Loop testing is a white box testing approach that concentrates on the validity of loop constructs.  Four loops can be defined:  simple loops, concatenate loops, nested loops, and unstructured loops. 

Simple loops: The follow group of tests should be used on simple loops, where n is the maximum number of allowable passes through the loop:  

• Skip the loop entirely. • Only one pass‐through the loop. • Two passes through the loop. • M passes through the loop where m<n. • n‐1, n, n+1 passes through the loop. 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

 

 

 

 

 

Simple loop 

 

Nested loop: For the nested loop the number of possible tests increases as the level of nesting grows.  This would result in an impractical number of tests.  An approach that will help to limit the number of tests: 

• Start at the innermost loop.  Set all other loops to minimum values. • Conduct simple loop tests for the innermost loop while holding the outer loop at their minimum 

iteration parameter value.   • Work outward, performing tests for the next loop, but keeping all other outer loops at minimum 

values and other nested loops to “typical” values. • Continue until all loops have been tested. 

 

 

 

 

 

 

 

 

 

Nested loop 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

Concatenated loops: Concatenated loops can be tested using the techniques outlined for simple loops, if each of the loops is independent of the other.  When the loops are not independent the approach applied to nested loops is recommended. 

 Concatenated loops 

 

Unstructured loops: This class of loop should be redesigned to reflect the use of the structured programming constructs. 

1.5 Black Box Testing 

Black box testing approaches concentrate on the fundamental requirements of the software.  Black box testing allows the software engineer to produce groups of input situations that will fully exercise all functional requirements for a program.  Black box testing is not an alternative to white box techniques.  It is a complementary approach that is likely to uncover a different type of errors that the white box approaches. 

Black box testing tries to find errors in the following categories: 

• Incorrect or missing functions • Interface errors • Errors in data structures or external database access  • Performance errors  • Initialisation and termination errors 

 

By applying black box approaches we produce a set of test cases that fulfil requirements: 

• test cases that reduce the number of test cases to achieve reasonable testing • test cases that tell us something about the presence or absence of classes of errors 

 

1.5.1 Equivalent Partitioning  Equivalence partitioning is a black box testing approach that splits the input domain of a program into classes of data from which test cases can be produced.  An ideal test case uncovers a class of errors that 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

10 

may otherwise before the error is detected.  Equivalence partitioning tries to outline a test case that identifies classes of errors.   

Test case design for equivalent partitioning is founded on an evaluation of equivalence classes for an input condition.  An equivalence class depicts a set of valid or invalid states for the input condition.   

Equivalence classes can be defined based on the following: 

• If an input condition specifies a range, one valid and two invalid equivalence classes are defined. • If an input condition needs a specific value, one valid and two invalid equivalence classes are 

defined. • If an input condition specifies a member of a set, one valid and one invalid equivalence class is 

defined. • If an input condition is Boolean, one valid and invalid class are outlined. 

 

1.5.2 Boundary Value Analysis 

A great many errors happen at the boundaries of the input domain and for this reason boundary value analysis was developed.  Boundary value analysis is test case design approach that complements equivalence partitioning.  BVA produces test cases from the output domain also. 

Guidelines for BVA are close to those for equivalence partitioning: 

• If an input condition specifies a range bounded by values A and B, test cases should be produced with values A and B, just above and just below a and b, respectively. 

• If an input condition specifies various values, test cases should be produced to exercise the minimum and maximum numbers. 

• Apply guidelines above to output conditions. • If internal program data structures have prescribed boundaries, produce test cases to exercise that 

data structure at its boundary.  

1.5.3 Cause‐Effect Graphing Techniques  In too many instances, an attempt to translate a policy or procedure stated in a natural language into a software causes frustration and problems.  Cause‐effect graphing is a test case design approach that offers a concise depiction of logical conditions and associated actions.  The approach has four stages: 

• Cause (input conditions) and effects (actions) are listed for a module and an identifier is allocated to each. 

• A cause‐effect graph is created. • The graph is altered into a decision table. • Decision table rules are modified to test cases. 

 

A simplified version of cause‐effect graph symbology is shown below.  The left hand column of the figure 

gives the various logical associations among causes  ic  and effects,  ie .  The dashed notation in the right‐

hand columns indicates potentials constraining associations that might apply to either causes or effects. 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

11 

 

Symbology           Constraints 

 

 

 

 

 

 

 

Cause‐effect graphing 

 

1.5.4 Comparison Testing  Under certain situations the reliability of the software is critical.  In these situations redundant software and hardware is often used to ensure continuing functionality.  When redundant software is produced separate software engineering teams produce independent versions of an application using the same applications.  In this context each version can be tested with the same test data to ensure they produce the same output.  These independent versions are the basis of a black box testing technique known as comparison testing.  Other black box testing techniques are performed on the separate versions and it is 

and 

1c  

2c  

1e  v 

or  Exclusive Inclusive Only one 

1c  

2c  

1e  ^ 

Require  Masks 

1c  1e  

Identity 

1c  1e  

“Not” 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

12 

assumed if they produce the same output they are assumed to be identical.  However, if this is not the case then they are examined further. 

1.6 Testing for Real‐Time Systems  The specific characteristics of real‐time systems make them a major challenge when testing.  The time‐dependent nature of real‐time applications adds a new difficult element to testing.  Not only does the developer have to look at black and white box testing, but also the timing of the data and the parallelism of the tasks.  In many situation test data for real‐time system may produce errors when the system is in one state but to in others.  Comprehensive test cases design methods for real‐time systems have not evolved yet.  However, a four‐stage approach can be put forward: 

Task testing:  The first stage is to test independently the tasks of the real‐time software.   

Behavioural testing:  Using system models produced with CASE tools the behaviour of the real‐time system and examines its actions as a result of external events. 

Intertask testing: Once errors in individual tasks and in system behaviour have been observed testing passes to time‐related external events.   

Systems testing: Software and hardware are integrated and a full set of systems tests are introduced to uncover errors at the software and hardware interface. 

1.7 Automated Testing Tools  As testing can be 40% of the all effort expanded on the software development process tools that can assist by reducing the time involved is useful.  As a response to this various researchers have produced sets of testing tools. 

Miller described various categories for test tools: 

• Static analysers: this program‐analysis support “proving” of static allegations‐weak statements about program architecture and format. 

• Code auditors: These special‐purpose filters are used to examine the quality of software to ensure that it meets the minimum coding standards. 

• Assertion processors: These systems tell whether the programmer‐supplied assertions about the program are actually met. 

• Test data generators: These processors assist the user with selecting the appropriate test data. • Output comparators: This tool allows us to contrast one set of outputs from a program with 

another set to determine the difference among them.  

Dunn also identified additional categories of automated tools including: 

• Symbolic execution systems: This tool performs program testing using algebraic input, instead of numeric data values. 

• Environmental simulators: This tool is a specialised computer‐based system that allows the tester to model the external environment of real‐time software and simulate operating conditions. 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

13 

• Data flow analysers: This tool tracks the flow of data through the system and tries to identify data related errors. 

 2. Software Testing Strategies 

A strategy for software testing integrates software test case design techniques into a well‐planned set of steps that cause the production of software.  A software test strategy provides a road map for the software developer, the quality assurance organisation, and the customer.  Any testing strategy needs to include test planning, test case design, test execution, and the resultant data collection evaluation.  A software test strategy should be flexible enough to promote the creativity and customisation that are required to adequately test all large software‐based systems.   

2.1 A Strategic Approach to Software Testing  Testing is a group of activities that can be planned in advance and performed systematically.  For this reason a set of stages that we can place particular tests case design techniques and test approaches should be developed for the software engineering procedure.  A number of testing strategies have been identified, which provide a template for testing and all have the following features: 

• Testing starts at the modular level and works outward towards the integration of the complete system.   

• Diverse testing techniques are appropriate at diverse points in time. • Testing is performed by the developer of the software and an independent test group. • Testing and debugging ate diverse activities, but debugging must be included in any testing 

strategy.  

A strategy for testing must include low‐level tests that are required to verify that a small source code segment has been implemented correctly as well as high‐level tests that that validate major system functions based on customer requirements. 

2.1.1 Verifications and Validations  Software testing is one type of a broader domain that is known as verification and validation (V&V).  Verification related to a set of operations that the software correctly implements a particular function.  Validation related to a different set of activities that ensures that the software that has been produced is traceable to customer needs.   

2.1.2 Organising for Software Testing  For each software project, there is an inherent that happens as testing starts.  The people who produce the software are required to test the software.  Unfortunately, these developers have an interest in showing that the program is error free, it matches the customer’s needs and was completed on‐time and within budget.  The role of an independent test group (ITG) is to take out the inherent difficulty associated with allowing the builder to test the things that are built.  The ITG works with the developer throughout the project to ensure that the testing carried out is at the correct level.  The ITG is part of the software 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

14 

development process in that it becomes involved during the specification stage and stays throughout the project.   

2.1.3 A Software Testing Strategy  The software engineering procedure can be seen as a spiral. Initially the systems engineering states the role of the software and lead the software requirement analysis where the information domain, function, behaviour, performance and validation criteria for the software are identified.  Moving inwards along the spiral, we come to design and finally coding.   

A strategy for software testing may be to move upward along the spiral.  Unit testing happens at the vortex of the spiral and concentrates on each unit of the software as implemented by the source code.  Testing happens upwards along the spiral to integration testing, where the focus is on design and the production of the software architecture.  Finally we perform system testing, where software and other system elements are tested together.   

2.1.4 Criteria for Completion Testing  

A fundamental question in software testing is how do we know when testing is complete.  Software engineers need to have rigorous criteria for establishing when testing is complete.  Musa and Ackerman put forward an approach based on statistical response that states that we can predict how long a program will go before failing with a stated probability using a certain model.  Using statistical modelling and software reliability theory, models of software failure as a test of execution time can be produced.  A version of failure model, known as logarithmic Poisson execution‐time model, takes the form: 

]1+ptlln[p1

=)t(f 0  

where f(t) = cumulative number of failures that are anticipated to happen once the software has been tested for a particular amount of execution time t 

0l  = the initial failure intensity at the start of testing 

p = the exponential reduction in failure intensity as errors are discovered and repairs produced. 

The instantaneous failure intensity, l(t) can be derived by taking the derivative of f(t): 

1+ptll

=)t(l0

0          

      (a) 

Using the relationship noted in equation (a), testers can estimate the drop off of errors as testing progresses.  The actual error intensity can be plotted against the estimated curve.  If the actual data gained during testing and the Logarithmic Poisson execution‐time model are reasonably close to another over a number of data points, the model can be used to estimate the total test time required to produce acceptably low failure intensity. 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

15 

2.2 Unit Testing 

Unit testing concentrates verification on the smallest element of the program – the module.  Using the detailed design description important control paths are tested to establish errors within the bounds of the module.   

2.2.1 Unit test considerations  The tests that are performed as part of unit testing are shown in the figure below.  The module interface is tested to ensure that information properly flows into and out of the program unit being tested.  The local data structure is considered to ensure that data stored temporarily maintains its integrity for all stages in an algorithm’s execution.  Boundary conditions are tested to ensure that the modules perform correctly at boundaries created to limit or restrict processing.  All independent paths through the control structure are exercised to ensure that all statements in been executed once.  Finally, all error‐handling paths are examined. 

 

 

 

 

 

Unit test 

 

2.2.2 Unit test procedures  

Unit testing is typically seen as an adjunct to the coding step.  Once source code has been produced, reviewed, and verified for correct syntax, unit test case design can start.  A review of design information offers assistance for determining test cases that should uncover errors.  Each test case should be linked with a set of anticipated results.  As a module is not a stand‐alone program, driver and/stub software must be produced for each test units.  In most situations a driver is a “main program” that receives test case data, passes this to the module being tested and prints the results.  Stubs act as the sub‐modules called by the test modules.  Unit testing is made easy if a module has cohesion.   

2.3 Integration Testing 

Once all the individual units have been tested there is a need to test how they were put together to ensure no data is lost across interface, one module does not have an adverse impact on another and a function is not performed correctly.  Integration testing is a systematic approach that produces the program structure while at the same time producing tests to identify errors associated with interfacing.   

 

Test cases 

Module Interface

Local data structures 

Boundary Conditions 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

16 

2.3.1 Top‐Down integration 

Top‐down integration is an incremental approach to the production of program structure.  Modules are integrated by moving downwards through the control hierarchy, starting with the main control module.  Modules subordinate to the main control module are included into the structure in either a depth‐first or breadth‐first manner.  Relating to the figure below depth‐first integration would integrate the modules on a major control path of the structure.  Selection of a major path is arbitrary and relies on application particular features.  For instance, selecting the left‐hand path, modules M1, M2, M5 would be integrated first.  Next M8 or M6 would be integrated.  Then the central and right‐hand control paths are produced.  Breath‐first integration includes all modules directly subordinate at each level, moving across the structure horizontally.  From the figure modules M2, M3 and M4 would be integrated first.  The next control level, M5, M6 etc., follows.  

 

 

 

 

 

 

 

 

 

 

The integration process is performed in a series of five stages: 

1. The main control module is used as a test driver and stubs are substituted for all modules directly subordinate to the main control module.   

2. Depending on the integration technique chosen, subordinate stubs are replaced one at a time with actual modules. 

3. Tests are conducted as each module is integrated. 4. On the completion of each group of tests, another stub is replaced with the real module. 5. Regression testing may be performed to ensure that new errors have been introduced. 

 

2.3.2 Bottom‐up Integration  

Bottom‐up integration testing, begins testing with the modules at the lowest level (atomic modules).  As modules are integrated bottom up, processing required for modules subordinates to a given level is always available and the need for stubs is eliminated.   

M1 

M2  M3  M4 

M5  M6  M7 

M8 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

17 

 

A bottom‐up integration strategy may be implemented with the following steps: 

1. Low‐level modules are combined into clusters that perform a particular software sub function. 2. A driver is written to coordinate test cases input and output. 3. The cluster is tested. 4. Drivers are removed and clusters are combined moving upward in the program structure. 

 

2.3.3 Comments on Integration Testing  

There has been much discussion on the advantages and disadvantages of bottom‐up and top‐down integration testing.  Typically a disadvantage is one is an advantage of the other approach.  The major disadvantage of top‐down approaches is the need for stubs and the difficulties that are linked with them.  Problems linked with stubs may be offset by the advantage of testing major control functions early.  The major drawback of bottom‐up integration is that the program does not exist until the last module is included.   

2.4 Validation Testing  As a culmination of testing, software is completely assembled as a package, interfacing errors have been identified and corrected, and a final set of software tests validation testing are started.  Validation can be defined in various ways, but a basic one is valid succeeds when the software functions in a fashion that can reasonably expected by the customer.   

2.4.1 Validation test criteria  

Software validation is achieved through a series of black box tests that show conformity with requirements.  A test plan provides the classes of tests to be performed and a test procedure sets out particular test cases that are to be used to show conformity with requirements.   

2.4.2 Configuration review  

An important element of the validation process is a configuration review.  The role of the review is to ensure that all the components of the software configuration have been properly developed, are catalogued and have the required detail to support the maintenance phase of the software lifecycle.   

2.4.3 Alpha and Beta testing 

It is virtually impossible for develop to determine how the customer will actually use the program.  When custom software is produced for customer a set of acceptance tests are performed to allow the user to check all requirements.  Conducted by the end user instead of the developer, an acceptance test can range from an informal test drive to rigorous set of tests.  Most developers use alpha and beta testing to identify errors that only users seem to be able to find.  Alpha testing is performed at the developer’s sites, with the 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

18 

developer checking over the customers shoulder as they use the system to determine errors.  Beta testing is conducted at more than one customer locations with the developer not being present.  The customer reports any problems they have to allow the developer to modify the system. 

2.5 System Testing 

Ultimately, software is included with other system components and a set of system validation and integration tests are performed.  Steps performed during software design and testing can greatly improve the probability of successful software integration in the larger system.  System testing is a series of different tests whose main aim is to fully exercise the computer‐based system.  Although each test has a different role, all work should verify that all system elements have been properly integrated and form allocated functions.  Below we consider various system tests for computer‐based systems. 

2.5.1 Recovery Testing  

Many computer‐based systems need to recover from faults and resume processing within a particular time.  In certain cases, a system needs to be fault‐tolerant.  In other cases, a system failure must be corrected within a specified period of time or severe economic damage will happen.  Recovery testing is a system test that forces the software to fail in various ways and verifies the recovery is performed correctly.   

2.5.2 Security Testing 

Any computer‐based system that manages sensitive information or produces operations that can improperly harm individuals is a target for improper or illegal penetration.  Security testing tries to verify that protection approaches built into a system will protect it from improper penetration.  During security testing, the tester plays the role of the individual who wants to enter the system.  The tester may try to get passwords through external clerical approaches; may attack the system with customised software, purposely produce errors and hope to find the key to system entry.  The role of the designer is to make entry to the system more expensive than that which can be gained. 

2.5.3 Stress Testing 

Stress testing executes a system in the demands resources in abnormal quantity, frequently or volume.  A variation of stress testing is an approach called sensitivity testing in some situation a very small range of data contained with the bounds of valid data for a program may cause extreme and even erroneous processing or profound performance degradation.   

2.6 The Art of Debugging 

Debugging happens as a result of testing.  When a test case uncovers an error, debugging is the process that causes the removal of that error.   

 

 

 

The Importance of Software Testing   

(cc) Jan Erik Finlander  

19 

2.6.1 The Debugging Process Debugging is not testing, but always happens as a response of testing.  The debugging process will have one of two outcomes:  

(1) The cause will be found, corrected and removed, or (2) The cause will not be found.  Why is debugging difficult? 

• The symptom and the cause are geographically remote. • The symptom may disappear when another error is corrected. • The symptom may actually be the result of no errors (e.g. round off in accuracies). • The symptom may be caused by a human error that is not easy to find. • The symptom may be intermittent. • The symptom might be due to the causes that are distributed across various tasks on diverse 

processes.  

2.6.2 Psychological Considerations  There is evidence that debugging is an innate human trait.  Some people are good at it and others not.  Although experimental evidence on debugging can be considered in many ways large variations in debugging ability has been identified in software engineering of the same experience. 

2.6.3 Debugging Approaches 

Regardless of the approach that is used, debugging has one main aim: to determine and correct errors.  The aim is achieved by using systematic evaluation, intuition, and good fortune.  In general three kinds of debugging approaches have been put forward: Brute force, Back Tracking and Cause elimination. 

Brute force is probably the most popular despite being the least successful.  We apply brute force debugging methods when all else fails.  Using a “let the computer find the error” technique, memory dumps are taken, run‐time traces are invoked, and the program is loaded with WRITE statements.  Backtracking is a common debugging method that can be used successfully in small programs.  Beginning at the site where a symptom has been uncovered, the source code is traced backwards till the error is found.  In cause elimination a list of possible causes of an error are identified and tests are conducted until each one is eliminated.   

2.7 Conclusion  

Software testing accounts for a large percentage of effort in the software development process, but we have only recently begun to understand the subtleties of systematic planning, execution and control.   

Compiled by Jan‐Erik Finlander