the halophilous vegetation of the orumieh lake salt marshes

16
Plant Ecology 132: 155–170, 1997. 155 c 1997 Kluwer Academic Publishers. Printed in Belgium. The halophilous vegetation of the Orumieh lake salt marshes, NW. Iran Y. Asri 1 & M. Ghorbanli 2 1 Research Institute of Forests and Rangelands, P.O.Box 13185-116, Tehran-Iran and 2 Biology Dept., Tarbiat Moalem University, Mofatteh Ave., Tehran-Iran Received 12 September 1995; accepted in revised form 28 April 1997 Key words: Halophytes, Numerical analysis, Ordination, Phytosociology, Saline soils, Salt marsh vegetation Abstract The halophilous vegetation of the Orumieh lake salt marshes has been studied, using the Braun-Blanquet method. Vegetation types have been defined by physiognomic-floristic system.The following six main groups of communities are recognized: (1) Semi-woody shrub and perennial halophytic communities (Class Halocnemetea strobilacei) including 6 associations and 5 subassociations, (2) Annual halophytic communities (Class Thero-Salicornietea) including 5 associations and 1 subassociation, (3) Salt marsh brushwood communities (Class Tamaricetea) including 4 associations, (4) Rush and herbaceous perennial halophytic communities (Class Juncetea maritimi) including 7 associations and 1 subassociation, (5) Rush and herbaceous perennial halotolerant communities (Class Agrostietea stoloniferae) including 5 associations, (6) Hydrophilous halotolerant communities (Class Phragmitetea) including 3 associations and 2 subassociations. The soil of these communities has been analysed and their habitats are described and discussed. Abbreviations: AFC– Analyse Factorielle des Correspondances; CAH– Classification Ascendant Hierarchique; PCA– Principal Components Analysis. Introduction The coastal salt marshes comprise areas of land bor- dering the seas and lakes, more or less covered with vegetation and subject to periodic inundation by tide. They have certain qualities, which is related to the proximity to the sea and lake, that distinguishes them from inland salt marshes (Chapman 1977). Littoral salt marshes are essentially fringes of inland deserts, their landward boundary being defined by desert conditions. Ecological factors, such as terrain or climate, can be used to delimit the littoral marshes. When there is a nar- row belt along the coast surrounded by a steep barrier of mountains (e.g. part of the studied area), the limits are clear. But in a broad plain that stretches inland from the coast, there may be no distinct physiographic bar- rier. Therefore, other habitat features including veget- ation type have to be used. Vegetation characteristics, related to physiographic attributes reflecting both cli- matic and edaphic factors, provide the best single basis for delimiting littoral salt marshes. These salt marshes may be only a narrow belt within the reach of salt spray. They can be a hundred metres wide or they may extend inland for many kilometers (Zahran & Willis 1992). Iran is the classical country of the great salines and kavirs (Zohary 1973). Halophytic communities of Iran are still among the most poorly known vegetation units. The distribution of halophytic communities has been depicted cartographically by Mobayen & Tregubov (1970), Mobayen (1976, Kavir-e Lut), Freitag (1977, Turan Biosphere Reserve), Kramer (1984, Gulf Region near Bandar-e Rig), Carle & Frey (1977), Frey (1982, Maharlu basin) and Frey et al. (1985, northern peri- pheral region of Dasht-e kavir). Further physiognomic and ecologic-geographic data on such communities have been given by Kunkel (1977, Persian Gulf area), Ghorbanli & Lambinon (1978, Qom lake), Frey & Probst (1986), Breckle (1982, Turan Biosphere Reserve), Breckle (1983), Assadi (1984, Kavir regions), Akhani (1989, Kavire-

Upload: usthb29

Post on 21-Oct-2015

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

Plant Ecology 132: 155–170, 1997. 155c 1997 Kluwer Academic Publishers. Printed in Belgium.

The halophilous vegetation of the Orumieh lake salt marshes, NW. Iran

Y. Asri1 & M. Ghorbanli2

1Research Institute of Forests and Rangelands, P.O.Box 13185-116, Tehran-Iran and 2Biology Dept., TarbiatMoalem University, Mofatteh Ave., Tehran-Iran

Received 12 September 1995; accepted in revised form 28 April 1997

Key words: Halophytes, Numerical analysis, Ordination, Phytosociology, Saline soils, Salt marsh vegetation

Abstract

The halophilous vegetation of the Orumieh lake salt marshes has been studied, using the Braun-Blanquet method.Vegetation types have been defined by physiognomic-floristic system.The following six main groups of communitiesare recognized: (1) Semi-woody shrub and perennial halophytic communities (Class Halocnemetea strobilacei)including 6 associations and 5 subassociations, (2) Annual halophytic communities (Class Thero-Salicornietea)including 5 associations and 1 subassociation, (3) Salt marsh brushwood communities (Class Tamaricetea) including4 associations, (4) Rush and herbaceous perennial halophytic communities (Class Juncetea maritimi) including 7associations and 1 subassociation, (5) Rush and herbaceous perennial halotolerant communities (Class Agrostieteastoloniferae) including 5 associations, (6) Hydrophilous halotolerant communities (Class Phragmitetea) including 3associations and 2 subassociations. The soil of these communities has been analysed and their habitats are describedand discussed.

Abbreviations: AFC– Analyse Factorielle des Correspondances; CAH– Classification Ascendant Hierarchique;PCA– Principal Components Analysis.

Introduction

The coastal salt marshes comprise areas of land bor-dering the seas and lakes, more or less covered withvegetation and subject to periodic inundation by tide.They have certain qualities, which is related to theproximity to the sea and lake, that distinguishes themfrom inland salt marshes (Chapman 1977). Littoral saltmarshes are essentially fringes of inland deserts, theirlandward boundary being defined by desert conditions.Ecological factors, such as terrain or climate, can beused to delimit the littoral marshes. When there is a nar-row belt along the coast surrounded by a steep barrierof mountains (e.g. part of the studied area), the limitsare clear. But in a broad plain that stretches inland fromthe coast, there may be no distinct physiographic bar-rier. Therefore, other habitat features including veget-ation type have to be used. Vegetation characteristics,related to physiographic attributes reflecting both cli-matic and edaphic factors, provide the best single basis

for delimiting littoral salt marshes. These salt marshesmay be only a narrow belt within the reach of salt spray.They can be a hundred metres wide or they may extendinland for many kilometers (Zahran & Willis 1992).

Iran is the classical country of the great salines andkavirs (Zohary 1973). Halophytic communities of Iranare still among the most poorly known vegetation units.The distribution of halophytic communities has beendepicted cartographically by Mobayen & Tregubov(1970), Mobayen (1976, Kavir-e Lut), Freitag (1977,Turan Biosphere Reserve), Kramer (1984, Gulf Regionnear Bandar-e Rig), Carle & Frey (1977), Frey (1982,Maharlu basin) and Frey et al. (1985, northern peri-pheral region of Dasht-e kavir).

Further physiognomic and ecologic-geographicdata on such communities have been given by Kunkel(1977, Persian Gulf area), Ghorbanli & Lambinon(1978, Qom lake), Frey & Probst (1986), Breckle(1982, Turan Biosphere Reserve), Breckle (1983),Assadi (1984, Kavir regions), Akhani (1989, Kavire-

Gr.: 201002101, PIPS Nr. 139930 BIO2KAP

*139930 veg10516.tex; 28/08/1997; 14:39; v.7; p.1

Page 2: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

156

Figure 1. Location map of the study area.

Meyghan) and, Akhani & Ghorbanli (1993). Therehave been relatively few investigations using thephytosociological approach on salt marshes of Iran,including floristic survey of salt desert vegetation byZohary (1963, 1973) and Leonard (1991), littoral saltmarsh vegetation by Asri et al. (1995) and Atri et al.(1995).

The study area

The study area is salt marshes of Orumieh lake betweenwestern and eastern Azarbaijan provinces (Figure 1).The total area is ca. 2000 km2; most of which is locatedin the eastern part of the lake. The average altitude isabout 1284 m. The geological substratum mainly con-sists of Alluvium, Coastal plains and Swamps corres-ponding to the Quaternary and recent times depostis.Other formations are belong to the Oligo-Miocene andCretaceous periods (Iran Oil Co. 1960). A remarkablepart of the soils belongs to Saline soils series. They arechiefly Solonchaks, which fall into the Aridisols cat-egory according to the US comprehensive system ofsoil classification (Dregne 1976). Also, there are Low-Humic Gley and Alluvial soils groups, that belong tothe Inceptisols and Entisols categories, respectively.

The area belongs to the cold-semiarid climatic zoneof Emberger’s system. According to the Gaussan’ssystem, eastern and western parts of the lake belongto hot-arid Mediterranean zone and cold steppe zone,respectively. Means of over 25 years from six meteoro-

logical stations, namely; Miandoab, Maragheh, Tabriz,Sharaf Khaneh, Orumieh and Barandoz-Chay, showthat the total annual precipitation is around 324 mm,with the maximum occuring in the winter and springmonths. Mean maximum and minimum temperaturesare 36.4 �C for July and �13:3 �C for January.

Methods

Sample releves were performed according to theBraun-Blanquet method (Mueller-Dombois & Ellen-berg 1974; Westhoff & Van der Maarel 1978). Thereleve size was determined by establishing a species-area curve in each vegetation type. The releves of herb-aceous perennial and hydrophilous halotolerant com-munities were recorded on an area of 0.24–4 m2, thoseof the halophilous communities on 0.25–16 m2.

The releve and species groups were defined bythe AFC method, using the computer program ofAnaphyto (Briane 1991). The most popular ordina-tion technique has been PCA, although the strategy ofAFC has become an effective tool for phytosociolo-gical clustering and table sorting. The AFC methoddeveloped by Benzecri (1969), allows all the points(species and releves) to be represented on the same dia-gram. The species with the most similar patterns formgroups, which are placed in, or near, groups of releveswith similar species composition. The ordination is afloristic one, and the interpretation of a floristic axis interms of environmental factors can only be tentative.Important environmental factors may be reflected ontwo or more floristic axes.

The releve and species clusters have been definedby numerical analysis of AFC data, using a CAH tech-nique included in the program. CAH is essentially aclustering procedure based on releve similarity, com-bined with a procedure for obtaining a diagonal struc-ture of clusters in the table. In the phytosociologicaltable, species and releves are ordered in such a waythat the species with a more or less similar distribu-tion pattern over the releves are grouped together and,similarly, releves with a more or less similar speciescontent are placed nex to one another. The names ofsyntaxa correspond with the codes of phytosociologic-al nomenclature (Barkman et al. 1976).

The nex step comprises the replacement of eachassociation data by a column in which for each parti-cipating species the presence degree is indicated. Sucha table is called synoptic table. After comparison of thesynoptic table with those from other types of vegeta-

veg10516.tex; 28/08/1997; 14:39; v.7; p.2

Page 3: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

157

tion from the same region an idea can be formed aboutthe local diagnostic species groups in the table understudy. The syntaxonomical research step starts when avegetation type is to be fitted into the hierarchic syn-taxon tables.

A few samples of the upper layer of the soil weretaken from each community. Analysis of soil sampleshas been carried out following Richards (1954) andJackson (1960).

Results

The program used produces an ordination with fiveaxes. The distribution of species or releve groups isbetter revealed on axes 1–3 than others (Figures 2 and3). The floristic gradient indicated in Figure 3 can beinterpreted ecologically as an overall salinity gradientranging from low to high saline environments. Also,this gradient related to the structural complexity of thevegetation from pioneer to brushwood communities.The other floristic gradient (axes 1–2) can be inter-preted as related to moisture ranging from hydrophil-ous halotolerant communities to perennial halophyticcommunities.

Generally, six groups can be recognized on axes1–3 (Figures 2 and 3). Similarly, six species and releveclusters have been distinguished in the dendrogramsobtained with CAH method (e.g. Figure 4). Partial ana-lysis of groups resulted by AFC method is shown thateach group may be divided to some subgroups. Finally,39 subgroups are distinguished on the basis of partialanalysis. The synoptic table (Table 1) is then construc-ted, using the releve and species clusters obtained byCAH method followed by partial analysis. Accordingto the results of the numerical analysis, all the associ-ations distinguished are to be included in the followingclasses:

Class Halocnemetea strobilacei

According to the results of the numerical analysis,most of the communities are characterized by semi-woody shrub and perennial halophytes on muddy anddry salty flats should be included in the class Halocne-metea strobilacei. Our results do not confirm the pro-posed classification of Zohary (1973). According toZohary (1973) most of the halophytic communitiesof Iran should be referred to the class Halocnemeteastrobilacei irano-anatolica. It seems, this class shouldbe split into several classes. Also, our syntaxonom-

ical scheme (Table 2) is not in accordance with thescheme of European salt marsh vegetation, proposedby Chapman (1974). According to Chapman (1974)this vegetation type should be assigned in the classHalostachyetea.

The synoptic table (Table 1) clearly shows thatthe Halocnemetum strobilacei association includesthe following four subassociations of perennial andannual halophytic plants: Halopeplidetosum pygmae-ae, Phragmitetosum stenophyllae, Climacopteretosumcrassae and Frankenietosum pulverulentae. These sub-associations are distributed along a gradient of decreas-ing salt in the soil. Also, the synoptic table (Table 1)shows that Kalidietum caspici includes the Psylliosta-chyetosum leptostachyae subassociation. The syntaxo-nomical scheme of this class is shown in Table 2.

Class Thero-Salicornietea

The communities characterized by annual halophytessettled on soils subject to natural or artificial dis-turbances have been assigned to the class Thero-Salicornietea. This is in accordance with the classific-ation of European salt marsh vegetation, proposed byChapman (1974), Ellenberg (1986) and Biondi (1989).The associations belonging to this class are the follow-ing (Table 1): Salicornietum europaeae, Suaedetummaritimae, Salsoletum sodae, Petrosimonietum bra-chiatae and Petrosimonietum glaucae. Our results sug-gest the syntaxonomical scheme for this class (Table 2).

Class Tamaricetea

Zohary (1973) described the class Tamaricetea salinafor salt marsh brushwood communities of Iran. Buthe did not give a hierarchical classification for it. Theassociations belonging to the class Tamaricetea arethe following (Table 1): Tamaricetum meyeri, Tam-aricetum octandrae, Tamaricetum kotschyi and Tam-ariceto meyeri-octandrae. In all the associations asubstratum of Aeluropus littoralis occurs (Table 1).The syntaxonomical scheme of this class is shown inTable 2.

Class Juncetea maritimi

Similar the others, e.g. There are vast stands of herb-aceous perennial halophytic communities in most partsof Orumieh lake salt marshes. They are accompan-ied by mosaics or rush plants. This vegetation typeaccording to the syntaxonomical scheme (Table 2)

veg10516.tex; 28/08/1997; 14:39; v.7; p.3

Page 4: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

158

Tabl

e1.

Syno

ptic

tabl

eof

30as

soci

atio

nsan

d9

suba

ssoc

iatio

nsin

the

Oru

mie

hla

kesa

ltm

arsh

es.

1.Sa

licor

niet

umeu

ropa

eae,

2.Su

aede

tum

mar

itim

ae,

3.Sa

lsol

etum

soda

e,4.

Petr

osim

onet

umbr

achi

atae

,5.

Petr

osim

onie

tum

glau

cae,

6.Sc

lero

chlo

etos

umdu

rae,

7.H

aloc

ne-

met

umst

robi

lace

i,8.

Clim

acop

tere

tosu

mcr

assa

e,9.

Phr

agm

iteto

sum

sten

ophy

llae,

10.

Hal

opep

lidet

osum

pygm

aeae

,11

.F

rank

enie

tosu

mpu

lver

ulen

tae,

12.

Hal

osta

chye

tum

casp

icae

,13.

Kal

idie

tum

casp

ici,

14.P

sylli

osta

chye

tum

lept

osta

chya

e,15

.Hal

imio

netu

mve

rruc

ifera

e,16

.Lim

onie

tum

carn

osi,

17.L

imon

ietu

mm

eyer

i,18

.Tam

aric

etum

kots

chyi

,19

.Tam

aric

etum

mey

eri,

20.T

amar

icet

om

eyer

i-oc

tand

rae,

21.T

amar

icet

umoc

tand

rae

Ass

ocia

tion

and

12

34

56

78

910

1112

1314

1516

1718

1920

21su

bass

ocia

tion

no.

No.

ofre

leve

s4

43

32

25

33

33

33

29

33

34

44

No.

ofsp

ecie

s3

103

64

421

34

47

34

617

104

411

127

Cha

ract

er-t

axa

ofth

eas

soci

atio

nsSa

licor

nia

euro

paea

100(

3–5)

25(1

)33

(+

)20

(+

)66

(+

)50

(1)

Suae

dam

ariti

ma

50(+

)10

0(2–

4)33

(+

)50

(+

)50

(+

)20

(+

)

Sals

ola

soda

25(+

)25

(+

)10

0(2–

3)33

(+

)

Petr

osim

onia

brac

hiat

a25

(1)

100(

3–4)

33(+

)

Petr

osim

onia

glau

ca33

(+

)10

0(3)

100(

2)20

(+

)50

(+

)

Hal

ocne

mum

stro

bila

ceum

100(

3–4)

100(

2)10

0(2)

100(

3)10

0(2)

66(1

–2)

33(2

)50

(1)

44(1

–2)

66(2

)

Suae

daac

umin

ata

40(+

1)

Ere

mop

yrum

triti

cum

40(+

)

Hal

osta

chys

casp

ica

100(

3–4)

Kal

idiu

mca

spic

um20

(1)

100(

3–3)

100(

3-4)

Hal

imio

neve

rruc

ifera

20(1

)66

(1)

100(

2–4)

33(1

)33

(1)

Scor

zone

rala

cini

ata

44(+

1)

Lep

idiu

mca

rtila

gine

umss

p.pu

milu

m44

(+

)66

(1)

Art

emis

iafr

agra

ns33

(+

)

Cam

phor

osm

am

onsp

elia

ca11

(+

)

Lim

oniu

mca

rnos

um40

(1)

100(

3)

Lim

oniu

mm

eyer

i50

(+

)55

(+

)10

0(2–

3)

Tam

arix

kots

chyi

100(

3–4)

Cre

ssa

cret

ica

100(

1–2)

Tam

arix

tetr

agyn

ava

r.m

eyer

i33

(2)

100(

3–4)

100(

2)

Sper

gula

ria

med

ia75

(+

)

Tam

arix

octa

ndra

100(

2–3)

100(

3–4)

Tam

arix

ram

osis

sim

a50

(2)

Cyp

erus

fusc

us75

(+�

)

Cry

psis

scho

enoi

des

75(1

–2)

Cyp

erus

laev

igat

usva

r.di

stac

hyos

50(+

)

veg10516.tex; 28/08/1997; 14:39; v.7; p.4

Page 5: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

159

Tabl

e1.

(con

tinue

d)

Ass

ocia

tion

and

12

34

56

78

910

1112

1314

1516

1718

1920

21su

bass

ocia

tion

no.

No.

ofre

leve

s4

43

32

25

33

33

33

29

33

34

44

No.

ofsp

ecie

s3

103

64

421

34

47

34

617

104

411

127

Dif

fere

ntia

l-ta

xaof

the

suba

ssoc

iati

ons

Scle

roch

loa

dura

100(

3)20

(+

)33

(+

)

Clim

acop

tera

cras

sa25

(2)

66(+

1)20

(+

)10

0(2–

3)33

(+

)50

(1)

Phr

agm

ites

aust

ralis

var.

sten

ophy

lla10

0(2–

3)11

(1)

66(1

)50

(1)

Hal

opep

lispy

gmae

a10

0(2)

Fra

nken

iapu

lver

ulen

ta10

0(4–

5)33

(+

)

Psy

llios

tach

ysle

ptos

tach

ya33

(+

)50

(+

)20

(+

)66

(+

)33

(1)

100(

3)11

(+

)33

(+

)

Com

pani

ons

Ael

urop

uslit

tora

lis20

(1)

33(1

)33

(1)

100(

2–3)

75(2

)75

(2–3

)75

(2–3

)

Hor

deum

geni

cula

tum

25(1

)20

(+

)11

(+

)25

(1)

50(+

)

Fra

nken

iahi

rsut

a25

(+

)20

(+

)66

(+

)11

(+

)25

(+

)

Cry

psis

acul

eata

25(+

)20

(+

)33

(+)

25(2

)25

(+

)

Hal

anth

ium

rari

floru

m25

(1)

33(+

)10

0(

+

)33

(+

)

Puc

cine

llia

bulb

osa

ssp.

bulb

osa

20(1

)22

(1)

25(1

)25

(1)

Alh

agim

auro

rum

33(2

–3)

33(1

)25

(1)

50(1

)

Atr

iple

xta

tari

ca25

(1)

50(1

)10

0(

+�

1)

Puc

cine

llia

dist

ans

20(1

)11

(1)

33(1

)

Psy

llios

tach

yssp

icat

a20

(+

)33

(+

)

Suae

daal

tisis

sim

a33

(+

)25

(1)

Para

phol

isin

curv

a33

(+

)50

(+

)

Sper

gula

ria

mar

ina

25(+

)75

(+

)

Suae

dam

icro

phyl

la33

(+

)

Lim

oniu

mgm

elin

i20

(1)

Hel

iotr

opiu

msa

mol

iflor

um20

(+

)

Lepi

dium

auch

eri

11(+

)

Ery

sim

umsi

sym

brio

ides

11(+

)

Pla

ntag

om

ariti

ma

ssp.

sals

a25

(+

)

Lyci

umru

then

icum

25(+

)

Koe

lpin

ialin

eari

s(3

3)(+

)

veg10516.tex; 28/08/1997; 14:39; v.7; p.5

Page 6: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

160

Tabl

e1.

(con

tinue

d)22

.A

elur

opod

etum

litto

ralis

,23

.P

ucci

nelli

odi

stan

tis-

Ael

urop

odet

umlit

tora

lis,

24.

Hor

deet

osum

geni

cula

ti,25

.Puc

cine

llio

bulb

osae

-A

elur

opod

etum

litto

ralis

,26

.Jun

cetu

mor

ient

alis

,27.

Junc

etum

infle

xi,2

8.Ju

ncet

umm

ariti

mi,

29.J

unce

tum

liban

otic

i,30

.Tri

folio

-C

ynod

onte

tum

,31.

Irid

etum

mus

ulm

anic

ae,3

2.C

aric

o-Ju

ncet

umac

uti,

33.

Car

ico-

Junc

etum

orie

ntal

is,

34.

Car

ico-

Junc

etum

infle

xi,

35.

Bol

bosc

hoen

etum

mar

itim

i,36

.C

ryps

idet

osum

acul

eata

e,37

.A

lope

cure

tosu

mar

undi

nace

i,38

.Ele

ocha

retu

mpa

lust

ri,3

9.A

lism

atet

umpl

anta

gini

s-qu

atic

ae

Ass

ocia

tion

and

2223

2425

2627

2829

3031

3233

3435

3637

3839

suba

ssoc

iatio

nno

.N

o.of

rele

ves

22

27

33

33

63

44

24

23

32

No.

ofsp

ecie

s1

53

108

56

410

1415

1011

98

127

3

Cha

ract

er-t

axa

ofth

eas

soci

atio

nsA

elur

opus

litto

ralis

100(

5)10

0(4)

100(

3)10

0(2–

5)66

(2)

100(

1–2)

100(

2–3)

50(1

–2)

33(2

)

Puc

cine

llia

dist

ans

100(

3)10

0(2)

66(1

)66

(1)

Lim

oniu

mbe

llidi

foliu

m10

0(1)

Puc

cine

llia

bulb

osa

ssp.

bulb

osa

100(

1–3)

66(1

)

Junc

ushe

ldre

ichi

anus

ssp.

orie

ntal

is10

0(4–

5)33

(2)

100(

3–4)

Inul

aau

cher

iana

66(+

1)

Saus

sure

asa

lsa

33(1

)

Junc

usin

flexu

s10

0(3–

4)10

0(4)

Junc

usm

ariti

mus

100(

4–5)

Junc

usge

rard

iiss

p.lib

anot

icus

50(1

)28

(1)

100(

3)66

(1)

25(1

)25

(+

)50

(+

)

Cyn

odon

dact

ylon

100(

3–5)

100(

2–3)

100(

1–3)

100(

2)10

0(2–

3)

Trifo

lium

frag

iferu

mva

r.pu

lche

llum

100(

2–3)

66(1

–2)

100(

+�

1)75

(1–2

)10

0(1)

Iris

spur

iass

p.m

usul

man

ica

100(

4–5)

Junc

usac

utus

100(

3–4)

25(1

)

Bol

bosc

hoen

usm

aritm

us50

(1)

28(+

1)10

0(3–

5)10

0(4)

100(

3–4)

Ele

ocha

ris

palu

stri

s33

(1)

100(

1)10

0(4–

5)

Alis

ma

plan

tago

-aqu

atic

a50

(1)

100(

1)10

0(5)

Dif

fere

ntia

l-ta

xaof

the

suba

ssoc

iati

ons

Hor

deum

geni

cula

tum

100(

4)50

(+

)

Cry

psis

acul

eata

50(1

)10

0(3–

4)

Alo

pecu

rus

arun

dina

ceus

100(

2–3)

Bec

kman

iaer

ucifo

rmis

ssp.

eruc

iform

is66

(+

)

veg10516.tex; 28/08/1997; 14:39; v.7; p.6

Page 7: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

161

Tabl

e1.

(con

tinue

d)

Ass

ocia

tion

and

2223

2425

2627

2829

3031

3233

3435

3637

3839

suba

ssoc

iatio

nno

.N

o.of

rele

ves

22

27

33

33

63

44

24

23

32

No.

ofsp

ecie

s1

53

108

56

410

1415

1011

98

127

3

Com

pani

ons

Phr

agm

ites

aust

ralis

var.

aust

ralis

75(1

–2)

50(1

)33

(1)

33(1

)50

(1)

Agr

ostis

stol

onife

ra33

(1)

33(1

)25

(1)

50(1

)50

(1)

Agr

opyr

umel

onga

tum

66(1

)66

(1)

50(1

)25

(1)

50(1

)

Car

exdi

visa

var.

amm

ophi

la66

(1–2

)66

(1–2

)75

(1–2

)75

(+�

2)50

(+

)

Lotu

ste

nuis

17(1

)33

(+

)50

(1)

25(+

)

Pla

ntag

om

ajor

ssp.

maj

or33

(+

)66

(+

)25

(+

)50

(+

)

Pla

ntag

om

ariti

ma

ssp.

sals

a33

(+

)17

(+

)33

(+

)50

(+�

)50

(+)

But

omus

umbe

llatu

s25

(+

)33

(+

)50

(+

)

Vero

nica

anag

alis

-aq

uatic

a33

(+

)66

(+

)33

(+

)

Rum

exco

nglo

mer

atus

25(+

)33

(+

)

Rum

excr

ispu

s33

(+

)33

(+

)50

(+

)

Phr

agm

ites

aust

ralis

var.

sten

ophy

lla14

(+

)33

(1)

Lim

oniu

mm

eyer

i14

(1)

33(+

)66

(1–2

)

Tara

xacu

msp

.66

(+

)66

(+

)50

(+

)

Cat

abro

saaq

uatic

a33

(1)

33(+

)

Zing

eria

tric

hopo

da33

(1)

33(+

)

Ast

ertr

ipol

ium

25(+

)25

(+

)

Fest

uca

arun

dina

cea

33(1

)25

(1)

Poly

pogo

nse

miv

ertic

illat

a17

(+)

25(+

)

Lep

idiu

mca

rtila

gine

umss

p.pu

milu

m28

(+

)

Dac

tylo

rhiz

aum

bros

ava

r.lo

ngib

ract

eata

100(

+

)

Alh

agi

mau

roru

m28

(3)

Pote

ntill

are

cta

25(+

)

Poly

pogo

nm

onsp

elie

nsis

50(1

)

Bat

rach

ium

tric

hoph

yllu

s33

(+

)

Poa

triv

ialis

33(1

)

Atr

iple

xha

stat

a50

(+

)

Men

tha

long

ifolia

33(+

)

Epi

lobi

uman

gust

ifoliu

m25

(+

)

Trag

opog

ongr

amin

ifoliu

s75

(1)

Sper

gula

ria

mar

ina

14(+

)

Car

exdi

stan

s75

(1–2

)

Cir

sium

alat

um25

(+

)

Fra

nken

iahi

rsut

a33

(+

)

Hal

anth

ium

rari

floru

m33

(1)

Hal

imio

neve

rruc

ifera

28(+

)

Vero

nica

becc

a-bu

nga

66(+

)

veg10516.tex; 28/08/1997; 14:39; v.7; p.7

Page 8: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

162

Figure 2. Releves ordination based on AFC (axes 1–3).

belong to the class Juncetea martimi. Our resultssupport the syntaxonomical schemes proposed byCorbetta et al. (1989), Gehu et al. (1989a) andGehu et al. (1989b), in which the perennial halo-

philous communities are referred to the class Jun-cetea maritimi (Table 2). The associations belong-ing to this class are the following (Table 1): Jun-cetum maritimi, Juncetum orientalis, Juncetum liban-

veg10516.tex; 28/08/1997; 14:39; v.7; p.8

Page 9: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

163

Table 2. Syntaxonomical scheme of vegetation

Halocnemetea strobilacei

Halocnemetalia strobilacei Juncetea maritimi

Halocnemion strobilacei Juncetalia maritimi

Halocnemetum strobilacei Juncion maritimi

Halostachyetum caspicae Juncetum maritimi

Kalidietum caspici Juncetum inflexi

Halopeplidetosum pygmaeae Juncetum orientalis

Phragmitetosum stenophyllae Puccinellietalia distantis

Frankenietosum pulverulentae Puccinellion bulbosae

Climacopteretosum crassae Puccinellio bulbosae-Aeluropodetum littoralis

Psylliostachyetosum leptostachyae Aeluropodetum littoralis

Halimionion Juncetum libanotici

Halimionetum verruciferae Puccinellion distantis

Limonietum meyeri Puccinellio distantis-Aeluropodetum littoralis

Limonietum carnosi Hordeetosum geniculati

Thero-Salicornietea Agrostietea stoloniferae

Thero-Salicornietalia Agrostietalia stoloniferae

Thero-Salicornion Trifolio-Cynodontion

Salicornietum europaeae Trifolio-Cynodontetum

Thero-Suaedion Iridetum musulmanicae

Suaedetum maritimae Carico-Juncion

Salsoletum sodae Carico-Juncetum inflexi

Petrosimonion Carico-Juncetum orientalis

Petrosimonietum brachiatae Carico-Juncetum acuti

Petrosimonietum glaucae

Sclerochloetosum durae Phragmitetea

Phragmitetalia

Tamaricetea Bolboschoenion maritimi

Tamaricetalia Bolboschoenetum maritimi

Tamaricion tetragynae Eleocharetum palustri

Tamaricetum meyeri Alismatetum plantaginis-aquaticae

Tamaricetum octandrae Crypsidetosum aculeatae

Tamaricetum kotschyi Alopecuretosum arundinacei

Tamariceto meyeri-octandrae

otici, Puccinellio distantis-Aeluropodetum littoral-is, Puccinellio bulbosae-Aeluropodetum littoralis andAeluropodetum littoralis. The synoptic table (Table 1)shows that Puccinellio distantis-Aeluropodetum littor-alis includes the Hordeetosum geniculati subassoci-ation.

Class Agrostietea stoloniferae

There is a type of herbaceous perennial halotolerantvegetation accompanied with mosaics of rush plantsin part of the littoral salt marsh. According to ourresults these communities are to be included in the class

Agrostietea stoloniferae. This is in accordance withthe classification of European salt marsh vegetation(Ellenberg 1986; Canullo et al. 1988; De Foucaultet al. 1992). The associations belonging to this classare the following (Table 1): Trifolio-Cynodontetum,Iridetum musulmanicae, Carico-Juncetum orientalis,Carico-Juncetum inflexi and Carico-Juncetum acuti.In our opinion the syntaxonomical scheme (Table 2)needs further analysis.

veg10516.tex; 28/08/1997; 14:39; v.7; p.9

Page 10: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

164

Legend to Figure 3 .

0165 Catabrosa aquatica (L.) Beauv. 1349 Eremopyrum triticum (Gaerth.) Nevski

0390 Juncus inflexus L. 1350 Halopeplis pygmaea (Pall.) Bge.

0509 Phragmites australis (Cav.) Trin et Steud. 1351 Sclerochloa dura (L.) Beauv.

var. stenophylla (Boiss.) Bor 1356 Tamarix kotschyi Bge.

0538 Potentilla recta L. 1358 Polypogon monspeliensis (L.) Desf.

0908 Poa trivialis L. 1360 Halostachys caspica (Bieb.) C.A. Mey.

1117 Aeluropus littoralis (Gouan) Parl. 1361 Koelpinia linearis Pallas

1118 Psylliostachys spicata (Willd.) Nevski 1368 Parapholis incurva (L.) C.E. Hubbard

1119 Psylliostachys leptostachya (Boiss.) Roshk. 1369 Cynodon dactylon (L.) Pers.

1132 Limonium carnosum (Boiss.) O. Kuntze 1371 Suaeda altissima (L.) Pall.

1133 Halocnemum strobilaceum (Pall.) Bieb. 1373 Plantago major L. ssp. major

1141 Halanthium rariflorum C. Koch. 1374 Agrostis stolonifera L.

1142 Salicornia europaea L. 1375 Rumex conglomeratus Murr.

1303 Suaeda maritima (L.) Dumort 1378 Spergularia media (L.) presl.

1304 Petrosimonia brachiata (Pall.) Bge. 1383 Lotus tenuis Waldst. et. Kit.

1305 Halimione verrucifera (Bieb.) Aellen 1385 Alisma plantago-aquatica L.

1306 Limonium meyeri (Boiss.) O. Kuntze 1386 Butomus umbellatus L.

1307 Lepidium cartilagineum (J. Meyer) Thell. 1387 Crypsis schoenoides (L.) Lam.

ssp. pumilum 1390 Cyperus fuscus L.

1308 Puccinellia bulbosa (Grossh) Grossh ssp. bulbosa 1391 Cyperus laevigatus L. var. distachyos (All.) Maire

1309 Juncus gerardii Loisel. ssp. libanoticus (Thieb.) & Weiller

Snog. 1392 Trifolium fragiferum L. var. pulchellum Lange

1310 Bolboschoenus maritimus (L.) Pall. 1393 Mentha longifolia (L.) Hudson.

1312 Alhagi maurorum Medikus 1398 Carex divisa Huds. var. ammophila (Willd.) Kuk

1313 Climacoptera crassa (Bieb.) Botsch. 1399 Taraxacum sp.

1314 Camphorosma monspeliaca L. 1400 Iris spuria L. ssp. musulmanica (Fomin) Takht.

1316 Hordeum geniculatum All. 1401 Agropyrum elongatum (Host) P. Beauv.

1317 Spergularia marina (L.) Griseb. 1403 Cirsium alatum (S.G. Gmelin) Bobrov

1318 Frankenia hirsuta L. 1404 Tragopogon graminifolius DC.

1319 Frankenia pulverulenta L. 1405 Festuca arundinacea Schreb.

1320 Alopecurus arundinaceus Poir. var. arundinaceus 1406 Artemisia fragrans Willd.

1323 Veronica becca-bunga L. 1407 Limonium gmelini (Willd.) O. Kuntze

1324 Beckmania eruciformis (L.) Host. ssp. eruciformis 1408 Juncus maritimus Lam.

1327 Zingeria trichopoda (Boiss.) P. Smirn 1411 Suaeda acuminata (C.A. Mey) Moq.

1328 Eleocharis palustris (L.) Roem & Schult. 1413 Heliotropium samoliflorum Bge.

1330 Batrachium tricophyllus (Chaix) Bossche 1415 Atriplex tatarica L.

1331 Rumex crispus L. 1417 Epilobium angustifolium L.

1332 Veronica anagalis-aquatica L. 1418 Tamarix tetragyna Ehrenb. var. meyeri (Boiss.)

1333 Phragmites australis (Cav.) Trin ex Steud. Boiss.

var. australis 1423 Atriplex hastata L.

1335 Kalidium caspicum (L.) Ung.-Sternb. 1424 Polypogon semiverticillata (Forssk.) Hyl.

1336 Salsola soda L. 1426 Suaeda microphylla (L.) Dumort

1337 Puccinellia distans (Jacq.) Parl. 1432 Saussurea salsa (Pall.) Spreng.

1338 Limonium bellidifolium (Goun) Dumort 1436 Juncus acutus L.

1339 Lycium ruthenicum Murray 1437 Carex distans L.

1340 Juncus heldreichianus marsson ex Parl. 1438 Tamarix ramosissima Ledeb.

ssp. orientalis Snog. 1445 Scorzonera laciniata L.

1341 Inula aucheriana DC. 1447 Erysimum sisymbrifolium C.A. Mey.

1343 Tamarix octandra (Bieb.) Bge. 1448 Lepidium aucheri Boiss.

1344 Petrosimonia glauca (Pall.) Bge 1449 Aster tripolium L.

1345 Cressa cretica L. 1451 Dactylorhiza umbrosa (Kar. & Kir.) Nevski

1346 Crypsis aculeata (L.) Ait. var. longibracteata Renz.

1348 Plantago maritima L. ssp. salsa (Pall.) Rech.f.

veg10516.tex; 28/08/1997; 14:39; v.7; p.10

Page 11: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

165

Figure 3. Species ordination based on AFC (axes 1–3).

Class Phragmitetea

The communities characterized by hydrophilous plantson margins of salty and brackish swamps, streams,areas with high ground-water and localities where freshwater flows down into the salt marsh are to be included

in the class Phragmitetea. This class was suggestedby Ellenberg (1986) and Best (1988) for the vegeta-tion type. The associations belonging to this class arethe following (Table 1): Bolboschoenetum maritimi,Alismatetum plantaginis-aquaticae and Eleocharetumpalustri. The synoptic table (Table 1) shows that

veg10516.tex; 28/08/1997; 14:39; v.7; p.11

Page 12: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

166

Figure 4. Dendrogram produced from CAH clustring.

veg10516.tex; 28/08/1997; 14:39; v.7; p.12

Page 13: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

167

Bolboschoenetum maritimi including two subassoci-ations: Alopecuretosum arundinacei and Crypside-tosum aculeatae.

The soil features are apparently one of the mainfactors influencing the plant growth of the littoral saltmarshes, the plant cover, distribution and also the zonalpattern of the vegetation types (Zahran 1977). Table 3shows the mean values for soil characteristics in standsof different communities. The pH values show thatthese soils are saline and alkaline, with little differ-ences between associations and subassociations. Thehigh rate of evaporation results in the accumulation ofsalts on the surface of the soil, especially where thewater table is high. The salts are mainly chlorides andsulphates. Data of the mechanical analysis reveal thatmost of the soils have medium and heavy texture withconsiderable differences between them. When data fortotal water-soluble salts are considered, it can be seenthat the soils of the rush and herbaceous perennial halo-tolerant communities, and hydrophilous halotolerantcommunities have the lowest salt concentrations. Theassociations belonging to the vegetation types are thefollowing: Trifolio-Cynodontetum, Iridetum musul-manicae, Carico-Juncetum acuti, Carico-Juncetuminflexi, Carico-Juncetum orientalis, Alismatetumplantaginis-aquaticae, Bolboschoenetum maritimi,Eleocharetum palustri; while those of the semi-woodyshrub and perennial halophytic communities, andannual halophytic communities such as Halocnemetumstrobilacei, Limonietum meyeri, Limonietum carnosi,Halopeplidetosum pygmaeae, Phragmitetosum sten-ophyllae, Salicornietum europaeae and Suaedetummaritimae have the highest salt concentrations.

Discussion

The Orumieh lake salt marshes show a highly variedvegetation pattern including a number of halotolerantor halophytic associations and subassociations that areclearly characterized from the floristic viewpoint andwell defined in their ecology. Inference about the eco-logy of the studied vegetation have been drawn fromAFC. The ordination of vegetation types along axes1–3 (Figure 3) corresponds to a gradient of salinitydecreasing from annual halophytic association (Sali-cornietum europaeae) to salt marsh brushwood asso-ciation (Tamaricetum meyeri.) The moisture gradi-ent appears with different ordination along axes 1–2from hydrophilous halotolerant association (Alismat-etum plantaginis-aquaticae) to perennial halophytic

association (Halimionetum verruciferae.) The vegeta-tion types belong to six classes; that with the exceptionof classes Halocnemetea strobilacei, Phragmitetea andTamaricetea, the others i.e. Thero-Salicornietea, Jun-cetea maritimi and Agrostietea stoloniferae are recor-ded for the first time from Iran.

The vegetation of the coastal salt marshes is gen-erally characterized by simplicity of the structureand uniformity of the species composition like oth-er salt marsh vegetation. Each association has onesometimes two dominants with or without associ-ated species. They vary greatly in structure area,some are only about 4 square meters and the othersare a few square kilometers. The following associ-ations play an important role in this region: Halocne-metum strobilacei, Alhagietum maurori, Salicornietumeuropaeae, Tamaricetum meyeri, Tamariceto meyeri-octandrae, Puccinellio distantis-Aeluropodetum littor-alis, Puccinellio bulbosae-Aeluropodetum littoralis.

In general, Halocnemetum strobilacei is typical ofvast areas of littoral marshes with high salinity andhigh ground-water level. This association is very poorin species, and it is often monodominant. The associ-ated species occur in the margins or in the transitionzones of the neighbouring associations of the saltlandvegetation. The growth of Halocnemum strobilaceumoccurs in two forms: (1) circular patches on flat tid-al muddy ground, or (2) sheets of irregular shapedpatches far away from shoreline.

In addition to the Halocnemetum strobilacei, thestands of brushwood associations particularely, Tam-aricetum meyeri and Tamariceto meyeri-octandrae arethe most important vegetation units of the Orumiehlake salt marshes. They form thickets in saline habit-ats, saline river beds, and areas with a relatively highwater-table.

Alhagietum maurori is an alien type to salt hab-itat (Kassas & Zahran 1967). This association occu-pies the stands inhabited by Halimionetum verrucifer-ae, Puccinellio distantis-Aeluropodetum littoralis andPuccinellio bulbosae-Aeluropodetum littoralis. Alhagimourorum has a long root system that may extend sev-eral meters in depth, reaching to the permanent wet soillayers with less salinity. In the inland and littoral zonesit is an abundant species dominating a characteristicsalt marsh community. Therefore, it was consideredby Zahran & Willis (1992) as a cumulative halophyte.

Salicornietum europaeae forms a pure associationon high salty and wet soils at low, frequently inundatedmudbanks. It seems that a protected and more or lesswater-saturated muddy substratum is an essential factor

veg10516.tex; 28/08/1997; 14:39; v.7; p.13

Page 14: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

168

Table 3. The mean values for soil characteristics of different vegetational types

Associations Dept pH Ec Textural Na+ Mg2++ Ca2+ Cl� SO2�

4 HCO�3and subassociations (cm) mmhos cm�1 Class (meq L�1)

Halocnemetum strobilacei 0–50 7.5 147 SiC 1240 278 1388 135.7 1.6

Halostachyetum caspicae 0–50 7.7 60.7 SiC 440 208.2 604 40.7 1.6

Kalidietum caspici 0–50 7.8 51.3 SiL 385 209 504 80 5.6

Halimionetum verruciferae 0–50 8.1 34.9 SCL 350 60 366 45 1.2

Limonietum meyeri 0–30 8.5 86.8 LS 860 42 756 135 3.6

Limonietum carnosi 0–30 8 84.7 SiL 750 166 732 177.5 2

Alhagietum maurori 0–50 9.4 13.6 C 135 8 102 25 8.1

Halopeplidetosum pygmaeae 0–30 7.9 110.2 SiCL 1050 234 1192 82 2.2

Frankenietosum pulverulentae 0–30 7.9 55.9 CL 430 136 318 240 2.6

Climacopteretosum crassae 0–30 7.2 87.4 CL 780 156 772 207.2 1.6

Psylliostachyetosum leptostachyae 0–30 7.8 32.6 SiL 290 84 282 82 4.8

Phragmitetosum stenophyllae 0–50 8 103.3 SiCL 960 184 1026 129.3 1.6

Salicornietum europaeae 0–30 7.6 182 SCL 1680 310 1750 204 2

Suaedetum maritimae 0–30 7.4 167.6 SiC 1440 564 1968 34 3.2

Salsoletum sodae 0–30 8.4 55 SiC 440 128 506 62.7 1.6

Petrosimonietum brachiatae 0–30 7.6 70.5 SiC 540 198 682 51.7 1.2

Petrosimonietum glaucae 0–30 7.8 42.8 C 340 131 414 62.7 2.4

Sclerochloetosum durae 0–30 7.8 6 SiC 35 36.8 17.6 53.2 2

Tamaricetum kotschyi 0–50 7.4 46.1 SiC-C 225 272 460 35 4

Tamaricetum octandrae 0–50 7.5 36.5 SiL 175 216 374 12 3.2

Tamaricetum meyeri 0–50 8 9.5 SiL 78 28 73 32.1 2.4

Tamariceto meyeri-octandrae 0–50 7.9 12.9 SiC 107.5 25 92 40.5 2.4

Puccinellio distantis-Aeluropodetum 0–30 7.5 36.9 C 300 108 332 79.9 2.4

Puccinellio bulbosae-Aeluropodetum 0–30 7.6 54.4 SiCL 470 116 484 95 3.2

Aeluropodetum littoralis 0–30 9.2 59.6 SiCL 551 60 438 160 2.8

Juncetum orientalis 0–50 8.5 19 L-SCL 185 24 172 36 4.4

Juncetum inflexi 0–50 7.9 29 SiC-C 250 60 252 51.8 3.6

Juncetum maritimi 0–50 7.6 30.5 SiL 265 60 292 25 4.4

Hordeetosum geniculati 0–30 7.7 7.2 SiC 50 24 49 23.8 2.4

Trifolio-Cynodontetum 0–30 8.4 6.8 SiL 38 50 34 41 6.4

Iridetum musulmanicae 0–50 7.8 5.7 SiCL 25.3 38 31 30 4.2

Carico-Juncetum acuti 0–50 8.5 4.1 SiL 20.3 31 15 25.2 7.6

Bolboschoenetum maritimi 0–30 7.7 4.4 LS 9 36 6 35 2

Eleocharetum palustri 0–30 8 4.1 LS 11.3 37 11 30 2.8

Alismatetum plantaginis-aquaticae 0–30 8.5 4 LS 10 38 9.5 32 2.4

for the growth of this species (Halwagy & Halwagy1977).

The herbaceous perennial halophytic communitiesdominated by Aeluropus littoralis occupy one of the lit-toral and inland zones of the Orumieh lake salt marshes.Also A. littoralis forms dense patches or mats. Some-times, it has been covered by spray-like crusts of salt,indicating that the plants may have been temporarilycovered by saline water. This clearly visible in thenorthwest of the lake, namely around of Zanbil mount.

Edaphic factors play a paramount role in the dis-tribution of plant associations and subassociations inthe regions. Among the soil variables analysed in thepresent study, texture and the relative concentrationsof Na+, Ca2+, Mg2+, SO2�

4 and Cl� are probably themost important factors in controlling the vegetation-al pattern in the study area. The role of these factorsin delimiting plant associations has been stressed bymany authors (e.g. Abdel-Razik et al. 1984; Ayyad& El-Ghareeb 1982). Apparently, saline water table isanother factor determining for establishment of plant

veg10516.tex; 28/08/1997; 14:39; v.7; p.14

Page 15: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

169

communities. Halocnemetum strobilacei, Suaedetummaritimae and Salicornietum europaeae dominate thelower marshes which are subject to periodic inundationfor varying periods. The constant occurrence of theseassociations in this habitat may suggest that salt-waterinundation plays the main role in plant distribution.Inundation seems to act mainly through increasing soilmoisture and affecting soluble salts content to levelssuitable for inhabitation of the plants.

Acknowledgements

We would like to express our gratitude to the ResearchInstitute of Forests and Rangelands for providing vari-ous facilities which made this work possible. We arealso grateful to Dr M Assadi and Mr V Mozaffarian foridentification of some species and Mr B Hamzehee forhis joint in the field and identification of a few species.

References

Abdel-Razik, M., Abdel-Aziz, M. & Ayyad, M. 1984. Environ-mental gradients and species distribution in a transect at Omayed(Egypt). J. Arid Environ. 7: 337–352.

Akhani, H. 1989. A contribution to the vegetation and flora of Kavire-Meyghan (NE, Arak), Iran. J. Sci. Univ. Tehran 18: 75–84.

Akhani, H. & Ghorbanli, M. 1993. A contribution to the halophyticvegetation and flora of Iran, pp. 35–44. Lieth, H. & Al Masoom,A. (eds.). Towards the Rational Use of High Salinity TolerantPlants 1.

Asri, Y., Hamzehee, B. & Ghorbanli, M. 1995. Etude phytosociolo-gique de la vegetation halophile de l’est du lac Orumieh (Nordouest de l’Iran). Doc. Phytosoc. 15: 299–308.

Assadi, M. 1984. Studies on the autumn plants of Kavir,lran. Iran. J.Bot. 2(2): 125–148.

Atri, M., Asri, Y. & Ghorbanli, M. 1995. Etude preliminaire de lavegetation halophile du littoral ouest du lac Orumieh, Iran. Doc.Phytosoc. 15: 205–210.

Ayyad, M.A. & El-Ghareeb, R. 1982. Salt marsh vegetation of thewestern Mediterranean desert of Egypt. Vegetatio 49: 3–19.

Barkman, J.J., Moravec, J. & Rauschert, S. 1976. Code of phytoso-ciological nomenclature. Vegetatio 32: 131–185.

Benzecri, J.P. 1969. Statistical Analysis as a Tool to make PatternRecognition, pp. 35–74. Academic Press, London.

Best, E. 1988. The Phytosociological approach to the descriptionand classification of macrophytic vegetation, pp. 155–182. In:Symoens, J.J., (ed.). Vegetation of inland Waters. Kluwer Aca-demic Publishers, Dordrecht.

Biondi, E. 1989. Studio fitosociologico de ll’arcipelago de la Mad-dalena. 1. La vegetatione costiera. Coll. Phytosoc. 19: 183–224.

Breckle, S.W. 1982. The significance of salinity, pp. 277–292. In:Spooner, B., & Mann, H.S. (eds.). Desertification and Develop-ment: Dryland Ecology in social Perspective, Academic press,London.

Breckle, S.W. 1983. Temperate deserts and, semi-deserts of Afgh-anistan and Iran, pp. 271–319. In: West, N.E., (ed.), Temperate

Deserts and Semi-deserts. Ecosystems of the World 5. Elsevier,Amsterdam.

Briane, J.P. 1991. A computer program for data-processing inphytosociology, Anaphyto. Labo. Syst. & Ecol. Vege., Univ.Orsay, Paris.

Canullo, R., Pedrotti, F. & Venanzoni, R. 1988. I prati umidi edinondati de ll’alto Trigno (Italia). Doc. Phytosoc. 11: 583–604.

Carle, R. & Frey, W. 1977. Die Vegetation des Maharlu-Beckenis beiSiraz (Iran) unter besonderer Berucksichtigung der Vegetation imBereich der Suß-und Salzwasserquellen am Seeufer, Beih. TAVO,Reihe A (Naturwiss.) 2. Dr. Ludwig Reichert Verlag, Wiesbaden.

Chapman, V.J. 1974. Salt Marshes and Salt Deserts of the World,2nd ed. Cramer, Lehre. 392 p.

Chapman, V.J. 1977. Wet Coastal Ecosystems. Ecosystems of theWorld 1. Elsevier, Amsterdam. 428 p.

Corbetta, F., Gratani, L., Moriconi, M. & Pirone, G. 1989. Lin-eamenti vegetazionalie caratterizzazione ecologica delle spiaggedell’arco jonico da taranto alla Foce del Sinni. Coll. Phytosoc.19: 461–521.

De Foucault, B., Frileux, P.-N. & Delpech, R. 1992. Contributiona l’etude phytosociologique des systemes prairiaux de la Brenne(Indre, France). Doc. Phytosoc. 14: 273–303.

Dregne, H.E. 1976. Soils of arid regions. Elsevier, Amsterdam.237 p.

Ellenberg, H. 1986. Vegetation Mitteleuropas mit den Alpen,pp. 900–915. Verlag Eugen Ulmer, Stuttgart.

Freitag, H. 1977. Turan Biosphere Reserve. Preliminary vegetationmap, pp. 86–89. In: Spooner, B. (ed.). Case Study on Desertific-ation, Iran: Turan. Dept. Env., Tehran.

Frey, W. 1982. Maharlu-Becken bei Shiraz (Iran). Mittlerer Teil.Vegetation. 1:100 000, Karte AVI 10.2, TAVO. Dr. Ludwig Reich-ert Verlag, Wiesbaden.

Frey, W., Kurschner, H. & Probst, W. 1985. Sudkaspisches Tieflandund Elburzgebirge (Iran). Vegetation. 1:500 000, Karte AVI 5,TAVO. Dr. Ludwig Reichert Verlag, Wiesbaden.

Frey, W. & Probst, W. 1986. Persische Golfkuste. Mangrove. KarteAVI 10.7, TAVO. Dr. Ludwig Reichert Verlag, Wiesbaden.

Gehu, J.M., Apostolides, N., Gehu-Franck, J. & Arnold, K. 1989a.Premieres donnees sur la vegetation littorale des Iles de Rodhoset de Karpathos (Grece). Coll. Phytosoc. 19: 545–582.

Gehu, J.M., Biondi, E., Gehu-Franck, J. & Costa, M. 1989b. Inter-pretation phytosociologique actualisee de quelques vegetationspsammophiles et halophiles de Camargue. Coll. Phytosoc. 19:103–131.

Ghorbanli, M. & Lambinon, J. 1978. Premier apercu de la zonationde la vegetation halo-gypsophile du lac Ghom. Lejeunia, Rev.Bot. 92. 20 p.

Halwagy, R. & Halwagy, M. 1977. Ecological studies on the desertof Kuwait. III. The vegetation of the coastal salt marshes. J. Univ.Kuwait (Sci.) 4: 33–73.

Iran Oil Company 1960. Geological map of Iran, 1:2500 000.Jackson, M.L. 1960. Soil chemical analysis. Prentice-Hall, Engle-

wood Cliffs, New Jersey. 498 p.Kassas, M. & Zahran, M.A. 1967. On the ecology of the Red Sea

littoral salt marsh, Egypt. Ecol. Monogr. 37: 297–316.Kramer, W. 1984. Mittlerer Zagros (Iran). Vegetation. 1:600 000,

Karte AVI 6, TAVO. Dr. Ludwig Reichert Verlag, Wiesbaden.Kunkel, G. 1977. The vegetation of Hormoz, Qeshm and neighburing

islands (Persian Gulf area). Flora et Vegetatio Mundi 6. 186 p.Leonard, J. 1991. Contribution a l’etude de la flore et de la vegetation

des deserts d’Iran. Fasc. 10, 2 Vols., Meise. 454 p.Mobayen, S. 1976. Structure geobotanique du Loute. Acta Ecol. Iran

1: 73–86.

veg10516.tex; 28/08/1997; 14:39; v.7; p.15

Page 16: The Halophilous Vegetation of the Orumieh Lake Salt Marshes

170

Mobayen, S. & Tregubov, V. 1970. Carte de la vegetation naturellede l’Iran, 1:2500 000, Univ. Tehran, UNDP/FAO no. IRA 7.

Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and Methods ofVegetation Ecology. John Wiley & Sons, Inc., New York. 547 p.

Richards, L.A. 1954. Diagnosis and improvement of saline and alkalisoils. U.S. Dept. Agric., Handbook No. 60. USDA, WashingtonD.C. 160 p.

Westhoff, V. & Maarel, E. van der. 1978. The Braun-BlanquetApproach, pp. 287–399. In: Whittaker, R.H. (ed.). Classificationof Plant Communities (2nd ed.), Junk, Den Haag.

Zahran, M.A. 1977. Wet formations of African Red sea coast,pp. 215–231. In: Chapman, V.J. (ed.). Wet Coastal Ecosytems.Ecosystems of the World 1. Elsevier, Amsterdam.

Zahran, M.A. & Willis, A.J. 1992. The vegetation of Egypt. Chap-man & Hall Inc., London. 424 p.

Zohary, M. 1963. On the geobotanical structure of Iran. Bull. Res.Counc. Isr. 11D. 113 p.

Zohary, M. 1973. Geobotanical foundations of the Middle East, 2Vols., Stuttgart. 739 p.

veg10516.tex; 28/08/1997; 14:39; v.7; p.16