the fractional complex transformation for nonlinear ...partial differential equations in the sense...

11
ORIGINAL ARTICLE The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics Elsayed M.E. Zayed * , Yasser A. Amer, Reham M.A. Shohib Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig, Egypt Received 24 November 2013; revised 19 June 2014; accepted 23 June 2014 Available online 22 July 2014 KEYWORDS Nonlinear fractional partial differential equations; Modified extended tanh-function method; Nonlinear fractional complex transformation; Exact solutions Abstract In this article, the modified extended tanh-function method is employed to solve fractional partial differential equations in the sense of the modified Riemann–Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into nonlinear ordinary differential equations of integer orders. For illustrating the validity of this method, we apply it to four nonlinear equations namely, the space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations, the space– time fractional nonlinear Whitham–Broer–Kaup equations, the space–time fractional nonlinear coupled Burgers equations and the space–time fractional nonlinear coupled mKdV equations. ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain. 1. Introduction Fractional differential equations are the generalizations of classical differential equations with integer orders. In recent years, nonlinear fractional differential equations in mathemat- ical physics are playing a major role in various fields, such as physics, biology, engineering, signal processing, and control theory, finance and fractal dynamics (Miller and Ross, 1993; Kilbas et al., 2006; Podlubny, 1999). Finding approximate and exact solutions to the fractional differential equations is an important task. A large amount of literatures were devel- oped concerning the solutions of the fractional differential equations in nonlinear dynamics (El-sayed et al., 2009). Many powerful and efficient methods have been proposed to obtain the numerical and exact solutions of fractional differential equations. For example, these methods include the variational iteration method (Safari et al., 2009); Wu and Lee, 2010; Yang and Baleanu, 2012; Guo and Mei, 2011), the Lagrange charac- teristic method (Jumarie, 2006a), the homotopy analysis method (Song and Zhang, 2009), the Adomian decomposition method (El-Sayed and Gaber, 2006; El-sayed et al., 2010), the homotopy perturbation method (He, 1999; He, 2000; Yildirim and Gulkanat, 2010), the differential transformation method (Odibat and Momani, 2008), the finite difference method (Cui, 2009), the finite element method (Huang et al., 2009), the fractional sub-equation method (Zhang and Zhang, 2011; Guo et al., 2012; Lu, 2012), the (G 0 /G)-expansion method (Zheng, 2012; Gepreel and Omran, 2011; Younis and Zafar, 2013), the modified extended tanh-function method (El-Wakil et al., 2005; El-Wakil et al., 2002; Soliman, 2006; Dai and Wang, 2014), the fractional complex transformation * Corresponding author. E-mail addresses: [email protected] (E.M.E. Zayed), [email protected] (Y.A. Amer). Peer review under responsibility of University of Bahrain. Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) 19, 59–69 University of Bahrain Journal of the Association of Arab Universities for Basic and Applied Sciences www.elsevier.com/locate/jaaubas www.sciencedirect.com http://dx.doi.org/10.1016/j.jaubas.2014.06.008 1815-3852 ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

Upload: others

Post on 05-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) 19, 59–69

University of Bahrain

Journal of the Association of Arab Universities for

Basic and Applied Scienceswww.elsevier.com/locate/jaaubas

www.sciencedirect.com

ORIGINAL ARTICLE

The fractional complex transformation

for nonlinear fractional partial differential

equations in the mathematical physics

* Corresponding author.

E-mail addresses: [email protected] (E.M.E. Zayed),

[email protected] (Y.A. Amer).

Peer review under responsibility of University of Bahrain.

http://dx.doi.org/10.1016/j.jaubas.2014.06.008

1815-3852 ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

Elsayed M.E. Zayed *, Yasser A. Amer, Reham M.A. Shohib

Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig, Egypt

Received 24 November 2013; revised 19 June 2014; accepted 23 June 2014Available online 22 July 2014

KEYWORDS

Nonlinear fractional partial

differential equations;

Modified extended

tanh-function method;

Nonlinear fractional

complex transformation;

Exact solutions

Abstract In this article, the modified extended tanh-function method is employed to solve

fractional partial differential equations in the sense of the modified Riemann–Liouville derivative.

Based on a nonlinear fractional complex transformation, certain fractional partial differential

equations can be turned into nonlinear ordinary differential equations of integer orders. For

illustrating the validity of this method, we apply it to four nonlinear equations namely, the

space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations, the space–

time fractional nonlinear Whitham–Broer–Kaup equations, the space–time fractional nonlinear

coupled Burgers equations and the space–time fractional nonlinear coupled mKdV equations.ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Fractional differential equations are the generalizations ofclassical differential equations with integer orders. In recentyears, nonlinear fractional differential equations in mathemat-ical physics are playing a major role in various fields, such as

physics, biology, engineering, signal processing, and controltheory, finance and fractal dynamics (Miller and Ross, 1993;Kilbas et al., 2006; Podlubny, 1999). Finding approximate

and exact solutions to the fractional differential equations isan important task. A large amount of literatures were devel-oped concerning the solutions of the fractional differential

equations in nonlinear dynamics (El-sayed et al., 2009). Many

powerful and efficient methods have been proposed to obtainthe numerical and exact solutions of fractional differential

equations. For example, these methods include the variationaliteration method (Safari et al., 2009); Wu and Lee, 2010; Yangand Baleanu, 2012; Guo and Mei, 2011), the Lagrange charac-

teristic method (Jumarie, 2006a), the homotopy analysismethod (Song and Zhang, 2009), the Adomian decompositionmethod (El-Sayed and Gaber, 2006; El-sayed et al., 2010), the

homotopy perturbation method (He, 1999; He, 2000; Yildirimand Gulkanat, 2010), the differential transformation method(Odibat and Momani, 2008), the finite difference method(Cui, 2009), the finite element method (Huang et al., 2009),

the fractional sub-equation method (Zhang and Zhang, 2011;Guo et al., 2012; Lu, 2012), the (G0/G)-expansion method(Zheng, 2012; Gepreel and Omran, 2011; Younis and Zafar,

2013), the modified extended tanh-function method(El-Wakil et al., 2005; El-Wakil et al., 2002; Soliman, 2006;Dai and Wang, 2014), the fractional complex transformation

Page 2: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

60 E.M.E. Zayed et al.

method (Li and He, 2010; Li, 2010; He and Li, Li et al., 2012;Hristov, 2010), the exp-function method (He, 2013), the simi-larity transformation method (Dai et al., 2013; Zhu, 2013),

the Hirota method (Liu et al., 2013) and so on.The objective of this paper is to apply the modified

extended tanh-function method for solving fractional

partial differential equations in the sense of the modifiedRiemann–Liouville derivative which has been derived by(Jumarie, 2006b). These equations can be reduced into nonlin-

ear ordinary differential equations (ODE) with integer ordersusing some fractional complex transformations. Jumarie’smodified Riemann–Liouville derivative of order a is definedby the following expression:

Dat fðtÞ ¼

1Cð1�aÞ

ddt

R t

0ðt� gÞ�a½fðgÞ � fð0Þ�dg; 0 < a 6 1;

fðnÞðtÞ� �ða�nÞ

; n 6 a < nþ 1; n P 1

(

We list some important properties for the modifiedRiemann–Liouville derivative as follows:

Dat t

r ¼ Cð1þ rÞCð1þ r� aÞ t

r�a; r > 0 ð1Þ

Dat fðtÞgðtÞ½ � ¼ fðtÞDa

t gðtÞ þ gðtÞDat fðtÞ ð2Þ

Dat fðgðtÞÞ½ � ¼ f0gðgðtÞÞDa

t gðtÞ ð3Þ

Dat fðgðtÞÞ½ � ¼ Da

gfðgðtÞÞ½g0ðtÞ�a ð4Þ

where C denotes the Gamma function.The rest of this paper is organized as follows: In Section 2,

the description of the modified extended tanh-function method

for solving nonlinear fractional partial differential equations isgiven. In Section 3, we apply this method to establish the exactsolutions for the space–time fractional generalized nonlinearHirota–Satsuma coupled KdV equations, the space–time

fractional nonlinear Whitham–Broer– Kaup equations, thespace–time fractional nonlinear coupled Burgers equationsand the space–time fractional nonlinear coupled mKdV equa-

tions. In Section 4 physical explanations of some obtainedsolutions are given. In Section 5, some conclusions areobtained.

2. Description the modified extended tanh-function method for

solving nonlinear fractional partial differential equations

Suppose we have the following nonlinear fractional partial dif-ferential equation:

Fðu;Dat u;D

axu; :::Þ ¼ 0; 0 < a 6 1; ð5Þ

where Dat u and Da

xu are the modified Riemann–Liouville deriv-atives and F is a polynomial in u = u(x,t) and its fractionalderivatives. In the following, we give the main steps of thismethod:

Step 1: Using the nonlinear fractional complex transforma-tion (Li and He, 2010; Li, 2010; He and Li, 2012; Li et al.,2012; Hristov, 2010).

uðx; tÞ ¼ uðnÞ; n ¼ kxa

Cð1þ aÞ þcta

Cð1þ aÞ þ n0; ð6Þ

where k,c,n0 are constants with k,c „ 0, to reduce Eq. (5) to thefollowing ODE of integer order with respect to the variable n :

Pðu; u0; u00; :::Þ ¼ 0; ð7Þ

where P is a polynomial in u(n) and its total derivatives

u0,u00,u000,. . . such that u0 ¼ dudn ; u

00 ¼ d2udn2; . . ...

Step 2: We suppose that the formal solution of the ODE (7)

can be expressed as follows:

uðnÞ ¼ a0 þXNi¼1½ai/iðnÞ þ bi/

�iðnÞ�; ð8Þ

where /(n) satisfies the Riccati equation

/0 ¼ bþ /2; ð9Þ

where b is a constant. Fortunately, Eq. (9) admits several types

of the following solutions:

(i) If b< 0, we have the hyperbolic solutions;

/ðnÞ ¼ �ffiffiffiffiffiffiffi�bp

tanhðffiffiffiffiffiffiffi�bp

nÞ;/ðnÞ ¼ �ffiffiffiffiffiffiffi�bp

cothðffiffiffiffiffiffiffi�bp

nÞ: ð10Þ

(ii) If b> 0, we have the trigonometric solutions;

/ðnÞ ¼ffiffiffibp

tanðffiffiffibp

nÞ;/ðnÞ ¼ �ffiffiffibp

cotðffiffiffibp

nÞ: ð11Þ

(iii) If b=0, we have the rational solutions;

/ðnÞ ¼ �1nþ d

; ð12Þ

where d is a constant.Step 3: We determine the positive integer N in (8) by

balancing the highest nonlinear terms and the highest order

derivatives of u(n) in Eq. (7).Step 4: We substitute (8) along with Eq. (9) into Eq. (7) and

equate all the coefficients of /i(i = 0, ± 1, ± 2,...) to zero to

yield a system of algebraic equations for ai,bi,c,k, b.Step 5: We solve the algebraic equations obtained in Step 4

using Mathematica or Maple, and use the well- known

solutions (10)–(12) of Eq. (9) to obtain the exact solutions ofEq. (5).

3. Applications

In this section, we construct the exact solutions of the follow-ing four nonlinear fractional partial differential equations

using the proposed method of Section 2:

Example 1. The Space–time fractional generalized nonlinearHirota–Satsuma coupled KdV equations.

These equations are well-known (Guo et al., 2012; Zheng,2012) and have the forms:

Dat u�

1

2D3a

x uþ 3uDaxu� 3Da

xðvwÞ ¼ 0; ð13Þ

Dat vþD3a

x v� 3uDaxv ¼ 0; ð14Þ

Dat wþD3a

x w� 3uDaxw ¼ 0; ð15Þ

where 0 < a 6 1. Eqs. (13)–(15) can be used to describe theiteration of two long waves with different dispersion relations(Abazari and Abazari, 2012). When a = 1, Eqs. (13)–(15) werefirst proposed in (Wu and Geng, 1999). When 0 < a 6 1, Eqs.

(13)–(15) have been discussed in (Zheng, 2012) using the (G0/G)-expansion method and in ( Guo et al, 2012) using the fractionalsub-equation method. Let us now solve Eqs. (13)–(15) using the

Page 3: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

The fractional complex transformation for nonlinear fractional partial differential equations 61

proposed method of Section 2. To this end, we suppose that

u(x,t) = U(n),v(x,t) = V(n),w(x,t) =W(n) where n is given bythe fractional complex transformation (6). Then by use of Eqs.(1) and (3), the system (13)–(15) can be turned into the following

system of ODEs with integer orders:

cU� 1

2k3U00 þ 3

2kU2 � 3kVW ¼ 0; ð16Þ

cV0 þ k3V000 � 3kUV0 ¼ 0; ð17ÞcW0 þ k3W000 � 3kUW0 ¼ 0: ð18Þ

Balancing the order of U00 with U2, V000 with UV0 and W000 withUW0 in Eqs. (16)–(18), we deduce that the formal solutions ofEqs. (16)–(18) have the forms:

UðnÞ ¼ a0 þ a1/þ a2/�1 þ a3/

2 þ a4/�2; ð19Þ

VðnÞ ¼ b0 þ b1/þ b2/�1 þ b3/

2 þ b4/�2; ð20Þ

WðnÞ ¼ c0 þ c1/þ c2/�1 þ c3/

2 þ c4/�2; ð21Þ

where ai,bi,ci (i= 0,1,2,3,4) are constants to be determinedlater. We substitute (19)–(21) along with Eq. (9) intoEqs. (16)–(18) and collect all the terms with the same power

of /j,(j= 0, ± 1, ± 2, ± 3,...). Equating each coefficient tozero yields a set of the following algebraic equations:

/5 : 24c3k3 � 6kc3a3 ¼ 0

24b3k3 � 6kb3a3 ¼ 0

/4 : �3a3k3 þ 32ka23 � 3kb3c3 ¼ 0

6b1k3 � 3kð2a1b3 þ b1a3Þ ¼ 0

6c1k3 � 3kð2a1c3 þ b1c3Þ ¼ 0

/3 : �a1k3 þ 3a1a3k� 3kðb1c3 þ c1b3Þ ¼ 0

2cb3 þ 40b3bk3 � 3kð2a0b3 þ a1b1 þ 2a3b3bÞ ¼ 0

2cc3 þ 40c3bk3 � 3kð2a0c3 þ a1c1 þ 2a3c3bÞ ¼ 0

/2 : ca3 � 4a3bk3 þ 3

2kða21 þ 2a0a3Þ � 3kðb0c3 þ b1c1 þ b3c0Þ ¼ 0

b1cþ 8b1bk3 � 3kða0b1 þ 2a1b3bþ 2a2b3 þ a3b1b� a3b2Þ ¼ 0

c1cþ 8c1bk3 � 3kða0c1 þ 2a1c3bþ 2a2c3 þ a3c1b� a3c2Þ ¼ 0

/ : ca1 � a1bk3 þ 3kða0a1 þ a2a3Þ � 3kðb0c1 þ b1c0 þ b2c3 þ b3c2Þ

2bcb3 þ 16b3b2k3 � 3kð2a0b3bþ a1b1b� b2a1 þ a2b1 � 2a3b4 þ

2bcc3 þ 16c3b2k3 � 3kð2a0c3bþ a1c1b� c2a1 þ a2c1 � 2a3c4 þ

/0 : ca0 � k3ða3b2 þ a4Þ þ 32kða20 þ 2a1a2 þ a2a4Þ � 3kðb0c0 þ b1c2

cðb1b� b2Þ þ k3ð2b1b2 � 2b2bÞ � 3kða0b1b� a0b2 � 2a1b4 þcðc1b� c2Þ þ k3ð2c1b2 � 2c2bÞ � 3kða0c1b� a0c2 � 2a1c4 þ 2

/�1 : ca2 � a2bk3 þ 3kða0a2 þ a1a4Þ � 3kðb0c2 þ b1c4 þ b2c0 þ b4c

2cb4 þ 16b4bk3 þ 3kð�2a0b4 � a1b2bþ a2b1b� b2a2 � 2a3b

2cc4 þ 16c4bk3 þ 3kð�2a0c4 � a1c2bþ a2c1b� c2a2 � 2a3c4b

/�2 : ca4 � 4a4bk3 þ 3

2kða22 þ 2a0a4Þ � 3kðb0c4 þ b2c2 þ b4c0Þ ¼ 0

�b2bc� 8b2b2k3 þ 3kða0b2bþ 2a1b4bþ 2a2b4 � a4b1bþ a4b

�c2bc� 8c2b2k3 þ 3kða0c2bþ 2a1c4bþ 2a2c4 � a4c1bþ a4c2

/�3 : a2b2k3 � 3a2a4kþ 3kðb2c4 þ c2b4Þ ¼ 0

2cbb4 þ 40b4b2k3 � 3kða2b2bþ 2a4b4 þ 2a0b4bÞ ¼ 0

2cbc4 þ 40c4b2k3 � 3kða2c2bþ 2a4c4 þ 2a0c4bÞ ¼ 0

/�4 : 3a4b2k3 � 3

2ka24 þ 3kb4c4 ¼ 0

6b2b3k3 � 3kð2a2b4bþ a4b2bÞ ¼ 0

6c2b3k3 � 3kð2a2c4bþ a4c2bÞ ¼ 0

/�5 : 24b4b3k3 � 6kb4a4 ¼ 0

24c4b3k3 � 6kc4ba4 ¼ 0

Solving the above set of algebraic equations by using Maple or

Mathematica , we get the following results:

b¼b;c¼ k3

4c3

�643bc3þ32c0þ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23�120bc0c3þ90c20

q� �;

k¼k;a3¼4k2;

a0¼ k2

8c3

649bc3þ 64

3c0þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23�120bc0c3þ90c20

q� �;

b3¼ 4k4

c3;c0¼ c0;

a1¼a2¼a4¼b1¼b2¼b4¼ c1¼ c2¼ c4¼0;c3¼ c3

b0¼ k4c23

�809bc3þ 52

3c0þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23�120bc0c3þ90c20

q� �

¼ 0

2a4b3Þ ¼ 0

2a4c3Þ ¼ 0

þ b2c1 þ b3c4 þ b4c3Þ ¼ 0

2a2b3b� a3b2bþ a4b1Þ ¼ 0

a2c3b� a3c2bþ a4c1Þ ¼ 0

2Þ ¼ 0

4bþ 2a4b3bÞ ¼ 0

þ 2a4c3bÞ ¼ 0

2Þ ¼ 0

Þ ¼ 0

Page 4: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

62 E.M.E. Zayed et al.

Now, we have the following exact solutions:

(i) If b< 0, we have the hyperbolic solutions

uðx; tÞ ¼ k2

8c3½649bc3 þ 64

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� � 4k2btanh2ð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ k4

c23

½�809bc3 þ 52

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� � 4bk4

c3tanh2ð

ffiffiffiffiffiffiffi�bp

wðx; tÞ ¼ c0 � c3btanh2ð

ffiffiffiffiffiffiffi�bp

8>>>>><>>>>>:

ð22Þ

uðx; tÞ ¼ k2

8c3½649bc3 þ 64

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� � 4k2bcoth2ð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ k4

c23

½�809bc3 þ 52

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� � 4bk4

c3coth2ð

ffiffiffiffiffiffiffi�bp

wðx; tÞ ¼ c0 � c3bcoth2ð

ffiffiffiffiffiffiffi�bp

8>>>>><>>>>>:

ð23Þ

(ii) If b> 0, we have the trigonometric solutions

uðx; tÞ ¼ k2

8c3½649bc3 þ 64

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� þ 4k2b tan2ð

ffiffiffibp

vðx; tÞ ¼ k4

c23

½�809bc3 þ 52

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� þ 4bk4

c3tan2ð

ffiffiffibp

wðx; tÞ ¼ c0 þ c3b tan2ð

ffiffiffibp

8>>>>><>>>>>:

ð24Þ

uðx; tÞ ¼ k2

8c3½649bc3 þ 64

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� þ 4k2bcot2ð

ffiffiffibp

vðx; tÞ ¼ k4

c23

½�809bc3 þ 52

3c0 þ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi34b2c23 � 120bc0c3 þ 90c20

q� þ 4bk4

c3cot2ð

ffiffiffibp

wðx; tÞ ¼ c0 þ c3bcot2ð

ffiffiffibp

8>>>>><>>>>>:

ð25Þ

(iii) If b=0, we have the rational solutions

uðx; tÞ ¼ k2

3c3ð8þ 2

ffiffiffiffiffi10pÞc0 þ 4k2

ðnþdÞ2

vðx; tÞ ¼ k4

3c23

ð52þ 16ffiffiffiffiffi10pÞc0 þ 4bk4

c3ðnþdÞ2

wðx; tÞ ¼ c0 þ c3ðnþdÞ2

8>>><>>>:

ð26Þ

On comparing our results (22)–(26) with the results in (Younisand Zafar, 2013) and (El-Wakil et al., 2005) we conclude thatour results are new.

Example 2. The Space–time fractional nonlinear Whitham–Broer–Kaup equations

These equations are well-known (Xu et al., 2007; Xu et al.,2007; Ping, 2010) and have the forms:

Dat uþ uDa

xuþDaxvþ bD2a

x u ¼ 0; ð27ÞDa

t vþDaxðuvÞ � bD2a

x vþ cD3ax u ¼ 0; ð28Þ

where 0 < a 6 1, and c,b are constants. In these equationsu(x,t) is the field of horizontal velocity , v(x,t) is the height

deviating from the equilibrium position of liquid, while c andb represent different diffusion powers. When a = 1,Eqs. (27) and (28) are the generalization of nonlinear

Whitham–Broer–Kaup equations, which can be used todescribe the dispersive long wave in shallow water ( Xu et al,2007; Ping, 2010). Eqs. (27) and (28) have been discussed inGuo and Mei (2012) using the improved fractional sub-equa-

tion method. Let us now solve Eqs. (27), (28) using the pro-posed method of Section 2. To this end, we suppose thatu(x,t) = U(n),v(x,t) = V(n). Then by the use of Eqs. (1) and

(3), the system (27), (28) after integrating once can be turned

into the following system of ODEs with integer orders:

cUþ 1

2kU2 þ kVþ bk2U0 ¼ 0; ð29Þ

cVþ kUV� bk2V0 þ ck3U00 ¼ 0; ð30Þ

with zero constants of integration. Balancing the highest orderderivatives and highest nonlinear terms in Eqs. (29) and (30),we have the following formal solutions:

UðnÞ ¼ a0 þ a1/þ a2/�1; ð31Þ

VðnÞ ¼ b0 þ b1/þ b2/�1 þ b3/

2 þ b4/�2; ð32Þ

where ai(i= 0,1,2),bi(i= 0,1,2,3,4) are constants to be deter-mined later. We substitute (31) and (32) along with Eq. (9) into

Eqs. (29) and (30) and collect all the terms with the samepower of /j,(j= 0, ± 1, ± 2, ± 3). Equating each coefficientto zero yields a set of the following algebraic equations:

/3 : a1b3k� 2b3bk2 þ 2ca1k

3 ¼ 0

/2 : 12a21kþ kb3 þ a1bk

2 ¼ 0

b3cþ kða0b3 þ a1b1Þ � b1bk2 ¼ 0

/ : a1cþ a0a1kþ kb1 ¼ 0

b1cþ kða0b1 þ a1b0 þ a2b3Þ � 2bk2bb3 þ 2a1ck3b ¼ 0

/0 : a0cþ 12kða20 þ 2a1a2Þ þ kb0 þ bk2ða1b� a2Þ ¼ 0

b0cþ kða0b0 þ a1b2 þ a2b1Þ � bk2ðbb1 � b3Þ ¼ 0

/�1 : a2cþ a0a2kþ kb2 ¼ 0

b2cþ kða0b2 þ a1b4 þ a2b0Þ þ 2bk2b4 þ 2ca2bk3 ¼ 0

/�2 : b4cþ kða0b4 þ a2b2Þ þ b2bk2 ¼ 0

12a22kþ kb4 � a2bbk

2 ¼ 0

/�3 : a2b4kþ 2bb4bk2 þ 2a2b

2ck3 ¼ 0

On solving the above algebraic equations by using Maple or

Mathematica, we have the following results:

Case 1

b ¼ b; c ¼ 4k2bðb�1Þffiffiffiffi�bp

3b; a0 ¼ �4kbðb�1Þ

ffiffiffiffi�bp

3b; b < 0; a1 ¼ �2kbðb�1Þ3b

;

a2 ¼ 2kbðb�1Þ3

; b1 ¼ b2 ¼ 0; b0 ¼ 4k2b2ð2b2�b�1Þ9b

; b3 ¼ 2k2b2ð2b2�b�1Þ9b2

;

b4 ¼ 2k2b2ð2b2�b�1Þ9

; c ¼ � b2ð8b2þ2b�1Þ9b2

In this case we have the hyperbolic solutions

uðx; tÞ ¼ �2kbðb�1Þffiffiffiffi�bp

3b1� ½tanhð

ffiffiffiffiffiffiffi�bp

nÞ þ cothðffiffiffiffiffiffiffi�bp

n�� �

vðx; tÞ ¼ 2k2b2ð2b2�b�1Þ3b

2� ½tanh2ðffiffiffiffiffiffiffi�bp

nÞ þ coth2ðffiffiffiffiffiffiffi�bp

n�� �

8<:

ð33Þ

Case 2

b ¼ b; b ¼ b; c ¼ 2ffiffi2p

k2bðb�1Þffiffibp

3b; a0 ¼ �2

ffiffi2p

kbðb�1Þffiffibp

3b; b > 0;

a1 ¼ 23bkbðb� 1Þ; a2 ¼ 2kbðb�1Þ

3;

b0 ¼ b1 ¼ b2 ¼ 0; b3 ¼ �2k2b2ð4b2�5b�1Þ

9b2; c ¼ � b2ð8b2þ2b�1Þ

9b2;

b4 ¼ 2k2b2ð2b2�b�1Þ9

Page 5: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

The fractional complex transformation for nonlinear fractional partial differential equations 63

In this case we have the trigonometric solutions

uðx; tÞ¼ 2kbðb�1Þ3ffiffibp �

ffiffiffi2pþ½tanð

ffiffiffibp

nÞþ cotðffiffiffibp

n�� �

vðx;tÞ¼ �2k2b2ðb�1Þ9b

ð4b�1Þ tan2ðffiffiffibp

nÞ�ð2bþ1Þcot2ðffiffiffibp

n�� �

8<:

ð34Þand

uðx; tÞ¼ �2kbðb�1Þ3ffiffibp

ffiffiffi2p�½tanð

ffiffiffibp

nÞþ cotðffiffiffibp

n�� �

vðx;tÞ¼ �2k2b2ðb�1Þ9b

ð4b�1Þcot2ðffiffiffibp

nÞ�ð2bþ1Þtan2ðffiffiffibp

n�� �

8<:

ð35ÞOn comparing our results (33)–(35) with the results obtained in

(Younis and Zafar, 2013; Dai et al., 2013; Zhu, 2013) weconclude that our results are new.

Example 3. The space–time fractional nonlinear coupled Burgers

equations

These equations are well-known (Zhao et al, 2012) and

have the forms:

Dat u�D2a

x uþ 2uDaxuþ pDa

xðuvÞ ¼ 0; ð36ÞDa

t v�D2ax vþ 2vDa

xvþ qDaxðuvÞ ¼ 0; ð37Þ

Fig. 1 The plots of solutions (22) of the space time fractional ge

where 0 < a 6 1 and p, q are constants. Eqs. (36) and (37)

have been discussed in (Zhao et al, 2012) using the extendedfractional sub-equation method. Let us now solve Eqs. (36)and (37) using the proposed method of Section 2. To this

end we suppose that u(x,t) = U(n), v(x,t) = V(n) . Then bythe use of Eqs. (1) and (3), the system (36) and (37) can beturned into the following system of ODEs with integer orders:

cU0 � k2U00 þ 2kUU0 þ pkðUVÞ0 ¼ 0; ð38ÞcV0 � k2V00 þ 2kVV0 þ qkðUVÞ0 ¼ 0; ð39Þ

Integrating Eqs. (38) and (39) with vanishing the constants ofintegration, we get

cU� k2U0 þ kU2 þ pkUV ¼ 0; ð40ÞcV� k2V0 þ kV2 þ qkUV ¼ 0; ð41ÞBalancing the highest order of derivatives and highest nonlin-ear terms in Eqs. (40) and (41), we have the following formal

solutions:

UðnÞ ¼ a0 þ a1/þ a2/�1; ð42Þ

VðnÞ ¼ b0 þ b1/þ b2/�1; ð43Þ

where ai,bi(i= 0,1,2) are constants to be determined later. We

substitute (42) and (43) along with Eq. (9) into Eqs. (40) and

neralized nonlinear Hirota–Statsuma coupled KdV equations.

Page 6: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

Fig. 2 The plots of solutions (24) of the space time fractional generalized nonlinear Hirota–Statsuma coupled KdV equations.

Fig. 3 The plots of solutions (33) of the space time fractional nonlinear Whitham–Broer–Kaup equations.

64 E.M.E. Zayed et al.

Page 7: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

The fractional complex transformation for nonlinear fractional partial differential equations 65

(41) and collect all the terms with the same power of

/j,(j= 0, ± 1, ± 2). Equating each coefficient to zero yieldsa set of the following algebraic equations:

/2 : �k2a1 þ ka21 þ a1b1pk ¼ 0

�k2b1 þ kb21 þ a1b1qk ¼ 0

/ : b1cþ2b0b1kþqkða0b1þa1b0Þ¼0a1cþ2a0a1kþpkða0b1þa1b0Þ¼0

/0 : a0c�k2ða1b�a2Þþkða20þ2a1a2Þþpkða0b0þa1b2þa2b1Þ¼0b0c�k2ðb1b�b2Þþkðb20þ2b1b2Þþqkða0b0þa1b2þa2b1Þ¼0

/�1 : a2cþ 2a0a2kþ pkða0b2 þ a2b0Þ ¼ 0

b2cþ 2b0b2kþ qkða0b2 þ a2b0Þ ¼ 0

/�2 : k2b2bþ kb22 þ a2b2qk ¼ 0

k2a2bþ ka22 þ a2b2pk ¼ 0

Fig. 4 The plots of solutions (34) of the space time fra

Fig. 5 The plots of solutions (44) of the space time

By solving the above set of algebraic equations by using Maple

or Mathematica, we get the resultsCase 1

b < 0; c ¼ �2k2ffiffiffiffiffiffiffi�bp

; a0 ¼ kffiffiffiffiffiffiffi�bp

; p ¼ q ¼ a1 ¼ b2 ¼ 0;

b0 ¼ kffiffiffiffiffiffiffi�bp

; a2 ¼ �bk; b1 ¼ k

In this case, we have the hyperbolic solutions:

uðx; tÞ ¼ kffiffiffiffiffiffiffi�bp

þ bkffiffiffiffi�bp cothð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ kffiffiffiffiffiffiffi�bp

1� tanhðffiffiffiffiffiffiffi�bp

n� �

(ð44Þ

and

uðx; tÞ ¼ kffiffiffiffiffiffiffi�bp

þ bkffiffiffiffi�bp tanhð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ kffiffiffiffiffiffiffi�bp

1� cothðffiffiffiffiffiffiffi�bp

n� �

(ð45Þ

Case 2

b < 0; p ¼ 0; q ¼ 2; c ¼ �2k2ffiffiffiffiffiffiffi�bp

; a0 ¼ kffiffiffiffiffiffiffi�bp

;

p ¼ a1 ¼ b0 ¼ 0; a2 ¼ �kb; b2 ¼ bk; b1 ¼ k

ctional nonlinear Whitham–Broer–Kaup equations.

fractional nonlinear coupled Burgers equations.

Page 8: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

66 E.M.E. Zayed et al.

In this case the following solutions

uðx; tÞ ¼ kffiffiffiffiffiffiffi�bp

� bkffiffiffiffi�bp cothð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ �kffiffiffiffiffiffiffi�bp

cothðffiffiffiffiffiffiffi�bp

nÞ � bkffiffiffiffi�bp tanhð

ffiffiffiffiffiffiffi�bp

8<: ð46Þ

and

uðx; tÞ ¼ �kffiffiffiffiffiffiffi�bp

� bkffiffiffiffi�bp tanhð

ffiffiffiffiffiffiffi�bp

vðx; tÞ ¼ �kffiffiffiffiffiffiffi�bp

tanhðffiffiffiffiffiffiffi�bp

nÞ � bkffiffiffiffi�bp cothð

ffiffiffiffiffiffiffi�bp

8<: ð47Þ

On comparing our results (44)–(47) with the results obtained in

(Liu et al., 2013) we conclude that our results are new.

Example 4. The space–time fractional nonlinear coupled mKdV

equations

These equations are well-known (Zhao et al., 2012) andhave the forms:

Fig. 6 The plots of solutions (46) of the space time

Fig. 7 The plots of solutions (54) of the space tim

Dat u ¼

1

2D3a

x u� 3u2Daxuþ

3

2D2a

x uþ 3DaxðuvÞ � 3kDa

xu; ð48Þ

Dat v ¼ �D3a

x v� 3vDaxv� 3Da

xuDaxvþ 3u2Da

xvþ 3kDaxv; ð49Þ

where 0 < a 6 1 and k is constant. Eqs. (48) and (49) havebeen discussed in (Zhao et al, 2012) using the extended frac-tional sub-equation method. Let us now solve Eqs. (48) and(49) using the proposed method of Section 2. To this end we

suppose that u(x,t) = U(n),v(x,t) = V(n). Then by the use ofEqs. (1) and (3), the system (48) and (49) can be turned intothe following system of ODEs with integer orders:

ðcþ 3kkÞU� 1

2k3U00 þ kU3 � 3

2k2U0 � 3kUV ¼ 0; ð50Þ

cV0 ¼ �k3V000 � 3kVV0 � 3k2U0V0 þ 3kU2V0 þ 3kkV0; ð51Þ

Balancing the highest order of derivatives and highest nonlin-ear terms in Eqs. (50) and (51), we have the following formalsolutions:

fractional nonlinear coupled Burgers equations.

e fractional nonlinear coupled mKdV equations.

Page 9: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

The fractional complex transformation for nonlinear fractional partial differential equations 67

UðnÞ ¼ a0 þ a1/þ a2/�1; ð52Þ

VðnÞ ¼ b0 þ b1/þ b2/�1; ð53Þ

where ai,bi(i = 0,1,2) are constants to be determined later. We

substitute (52) and (53) along with Eq. (9) into Eqs. (50) and(51) and collect all the terms with the same power of/j,(j= 0, ± 1, ± 2, ± 3). Equating each coefficient to zeroyields the following set of algebraic equations:

/4 : 6a1k3 þ 3a1b1k

3 � 3a21b1k ¼ 0

/3 : �k3a1 þ ka31 ¼ 0

3b21k� 6a0a1b1k ¼ 0

/2 : ðc� 3kkÞb1 þ 8a1bk3 þ 3b0b1k

þ3k2ð2a1b1b� a1b2 � a2b1Þ ¼ 0

3a0a21k� 3

2k2a1 � 3a1b1k ¼ 0

/ : 3kb21b�3kð2a0a1b1b�2a0a1b2þ2a0a2b1Þ¼0

ðcþ3kkÞa1�a1bk3þkð3a20a1þ3a2a

21Þ�3kða0b1þa1b0Þ¼0

/0 : ðc� 3kkÞðb1b� b2Þ þ k3ð2a1b2 � 2a2bÞ þ 3k2ð�2a1b2bþ a1b1b2 � 2a2b1bþ a2b2Þ

þ3kðb0b1b� b0b2Þ � 3kð�a21b2bþ a20b1b� a20b2 þ 2a1a2b1b� 2a1a2b2 þ a22b1Þ ¼ 0

ðcþ 3kkÞa0 þ kð3a30 þ 6a0a2a1Þ � 32k2ða1b� a2Þ � 3kða0b0 þ a1b2 þ a2b1Þ ¼ 0

/�1 : �3b22kþ3kð2a0a1bb2�2a0a2bb1þ2a0a2b2Þ¼0ðcþ3kkÞa2�a2bk3þkð3a20a2þ3a1a22Þ�3kða0b2þa2b0Þ¼0

/�2 : ðc� 3kkÞb2bþ 8a2b2k3 þ 3b0b2bkþ 3kða1b2b2 � 2a2b2bþ a2b1b

2Þþ3kð�a20b2b� 2a1a2b2bþ a22b1b� a22b2Þ ¼ 0

3a0a22kþ 3

2k2a2b� 3a2b2k ¼ 0

/�3 : �3kbb22 þ 6a0a2bb2k ¼ 0

�k3a2b2 þ ka32 ¼ 0

/�4 : �6a2b3k3 þ 3a2b2b2k2 þ 3a22b2bk ¼ 0

By solving the above set of algebraic equations by using Mapleor Mathematica, we get the results

Case 1

b ¼ � 1

4k2; c ¼ k

2; k ¼ k; k ¼ k; a0 ¼

1

2;

a1 ¼ �k; a2 ¼ b2 ¼ 0; b0 ¼ k; b1 ¼ �k:

Hence the solutions of the space–time fractional coupled(mKdV) Eqs. (48), (49) are given by:

uðx; tÞ ¼ 12þ k

ffiffiffiffiffiffiffi�bp

tanhðffiffiffiffiffiffiffi�bp

nÞ;

vðx; tÞ ¼ k2þ k

ffiffiffiffiffiffiffi�bp

tanhðffiffiffiffiffiffiffi�bp

8<: ð54Þ

uðx; tÞ ¼ 12þ k

ffiffiffiffiffiffiffi�bp

cothðffiffiffiffiffiffiffi�bp

nÞ;

vðx; tÞ ¼ k2þ k

ffiffiffiffiffiffiffi�bp

cothðffiffiffiffiffiffiffi�bp

8<: ð55Þ

Case 2.

b ¼ � 1

4; c ¼ 1

2; k ¼ 1; k ¼ k; a0 ¼

1

2;

a1 ¼ b1 ¼ 0; b0 ¼ k; b2 ¼ �1

4:

Hence the solutions of the space–time fractional coupledmKdV Eqs. (48), (49) are given by:

uðx; tÞ ¼ 14½2þ 1ffiffiffiffi

�bp cothð

ffiffiffiffiffiffiffi�bp

n�;

vðx; tÞ ¼ k4½4þ 1ffiffiffiffi

�bp cothð

ffiffiffiffiffiffiffi�bp

n�

8<: ð56Þ

and

uðx; tÞ ¼ 14½2þ 1ffiffiffiffi

�bp tanhð

ffiffiffiffiffiffiffi�bp

n�;

vðx; tÞ ¼ k4½4þ 1ffiffiffiffi

�bp tanhð

ffiffiffiffiffiffiffi�bp

n�:

8<: ð57Þ

On comparing our results (54)–(57) with the results obtained in(Liu et al., 2013) we conclude that our results are new.

4. Physical explanations of some obtained solutions

In this paper, we have obtained three types of solutions

namely, hyperbolic, trigonometric and rational function solu-tions. In this section, we have presented some graphs of thesetypes of solutions to visualize the underlying mechanism of theoriginal equations. Using the mathematical software Maple 15,

we will give some plots for these solutions.

4.1. The Space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations

The obtained solutions of these equations incorporate threetypes of explicit solutions namely hyperbolic, trigonometric

and rational function solutions (22)–(26) respectively. Fromthese explicit results, the solutions (22) are kink solutions,(23) are singular kink solutions, while (24) and (25) are peri-

odic solutions and (26) are rational solutions. For more conve-nience the graphical representations of (22) and (24) are shownin Figs. 1 and 2 respectively.

4.2. The Space–time fractional nonlinear Whitham–Broer–Kaupequations

The obtained solutions of these equations incorporate two types

of explicit solutions namely hyperbolic and trigonometric

Page 10: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

Fig. 8 The plots of solutions (57) of the space time fractional nonlinear coupled mKdV equations.

68 E.M.E. Zayed et al.

function solutions (33)–(35) respectively. From these explicitresults, the solutions (33) represent kink solutions while (34)

and (35) are periodic solutions. For more convenience thegraphical representations of (33) and (34) are shown in Figs. 3and 4 respectively.

4.3. The space–time fractional nonlinear coupled Burgers

equations

The obtained solutions of these equations incorporate hyper-bolic function solutions (44)–(46) which represent the kinkand singular kink solutions. For more convenience the graph-ical representations of (44) and (46) are shown in Figs. 5 and 6

respectively.

4.4. The space–time fractional nonlinear coupled mKdVequations

The obtained solutions of these equations incorporate hyper-bolic function solutions (54)–(57) which represent the kink

and singular kink solutions. For more convenience the graph-ical representations of (54) and (57) are shown in Figs. 7 and 8respectively.

5. Some conclusions

In this paper, we have extended successfully the modified

extended tanh- function method to solve four nonlinear frac-tional partial differential equations. As applications, abundantnew exact solutions for the space–time fractional generalizednonlinear Hirota–Satsuma coupled KdV equations, the

space–time fractional nonlinear Whitham–Broer–Kaup equa-tions, the space–time fractional nonlinear coupled Burgersequations and the space–time fractional nonlinear coupled

mKdV equations have been successfully found. As one cansee, the nonlinear fractional complex transformation (6) forn is very important, which ensures that a certain fractional par-

tial differential equation can be turned into another ordinarydifferential equation of integer order, whose solutions can beexpressed in the form (8) where /(n) satisfies the Riccati

Eq. (9). Besides, as this method is based on the homogeneousbalancing principle, it can also be applied to other nonlinear

fractional partial differential equations, where the homoge-neous balancing principle is satisfied.

Acknowledgments

The authors wish to thank the referees for their comments.

References

Abazari, R., Abazari, M., 2012. Numerical simulation of generalized

Hirota–Satsuma KdV equation by RDTM and DTM. Commun.

Nonlinear Sci. Numer. Simul. 17, 619–629.

Cui, M., 2009. Compact finite difference method for fractional

diffusion equation. J. Comput. Phys. 228, 7792–7804.

Dai, C.Q., Wang, X.G., Zhou, G.Q., 2013. Stable light-bullet solutions

in the harmonic and parity-time-symmetric potentials. Phys. Rev.

A 89, 013834–013838.

Dai, C.Q., Wang, Y.Y., 2014. Note on the equivalence of different

variable separation approaches for nonlinear evolution equations.

Commun. Nonlinear Sci. Numer. Simul. 19, 19–28.

El-sayed, A.M.A., Behiry, S.H., Raslan, W.E., 2010. The Adomian’s

decomposition method for solving an intermediate fractional

advection-dispersion equation. Comput . Math. Appl 59, 759–1765.

El-Sayed, A.M.A., Gaber, M., 2006. The Adomian decomposition

method for solving partial differential equations of fractal order in

finite domains. Phys. Lett. A 359, 175–182.

El-sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., 2009. Exact solutions of

fractional-order biological population model. Commun. Theor.

Phys. 52, 992–996.

El-Wakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R., 2002.

Modified extended tanh-function method for solving nonlinear

partial differential equations. Phys. Lett. A 299, 179–188.

El-Wakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R., 2005.

Modified extended tanh-function method and its applications to

nonlinear equations. Appl. Math. Comput. 161, 403–412.

Gepreel, K.A., Omran, S., 2011. Exact solutions for nonlinear partial

fractional differential equations. Chin. Phys. B 21, 110204–110210.

Guo, S., Mei, L., 2011. fractional variational iteration method using

He’s polynomials. Phys. Lett. A 374, 309–331.

Page 11: The fractional complex transformation for nonlinear ...partial differential equations in the sense of the modified ... solving nonlinear fractional partial differential equations

The fractional complex transformation for nonlinear fractional partial differential equations 69

Guo, S., Mei, L., Li, Y., Sun, Y., 2012. The improved fractional sub-

equation method and its applications to the space–time fractional

differential equations in fluidmechanics. Phys. Lett. A 376, 407–411.

He, J.H., 1999. Homotopy perturbation technique. Comput. Methods

Appl. Mech. Eng. 178, 257–262.

He, J.H., 2000. A coupling method of homotopy technique and

perturbation technique for nonlinear problems. Int. J. Nonlinear

Mech. 35, 37–43.

He, J.H., 2013. Exp-function method for fractional differential

equations. Int. J. Nonlinear Sci. Numer. Simul. 14, 353–366.

He, J.H., Li, Z.B., 2012. Converting fractional differential equation

into partial differential equation. Therm. Sci. 16, 331–334.

Hristov, J., 2010. Heat balance integral to fractional (half-time) heat

diffusion sub-model. Therm. Sci. 14, 291–316.

Huang, Q., Huang, G., Zhan, H., 2009. A finite element solution for

the fractional advection–dispersion equation. Adv. Water Resour.

31, 1578–1589.

Jumarie, G., 2006a. Lagrange characteristic method for solving a class

of nonlinear partial differential equations of fractional order. Appl.

Math. Lett. 19, 873–880.

Jumarie, G., 2006b. Modified Riemann–Liouville derivative and

fractional Taylor series of nondifferentiable functions further

results. Comput. Math. Appl 51, 1367–1376.

Kilbas, A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and

Applications of Fractional Differential Equations. Elsevier, San

Diego.

Li, Z.B., He, J.H., 2010. Fractional complex transform for fractional

differential equations. Math. Comput. Appl. 15, 970–973.

Li, Z.B., 2010. An extended fractional complex transform. J. Nonlin-

ear Sci. Numer. Simul. 11, 335–337.

Li, Z.B., Zhu, W.H., He, J.H., 2012. Exact solutions of time-fractional

heat conduction equation by the fractional complex transform.

Therm. Sci. 16, 335–338.

Liu, W.J., Tian, B., Lei, M., 2013. Elastic and inelastic interactions

between optical spatial solitons in nonlinear optics. Laser Phys. 23,

095401.

Lu, B., 2012. Backlund transformation of fractional Riccati equation

and its applications to nonlinear fractional partial differential

equations. Phys. Lett. A 376, 2045–2048.

Miller, K.S., Ross, B., 1993. An Introduction to the Fractional

Calculus and Fractional Differential Equations. John Wiley &

Sons, New York, NY,USA.

Odibat, Z., Momani, S., 2008. A generalized differential transform

method for linear partial differential equations of fractional order.

Appl. Math. Lett 21, 194–199.

Ping, Z., 2010. New exact solutions to breaking solution equations and

Whitham–Broer–Kaup equation. Appl. Math. Comput. 217, 1688–

1696.

Podlubny, I., 1999. Fractional Differential Equations. Academic Press,

San Diego, Calif, USA.

Safari, M., Ganji, D.D., Moslemi, M., 2009. Application of He’s

variational iteration method and Adomian’s decomposition

method to the fractional KdV–Burgers–Kuramoto equation.

Comput. Math. Appl. 58, 2091–2097.

Soliman, A.A., 2006. The modified extended tanh-function method for

solving Burgers-type equation. Physica A 361, 394–404.

Song, L.N., Zhang, H.Q., 2009. Solving the fractional BBM-Burgers

equation using the homotopy analysis method. Chaos Solitons

Fract. 40, 1616–1622.

Wu, Y., Geng, X., 1999. A generalized Hirota–Satsuma coupled

KdV equation and Miura transformations. Phys. Lett. A 255,

259–264.

Wu, G.C., Lee, E.W.M., 2010. Fractional variational iteration method

and its application. Phys. Lett. A 374, 2506–2509.

Xu, T., Li, J., Zhang, H., Zhang, Y., Yao, Z., Tian, B., 2007. New

extension of the tanh-function method and application to the

Whitham–Broer–Kaup shallow water model with symbolic com-

putation. Phys. Lett. A 369, 458–463.

Yang, X.J., Baleanu, D., 2012. Fractal heat conduction problem

solved by local fractional variation iteration method. Thermal

Science.

Younis, M., Zafar, A., 2013. Exact solution to nonlinear Burger’s

equation of fractional order using the fractional complex transfor-

mation and (G0/G) – expansion method. Nonlinear Sci. Lett. A 4,

91–97.

Yildirim, A., Gulkanat, Y., 2010. Analytical approach to fractional

Zakharov–Kuznetsov equations by He’s homotopy perturbation

method. Commun. Theor. Phys. 53, 1005–1010.

Zhang, S., Zhang, H.Q., 2011. Fractional sub-equation method and its

applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–

1073.

Zhao, J., Tang, B., Kumar, S., Hou, Y., 2012. The extended fractional

sub-equation method for nonlinear fractional differential equa-

tions. Math. Probl. Eng. 2012, 11. Article ID 924956.

Zheng, B., 2012. (G0/G)-expansion method for solving fractional

partial differential equations in the theory of mathematical physics.

Commun. Theor. Phys. 58, 623–630.

Zhu, H.P., 2013. Nonlinear tunneling for controllable rogue waves in

two dimensional graded-index wave guides. Nonlinear Dyn. 72,

873–882.