the forced response of a single-degree-of ... · web viewthe time-domain response of a...

28
m k c y f(t) THE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email: [email protected] December 19, 2013 Consider a single-degree-of-freedom system. Where m = mass c = viscous damping coefficient k = stiffness y = displacement of the mass f(t ) = applied force Note that the double-dot denotes acceleration. The free-body diagram is ¨ y f(t) 1

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

m

k c

y

f(t)

THE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE

Revision C

By Tom IrvineEmail: [email protected]

December 19, 2013

Consider a single-degree-of-freedom system.

Where

m = massc = viscous damping coefficientk = stiffnessy = displacement of the mass

f(t) = applied force

Note that the double-dot denotes acceleration.

The free-body diagram is

m

k y c y

y

f(t)

1

Page 2: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Summation of forces in the vertical direction

∑ F = m y (1)

m y=−c y−ky+ f ( t ) (2)

m y+c y+ky= f ( t ) (3)

Divide through by m,

y +( cm ) y+( km ) y=( 1m ) f ( t )

(4)

By convention,

( c/m)=2ξωn (5)

(k /m )=ωn2 (6)

where

n is the natural frequency in (radians/sec) is the damping ratio

By substitution,

y +2 ξ ωn y+ωn 2 y= 1

mf ( t )

(7)

Now apply an impulse force at t=0 via a pair of step functions.

f ( t )=F [u ( t )−u( t−ε )] (8)

where ε is a very small time step.

2

Page 3: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The governing equation becomes

y +2 ξ ωn y+ωn 2 y= 1

mF [u( t )−u ( t−ε )]

(9)

Now consider that the system undergoes oscillation with ξ < 1.

Take the Laplace transform of each side.

L { y +2 ξ ωn y+ωn 2 y }=L { 1

mF [u ( t )−u( t−ε )]}

(10)

s2Y ( s )−sy (0 )− y ' (0)+2 ξ ωnsY (s )−2 ξ ωn y (0 )

+ωn 2Y ( s )= F

m [1s −1s

exp(−ε s )]

(11)

{s2+2 ξ ωn s+ωn 2}Y ( s )−{s+2 ξ ωn} y (0 )− y ' (0 )= Fm [1s−1

sexp (−ε s )]

(12)

{s2+2 ξ ωn s+ωn 2}Y ( s )= Fm [1s −1

sexp (−ε s )]+ {s+2 ξ ωn } y (0)+ y ' (0 )

(13)

s2+2 ξ ωn s+ωn 2=(s+ξ ωn)

2−(ξ ωn )2+ωn 2 (14)

s2+2 ξ ωn s+ωn 2=(s+ξ ωn)2+ωn 2 (1−ξ2 ) (15)

3

Page 4: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Let

ωd=ωn√1−ξ2 (16)

Substitute equation (16) into (15).

s2+2 ξ ωn s+ωn 2=(s+ξ ωn)

2+ωd2 (17)

{ (s+ξ ωn)2+ωd2}Y (s )= Fm [1s −1

sexp(−ε s )]+{s+2 ξ ωn} y (0 )+ y '(0 )

(18)

Y ( s )=

Fm s {1(s+ξ ωn)2+ωd2 }−Fm s {exp (−ε s )

(s+ξ ωn )2+ωd2 }+{s+2 ξ ωn

(s+ξ ωn )2+ωd2 }y (0 )+{1(s+ξ ωn )2+ωd2 }y ' (0 )

(19)

Divide the right-hand-side of equation (19) into three parts.

Y ( s )= Y 0 (s )+Y 1( s )+Y 2( s ) (20)

where

Y 0 (s )=Fm s {1 (s+ξ ωn )2+ωd2 }

(21)

4

Page 5: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Y 1( s )=− Fm s {exp(−ε s )

(s+ξ ωn )2+ωd2 } (22)

Y 2 (s )= {s+2 ξ ωn(s+ξ ωn)2+ωd2 } y (0)+{1(s+ξ ωn)2+ωd2 } y ' (0)

(23)

Consider Y0(s) from equation (21).

Y 0 (s )=Fm s {1 (s+ξ ωn )2+ωd2 }

(24)

Expand into partial fractions using Reference 1.

{Fm s }{1 s2+2 ξ ωns+ωn 2 } =

Fm ωn

2 {1s }−(Fm ωn 2 ){s+ξωn (s+ξ ωn)2+ωd 2 }−(Fm ωn 2 )(ξωn

ωd ){ωd (s+ξ ωn )2+ωd 2 } (25)

5

Page 6: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The inverse Laplace transform per Reference 1 is

y0 ( t )=F

m ωn 2 u( t )−

Fm ωn

2 exp (−ξ ωn t ) [cos (ωd t )+ξωn

ωdsin (ωd t )] , t≥0

(26)

y0( t )=F

m ωn 2 {u ( t )−exp (−ξ ωn t ) [cos (ωd t )+

ξωn

ωdsin (ωd t )]} , t≥0

(27)

Now consider the term

Y 1( s )=− Fm s {exp(−ε s )

(s+ξ ωn )2+ωd2 } (28)

Expand into partial fractions using Reference 1.

{Fm s }{exp(−ε s ) s2+2 ξ ωns+ωn

2 } =−Fm ωn

2 {1s }exp(−ε s )

+(Fm ωn 2 ){s+ξωn (s+ξ ωn )2+ωd 2 }exp (−ε s )

+(Fm ωn 2 )(ξωn

ωd ){ωd (s+ξ ωn)2+ωd 2 }exp(−ε s )

(29)

6

Page 7: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Take the inverse Laplace transform from Appendices A, B & C.

y1( t )= −Fm ωn

2 u (t−ε )+ (Fm ωn 2 ) exp [−ξ ωn (t−ε ) ] cos [ ωd (t−ε ) ]

+(Fm ωn 2 )(ξωn

ωd ) exp [ −ξ ωn (t−ε ) ] sin [ ωd ( t−ε ) ]

for t≥ε(30)

y1( t )=Fm ωn

2 {−u (t−ε )+exp [−ξ ωn ( t−ε ) ] {cos [ ωd ( t−ε ) ]+(ξωn

ωd ) sin [ ωd (t−ε ) ]}}for t≥ε

(31)

The inverse Laplace transform from Reference 2 for the natural response is

y2 (t )=[ y (0 )]exp (−ξωn t )cos (ωd t )+[ ξωn y (0 )+ y ' (0)ωd ]exp (−ξωn t )sin (ωd t )

(32)

7

Page 8: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

y2 (t )= y (0 )exp (−ξωn t ){cos (ωd t )+[ξωnωd ]sin (ωd t )}+ y ' (0 )[1ωd ]exp (−ξωn t )sin (ωd t )

(33)

The final displacement solution is

y ( t )= y0( t )+ y1( t )+ y2 ( t ) (34)

y (t )= y (0 ) exp (−ξ ωn t ){cos (ωd t )+[ξωnωd ]sin (ωd t )}+ y ' (0 )[1ωd ] exp (−ξ ωn t )sin (ωd t )

+Fm ωn

2 {u ( t )−exp (−ξ ωn t ) [cos (ωd t )+ξωn

ωdsin (ωd t )]} ,

0≤t<ε

(35)

8

Page 9: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

y (t )= y (0 ) exp (−ξ ωn t ){cos (ωd t )+[ξωnωd ]sin (ωd t )}+ y ' (0 )[1ωd ] exp (−ξ ωn t )sin (ωd t )

+Fm ωn

2 {u ( t )−exp (−ξ ωn t ) [cos (ωd t )+ξωn

ωdsin (ωd t )]}

+Fm ωn

2 {−u ( t−ε )+exp [−ξ ωn ( t−ε ) ] {cos [ ωd ( t−ε ) ]+ξωn

ωdsin [ ωd (t−ε ) ]}} ,

t≥ε

(36)

The response for a Dirac Delta impulse is derived in Appendix D.

References

1. T. Irvine, Partial Fractions in Shock and Vibration Analysis, Revision G, Vibrationdata, 2011.

2. T. Irvine, Table of Laplace Transforms, Revision I, Vibrationdata, 2011.3. T. Irvine, Free Vibration of a Single-Degree-of-Freedom System, Revision B,

Vibrationdata, 2005.

9

Page 10: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

APPENDIX A

L−1{ Fm ωn

21s exp (−ε s )}= F

m ωn 2 u (t−ε )

(A-1)

APPENDIX B

Consider the generic term

F (s )={ s+ λ (s+α )2+β2 }exp(− ρ s )

(B-1)

Shift in the s-plane.

s=s+α (B-2)

F (s )={ s−α+λ { s2

+β2¿}exp [−ρ ( s−α ) ]

(B-3)

F (s )={ s−α+λ { s2

+β2¿}exp [−ρ s ]exp [ ρ α ]

(B-4)

F (s )={ s { s2

+β2¿}exp [−ρ s ] exp [ ρ α ]+{−α+λ

{ s2 + β2¿}exp [−ρ s ] exp [ ρ α ]

(B-5)

10

Page 11: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

f ( t )=exp (ρ α ) exp (−α t ) cos [ β (t− ρ ) ] + [−α+λβ ] exp ( ρ α ) exp (−α t ) sin [ β ( t−ρ ) ] ,

t>ρ

(B-6)

f ( t )=exp ( ρ α ) exp (−α t ) {cos [ β ( t−ρ ) ] + [−α+λβ ]sin [ β ( t−ρ ) ]}t>ρ (B-7)

f(t) = 0 t < ρ (B-8)

Note that the exp (−α t ) term accounts for the phase shift.

Recall the term

Y 12(s )=( Fm ωn

2 ){ s+ξωn

(s+ξ ωn)2+ωd 2 }exp(−ε s ) (B-9)

Compare the term in equation (B-9) to the generic term from (B-1).

F (s )={ s+ λ (s+α )2+β2 }exp(− ρ s )

(B-10)

11

Page 12: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The inverse Laplace transform of equation (B-9) is

y12( t )= ( Fm ωn

2 )exp (ε ξ ωn ) exp (−ξ ωn t ) cos [ ωd (t−ε ) ] (B-11)

y12( t )= ( Fm ωn

2 ) exp [−ξ ωn (t−ε ) ] cos [ ωd (t−ε ) ] (B-12)

12

Page 13: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

APPENDIX C

Consider the generic term

F (s )={ λ (s+α )2+β2 }exp(− ρ s )

(C-1)

Shift in the s-plane.

s=s+α (C-2)

F (s )={ λ { s2

+β2¿}exp [−ρ ( s−α ) ]

(C-3)

F (s )={ λs2+β2 }exp [−ρ s ] exp [ ρ α ]

(C-4)

f ( t )= [λβ ] exp (ρ α )exp (−α t ) sin [ β (t−ρ ) ]

t>ρ(C-5)

f ( t )= [λβ ] exp [ −α ( t− ρ ) ] sin [ β (t−ρ ) ]

t>ρ

13

Page 14: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

(C-6)

f(t) = 0 t < ρ (C-7)

Note that the exp (−α t ) term accounts for the phase shift.

Y 13(s )=( Fm ωn

2)( ξωn

ωd ){ ωd (s+ξ ωn )2+ωd 2 }exp(−ε s)

(C-8)

Compare with the generic term

F (s )={ λ (s+α )2+β2 }exp(−ρ s )

(C-9)

F (s )={ λs2+β2 }exp [−ρ s ] exp [ ρ α ]

(C-10)

f ( t )= [λβ ] exp (ρ α )exp (−α t ) sin [ β (t−ρ ) ]

t>ρ (C-11)

y13( t )= −(Fm ωn 2 )(ξωn

ωd ) exp [ −ξ ωn (t−ε ) ] sin [ ωd (t−ε ) ]

t>ε (C-12)

14

Page 15: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

APPENDIX D

Dirac Delta Impulse

y +2 ξ ωn y+ωn 2 y= 1

mf ( t )

(D-1)

Let I = total impulse

f ( t )= I δ ( t ) (D-2)

.

y +2 ξ ωn y+ωn 2 y= I

mδ( t )

(D-3)

s2Y ( s )−sy (0 )− y ' (0)+2 ξ ωnsY (s )−2 ξ ωn y (0 )

+ωn 2Y ( s )= I

m

(D-4)

{s2+2 ξ ωns+ωn 2}Y ( s )− {s+2 ξ ωn } y ( 0)− y '(0 )= I

m (D-5)

{ (s+ξ ωn)2+ωd2}Y (s )= Im

+ {s+2 ξ ωn } y (0 )+ y' (0 ) (D-6)

15

Page 16: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Y ( s )=

Im {1(s+ξ ωn)2+ωd2 }+{s+2 ξ ωn

(s+ξ ωn )2+ωd2 }y (0 )+{1(s+ξ ωn )2+ωd2 }y ' (0 )

(D-7)

The displacement is

y ( t )= y (0 ) exp (−ξ ωn t ){cos (ωd t )+[ξωnωd ]sin (ωd t )}+ y ' (0 )[1ωd ] exp (−ξ ωn t )sin (ωd t )

+Im [1ωd ] exp (−ξ ωn t )sin (ωd t )

(D-8)

The displacement for zero initial conditions is

y (t )= Im [ 1ωd ] exp (−ξ ωn t ) sin (ωd t )

(D-9)

The impulse response function is

16

Page 17: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

hd ( t )= 1mωd

[exp (−ξωn t )] [sin ωd t ]

(D-10)

The corresponding Laplace transform is

Hd ( s )= 1m [ 1

s2+2ξωn s+ωn2 ]= 1m [ 1

( s+ξωn )2+ωd2 ]

(D-11)

y (t )=−ξ ωn y (0) exp (−ξ ωn t ){cos (ωd t )+[ξωnωd ]sin (ωd t )}+ y (0) exp (−ξ ωn t ) {−ωd sin (ωd t )+ξωncos (ωd t )}

− y ' (0 )[ξ ωnωd ] exp (−ξ ωn t )sin (ωd t )

+ y '( 0) exp (−ξ ωn t )cos (ωd t )

−Im [ξ ωnωd ] exp (−ξ ωn t ) sin (ωd t )

+Im exp (−ξ ωn t )cos (ωd t )

(D-12)

17

Page 18: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

y (t )= − y (0) exp (−ξ ωn t )[ξ2ωn2

ωd+ωd ]sin (ωd t )

+ y '( 0) exp (−ξ ωn t )[cos (ωd t )−ξ ωnωd

sin (ωd t )]+ Im

exp (−ξ ωn t )[cos (ωd t )−ξ ωnωd

sin (ωd t )](D-13)

y (t )= − y (0) exp (−ξ ωn t )[ξ2ωn2+ω

d2

ωd2 ]sin (ωd t )

+ y '( 0) exp (−ξ ωn t )[cos (ωd t )−ξ ωnωd

sin (ωd t )]+ Im

exp (−ξ ωn t )[cos (ωd t )−ξ ωnωd

sin (ωd t )](D-14)

The velocity for zero initial conditions is

y (t )= Im

exp (−ξ ωn t ) [cos (ωd t )−ξ ωnωd

sin (ωd t )]

(D-15)

The impulse response function is

hv( t )= 1m

exp (−ξωn t ) [cos (ωd t )−ξ ωnωd

sin (ωd t )]

(D-16)

18

Page 19: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The corresponding Laplace transform is

H v(s )= 1m [ s

s2+2ξωn s+ωn2 ]=1m [ s

(s+ξωn)2+ωd2 ]

(D-17)

19

Page 20: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The acceleration for zero initial conditions is

y (t )= Imδ ( t ) −2ξωn y ( t )−ωn2 y ( t )

(D-18)

y ( t )=

Im { δ ( t )−2ξωnexp (−ξ ωn t )[cos (ωd t )−

ξ ωnωd

sin (ωd t ) ]−ωn2[1ωd ] exp (−ξ ωn t )sin (ωd t ) }

(D-19)

y (t )= Im { δ ( t )+exp (−ξ ωn t )[−2 ξωn cos (ωd t )+

(2 ξ ωn )2−ωn2

ωdsin (ωd t )] }

(D-20)

y (t )= Im { δ( t )+exp (−ξ ωn t )[−2ξωn cos (ωd t )+

ωn2

ωd[ (2ξ )2−1 ]sin (ωd t ) ] }

(D-21)

The Laplace transform is

20

Page 21: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

Y a (s )= Im {1+

−2ξωn s−2ξ2ωn2+ωn2 [ (2ξ )2−1 ]

s2+2ξωn s+ωn2 }

(D-22)

Y a (s )= Im {1+

−2ξωn s−ωn2

s2+2ξωn s+ωn2

}

(D-23)

Y a (s )= Im {s

2+2 ξωn s+ωn2

s2+2 ξωn s+ωn2

+−2ξωns−ωn2

s2+2ξωn s+ωn2}

(D-24)

Y a (s )= Im { s2

s2+2ξωn s+ωn2}

(D-25)

The corresponding transfer function in terms of the Laplace transform is

Ha (s )= 1m [ s2

s2+2ξωn s+ωn2 ]= 1

m [ s2

(s+ξωn )2+ωd2 ]

(D-26)

21

Page 22: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

APPENDIX E

Dirac Delta Impulse, Transmitted Force

Again, the impulse response function for displacement is

hd ( t )= 1mωd

[exp (−ξωn t )] [sin ωd t ]

(E-1)

The impulse response function for velocity is

hv( t )= 1m

exp (−ξωn t ) [cos (ωd t )−ξ ωnωd

sin (ωd t )]

(E-2)

The transmitted force f t (t) is

f t ( t )= c y+ky (E-3)

f t ( t )=m [ cm y+ km y ] (E-4)

f t ( t )=m [2ξωn y+ωn2 y ] (E-5)

22

Page 23: THE FORCED RESPONSE OF A SINGLE-DEGREE-OF ... · Web viewTHE TIME-DOMAIN RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO AN IMPULSE FORCE Revision C By Tom Irvine Email:

The impulse response function for transmitted force is

hft( t )= 2ξωnexp (−ξωnt ) [cos (ωd t )−ξ ωnωd

sin (ωd t )]+ωn2

ωd[exp (−ξωnt ) ] [sin ωd t ]

(E-6)

hft ( t )= exp(−ξωnt ) [ 2ξωn cos (ωd t )− 2ξ2 ω

n2

ωdsin (ωd t )]

+exp (−ξωnt ) [ωn2

ωdsin ωd t ]

(E-7)

h ft( t )= exp(−ξωnt ) [ 2ξωn cos (ωd t )+(ωn2

ωd− 2ξ2 ω

n2

ωd )sin (ωd t )] (E-8)

The final transmitted force impulse response function is

h ft( t )= exp(−ξωnt ) [ 2ξωn cos (ωd t )+ωn2( 1−2 ξ2 ωd )sin (ωd t )]

(E-9)

Note that the transmitted force impulse response function is essentially the same as the absolute acceleration impulse response function for the case of base excitation.

23