the erinda and trakula networks and update on inelastic scattering

48
Seite 1 Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de The ERINDA and TRAKULA networks and update on inelastic scattering measurements A. R. Junghans Institute of Radiation Physics Helmholtz-Zentrum Dresden-Rossendorf Nuclear data in the context of german energy research strategy ERINDA (EURATOM FP7) Nuclear reaction studies relevant to transmutation TRAKULA (German Federal Ministery for Education and Science) Update on inelastic scattering at nELBE

Upload: others

Post on 12-Sep-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 1Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

The ERINDA and TRAKULA networks and update on inelastic scattering measurements

A. R. JunghansInstitute of Radiation Physics

Helmholtz-Zentrum Dresden-Rossendorf

Nuclear data in the context of german energy research strategyERINDA (EURATOM FP7)

Nuclear reaction studies relevant to transmutation

TRAKULA (German Federal Ministery for Education and Science)Update on inelastic scattering at nELBE

Page 2: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 2Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Transmutation in the media

Frankfurter Allgemeine ZeitungJune 22, 2011http://www.faz.net/aktuell/wissen/physik-chemie/transmutation

-die-zauberhafte-entschaerfung-des-atommuells-1655406.html

Page 3: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 3Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

German energy research strategy

http://www.acatech.de/de/publikationen/positionen.html http://www.bmwi.de/BMWi/Navigation/energie,did=427698.html

Why Germany needs compentence in nuclear technology for deconstruction, reactor safety, final storage, and radiation protection

Research for environmental friendly, reliable and affordableenergy supplies –6. Energy research programme of the federal governmentJuly 2011

Recommendations for waste management:…Partioning and Transmutation as a strategy toreduce long term radiotoxicity of highly radioactive waste.

Research concerning final storage:Cooperation in international activities (development of components)to reduce or omit radioactive waste by Partitioning and Transmutation.

Page 4: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 4Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

The ERINDA project aims for a coordination of European efforts

to exploit up-to-date neutron beam technology for novel research on advanced concepts for nuclear fission reactors and the transmutation of radioactive waste.

Transnational access (2500 hours of beam time) including technical and travel support for the user groups (~ 25 experiments)

Supporting Scientific Visits: 10 short term visits (~ 8 weeks each) of scientists to the consortium institutes

• Scientific workshops (4): Kick-off meeting at HZDR Dresden January 27-28, 2011

•Deadline for the next proposal evaluation: March 15, 2012

Project coordinator: A.R.J. www.erinda.org

Page 5: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 5Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

ERINDA Partners:

Page 6: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 6Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Courtesy: René

Reifarth

1 keV-400 keVFlight path: 5 cm -

1 m

Available in 2013

Page 7: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 7Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

ERINDA Approved Experiments 03-2011

600 hours supported beam time + 700 hours from 2nd PAC meeting 24./25.10.11And several scientific visits

1 R. Bedogni (INFN-LNF, Frascati, Italy)40 beam hours at UU-TSL, Uppsala, Sweden

for the Characterisation of a novel neutron spectrometer based on a single moderating sphere.2 C. Domingo (U. Barcelona, Spain)40 beam hours at UU-TSL, Uppsala, Sweden

for the Testing the UAB Extended Range Bonner Sphere Spectrometer for high energy neutrons.

3

A. Plompen et al. (JRC-IRMM)140 beam hours at nELBE, Dresden, Germany for the measurement of the 2H(n,n)2H cross section at En= 0.1-1 MeV using the TOF method.4

T. Belgya (IKI, Budapest, Hungary)130 beam hours at nELBE, Dresden, Germany for the determination of the photon strength function in 114Cd.5

A. Oberstedt (U. Oerebro, Sweden)200 beam hours at IKI, Budapest, Hungary for the measurement of correlations of prompt gamma rays and fission fragments in 235U(n,f).6

R. Bedogni (INFN-LNF, Frascati, Italy)25 beam hours at PTB, Braunschweig, Germany for the generation of a shaped neutron spectrum.7 C. Domingo (U. Barcelona, Spain)25 beam hours at PTB, Braunschweig, Germany for the measurement of the total neutron spectrum close to the target of the PIAF reference monoenergetic neutron fields.

Page 8: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 8Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Monday, January 16th, Wednesday to 18th, 2012NPI Řež, Prague, Czech RepublicLocation: Vila Lanna, Prague

ERINDA Facility Presentations•

Results from the ERINDA Experiments

Reports of the Scientific Visitors

Scientific workshop :•

data evaluation and uncertainties

cross section measurements•

experimental techniques, uncertainties

fission properties•

current and future facilities.

1st ERINDA Progress Meeting and Scientific Workshop

Contact:Dr. Vladimir Wagner Nuclear Physics Institute of ASCR, CZ-250 68 Řež, Czech Republic E_mail: [email protected]

Page 9: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 9Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

TRAnsmutationsrelevante Kernphysikalische Untersuchungen Langlebiger Aktiniden

Joint project for maintenance of compentencies in nuclear safety-

and radiation research: •Production and use of fast neutrons to investigate inelastic neutron scattering and fission of minor actinides ( Roland Beyer, Toni Kögler, Collaboration with University of Mainz and PTB)•MeV Gamma-Spectroscopy and development of high-resolution detectors (Compton-

camera)•Installation of an underground laboratory for measuring low radioactivities•Production and use of thin actinide targets (University of Mainz) •Characterization of long-lived radioisotopes using AMS•Graduate seminars for young scientist involved

University of Mainz –

February 2012 “Radiochemistry of the actinides”

Project coordinator: A.R.J.www.hzdr.de/TRAKULA

02NUK13A

Page 10: The ERINDA and TRAKULA networks and update on inelastic scattering

Test Experiment of Compton CameraCamera Setup

Primary Detector: DSSD•

Secondary Detector: HPGe unsegmented•

60Co source of 50 MBq, collimated•

Coincidence rate: ~5 Hz

Both anticorrelation lines clearly visible; good energy resolution in both detectors

Courtesy: Roman Gernhäuser

Page 11: The ERINDA and TRAKULA networks and update on inelastic scattering
Page 12: The ERINDA and TRAKULA networks and update on inelastic scattering
Page 13: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 13Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Production and use of thin actinide targets

Production of thin homogeneous isotopically pure actinide layers

by Klaus Eberhardt, Alessio Vascon , Johannes Gutenberg Universität Mainz

Molecular plating technique: Deposition from organic media as a molecule (nitrate ⇒ oxide)

Surface characterisation by scanning microscopy (SEM, AFM,...)

Calibration of a beam monitor: 235U Fission chamber with PTB•

Measurements on photodisintegration of 239Pu at ELBE•

Neutron-induced fission cross section of 242Pu at nELBE•

Storage and Handling at HZDR Radiochemical Laboratories •

Dedicated glove box for handling actinide targets built. •

Fission chamber development ongoing•

Development of fast preamplifier readout electronics

Page 14: The ERINDA and TRAKULA networks and update on inelastic scattering

Electrochemical deposition - Molecular Plating (MP)•

Deposition from organic media as a molecule (nitrate ⇒ oxide)

Solvent: isopropanol or isobutanol

Deposition time: 0.5 h – 14 h

Current density: mA/cm2

Voltage: 100 V - 1200 V

Chemical purification prior to deposition possible

Recovery and chemical purification of used target material (248Cm: >150.000 $/mg)

Small and simple set-up

Components easy to replace in order to avoid cross-contamination

Deposition from organic media as a molecule (nitrate ⇒ oxide)

Solvent: isopropanol or isobutanol

Deposition time: 0.5 h – 14 h

Current density: mA/cm2

Voltage: 100 V - 1200 V

Chemical purification prior to deposition possible

Recovery and chemical purification of used target material (248Cm: >150.000 $/mg)

Small and simple set-up

Components easy to replace in order to avoid cross-contamination

Deposition yield: up to 90%Target thickness: mg/cm2 possible

Deposition yield: up to 90%Target thickness: mg/cm2 possible

Titanium block (cathode)

Rh-wire (anode)

+-

PEEK-funnel

Backing (Be, Ti, Al)

Organic solution

10 cm

Water cooling

Page 15: The ERINDA and TRAKULA networks and update on inelastic scattering

Characterization of the target layer

SEM: Microscopic structure of deposited material

• Scanning Electron Microscopy (SEM)

• Energy Dispersive X-ray spectroscopy (EDX)

• Radiographic Imaging (RI)

Thanks to Tobias Häger @ Institute for Geosciences (UMZ)

Samarium / 200 x Uranium / 200 x

10 µm

Uranium / 5000 x

courtesy of Klaus Eberhardt

Page 16: The ERINDA and TRAKULA networks and update on inelastic scattering

Radiographic Image of a natU sample 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

10,9-10,8-0,90,7-0,80,6-0,70,5-0,60,4-0,50,3-0,40,2-0,30,1-0,20-0,1

Backing: polished Ti 250 μm

Surface area:43 cm2

Areal density132 +-

13 μg/cm2

from Neutron activationanalysis 238U(n,γ)239U before and after deposition

Courtesy: A. Vascon, K. Eberhardt, Johannes-Gutenberg Universität Mainz

Also usage of Ti coated Si-wafers to reduce surface roughness: Nd deposits

Page 17: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 17Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

The nELBE fission chamber

Gas in Gas out

= Cathode= Anode

Separate read out of each anode to reduce pile-up alpha activity from sample

Fast preamplifiers developed at HZDR

Data acquisition using digitizers to optimize pulse shape analysis

Radiation safety:

vacuum tight ionisation chamber

neutrons

50 Ω

50 Ω

HV

PhD work: Toni Kögler

Page 18: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 18Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Rise time 100 ns depends on the electron drift time. P10 vs. Ar-CF4 (*2 faster drift velocity)

Typical fission fragment signal from the PTB chamber H19with HZDR Preamp

Fast preamplifier signals

Page 19: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 19Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Time of flight measurements with neutron sources

Digital data acquisition:

Time resolution (FWHM = 3.2 ns) with ORTEC preamp and HZDR nanosecond-preamp.

Conventional analogue electronics

PTB preamp (FWHM = 2.8 ns).

ORTEC preampNanosecond-preamp

252Cf source and a 244Cm-13C source surrounded by PE. Fission rate was 3 fissions/s and coincidence count rate with one Plastic detector is 2 events/min (14 cm)

Page 20: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 20Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Double time of flight measurement

Fe)n'Fe(n, 5656 γ n'FenFe *5656 +→+γFeFe 56*56 +→{

with sample (78 h live time)

see talk by Roland Beyer, 29.11.2010 GEDEPEON

Page 21: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 21Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Beam profile at nELBE (Aug 11)

measured with moveable plastic scintillator4.7 m from source 6.2 m from source (target pos.)

Page 22: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 25Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Plastics efficiency Measurement at PTB:-

Mono-energetic neutrons-

Beyer et al., NIMA 575 (2007) 449Measurement at HZDR:-

nELBE spectrum-

Relative to 235U fission chamberNEFF7:-

well established code for neutron detection efficiency simulation

-

developed at PTBModified NEFF7:-

Cuboid detector geometry-

Double sided readout-

Scintillation light propagation and attenuation

-

PMT Quantum efficiency-

Threshold = one photo electron per PMT

Problems:In simulation:

-

Unknown light output function at low energy transferIn measurement:

-

Collimated beam at nELBE-

Influence of lead shielding

Page 23: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 26Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Plastics efficiency Measurement at PTB:-

Mono-energetic neutrons-

Beyer et al., NIMA 575 (2007) 449Measurement at HZDR:-

nELBE spectrum-

Relative to 235U fission chamberNEFF7:-

well established code for neutron detection efficiency simulation

-

developed at PTBModified NEFF7:-

Cuboid detector geometry-

Double sided readout-

Scintillation light propagation and attenuation

-

PMT Quantum efficiency-

Threshold = one photo electron per PMT

Problems:In simulation:

-

Unknown light output function at low energy transferIn measurement:

-

Collimated beam at nELBE-

Influence of lead shielding

Page 24: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 27Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

The 56Fe(n,n’γ) cross section for the 1st

excited state

Fission chamber efficiency

2.1 %Fission chamber counts

1.5 %Fission chamber background

1.8 %Loss due to ADC range

0.1 %Scaling factor FC<->Target

0.3 %Attenuation factor

1.1 %Neutron flux 2.9 %

Sample in counts

2.3 %Sample out counts

15.9 %Normalization factor

1.5 %BaF2

efficiency

1.3 %Plastic efficiency

2.2 %Reaction rate 3.8 %

Cross section 4.8 %

Uncertainties:

@ 2 MeV

absolute normalization still missing

Page 25: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 28Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Measurements of photon production cross section

Page 26: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 29Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Measurements of photon production cross section

with target without target

Page 27: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 30Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

National Center for High-Power Radiation sources

80 m 30 m

ground breaking started April 2010

NEWnELBE

National Center for High-Power Radiation Sources• X-ray source using Laser-Compton-Backscattering• High-Power Laser (PW) for Ion Acceleration• New Neutron Time-of-Flight Facility for Transmutation Studies

NEWPW-Laser

NEWLCBS

Page 28: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 31Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

New neutron time of flight facility

photoneutron sourcewith liquid lead loop

Parallel operation with LaserExperiments more beam time For nuclear data measurements

Large neutron time of flight hallLength 10 m

Distance from neutron beam lineto surrounding concrete3 m in all directions

Page 29: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 32Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Summary and outlook

The EUROPEAN projects ERINDA focus on precision nuclear data measurements for development transmutation systems and nuclear safety ( see also ANDES, EUFRAT).

•The joint BMBF project TRAKULA is investigates nuclear reactions

of relevance to transmutation (fast neutrons, inelastic scattering, fission, actinide target development, Compton camera gamma-spectroscopy)

Maintenance of compentencies in nuclear and neutron physics measurements • nELBE is intended to deliver data on fast neutron induced reactions• the ELBE electron beam delivers a high neutron flux with very good time structure

• different kinds of experiments can be done:• inelastic scattering using a double

time of flight setup: 56Fe and 23Na• neutron transmission: Al, Ta, Pb• elastic scattering: D(n,n)D• fission:235,238U, 239,242Pu Future

• planned improvements:• LaBr3

detectors better photon energy resolution• new time of flight facility at Center for High Power Radiation Sources

Page 30: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 33Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Nuclear Transmutation Project

Roland Beyer, Evert Birgersson, Anna Ferrari, Roland Hannaske, Mathias Kempe, Toni Kögler, Michele Marta, Ralf Massarczyk, Andrija Matic, Georg Schramm

Arnd Junghans, Daniel Bemmerer, Eckart Grosse, Ronald Schwengner, Andreas Wagner

Experiment support: Andreas Hartmann, Klaus Heidel, Maik Partsch, Manfred Sobiella, Jens Steiner, Heidemarie Heim

Development of the new nELBE photoneutron source: Armin Winter, Jürgen Claussner, Jens Hauser and

Stefan Erlebach

Page 31: The ERINDA and TRAKULA networks and update on inelastic scattering

Status of Frisch Grid Ionisationchamber in Dresden

Use of standard vakuum components Double grid design for online background

monitoring Readout of anode and the two grids for

pulseshape analysisPermanent flush of counting gas P10

Engineer work was done by detector lab @ HZDR

All details now fixed and the assembling will start soon

Chamber specification

Page 32: The ERINDA and TRAKULA networks and update on inelastic scattering

TCAP Neutron Fluence StandardTCAP Neutron Fluence Standardstandard procedure for characterization of n-detectors:calibration relative to reference x-sections⇒ uncertainty contributions:

uncertainty of the reference cross section•

efficiency of reference detector

monitoring processalternative approach:Time-Correlated Associated Particles method

=

coincident detection of neutron + associated charged particle

no reference cross sections involved•

no monitoring required

angular straggling influences correlation of neutron and charged particle

⇒ careful modeling of the experiment: Monte-Carlo transport of charged particles

Page 33: The ERINDA and TRAKULA networks and update on inelastic scattering

0 1 2 3 4 50

1

2

3

3.5 MeV α on 0.173 µm Ti(T) TRIM Moliere: Θrms = 0.35 deg.

f(Θ) /

deg

.-1

Θ / deg.

0 5 10 15 20 25 300.0

0.1

0.2

0.3

150 keV d on 0.173 µm Ti(T) TRIM Moliere: Θrms = 4.1 deg.

f(Θ) /

deg

.-1

TCAP setup, reaction: T(d,n)TCAP setup, reaction: T(d,n)αα

Deuteron beam•

I ≈

1 µA

P ≈

0.15 W

Ti(T) target:•

m“Ti = 500 µg/cm²

= 15 mm

Si SB detector:•

d = 50 µm

A = 100 - 200 mm²↓

83°

En

14.2 MeVEα

3.5 MeV

Ed

150 keV

Page 34: The ERINDA and TRAKULA networks and update on inelastic scattering

Modeling lowModeling low--energy ion transport energy ion transport transport of neutron& charged particles:

1. low cutoff needed: Ed << 150 keV, Eα

<< 3.5 MeV (MCNPX: Ed

> 2 MeV, Eα

> 4 MeV)2. energy &

angular straggling (e.g. Molière)

MCUNED → patch for MCNPX 2.7.Dtransports light ions (p,d,t,h,

α) Ed > 5 keV

(P. Sauvan, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain)

[P. Sauvan et al., NIM A 614 (2010) 323]

Page 35: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 38Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Helmholtz-Zentrum Dresden-Rossendorf

Ion beam physics

Radiation physics

ELBE accelerator

High field laboratory

Nuclear safety research

RadiochemistryRadiopharmacy

Research Programme:Advanced Materials Research Cancer Research Nuclear Safety Research Research with Photons, Neutrons, and Ions

Public funded national research laboratory800 employees, federal+state budget: 61 M EUR

Page 36: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 39Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

ELBE: Electron Linear accelerator with high Brilliance and low Emittance

DT generator

nELBE photoneutron source

Ee

40 MeVIe

1 mAMicropulseduration Δt < 10 psf = 13 MHz / 2n

HZDR invites external groups for experiments at ELBE

Page 37: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 40Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

ELBE: Electron Linear accelerator with high Brilliance and low Emittance

DT generator

nELBE photoneutron source

Ee

40 MeVIe

1 mAMicropulseduration Δt < 10 psf = 13 MHz / 2n

HZDR invites external groups for experiments at ELBE

nELBE is the only photoneutron source at asuperconducting cw-linear accelerator

Page 38: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 41Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE at ELBE : something special

superconducting electron accelerator cw operation with variable micropulse repetition rate

micropulse charge 80 pC (thermionic Injector)–

micropulse length Δt < 10 ps precise definition of time of flight

For time of flight measurements the repetition rate is adjustable 13 MHz / 2n

, n = 0,…,10 •

Very high repetition rate (200 kHz), low instantaneous neutron-flux

background of photon flash from bremsstrahlung is reduced

since Januar 2010 : SRF Laser-Injector development bunch charge up to 1 nC (not yet reached)

fligh path 4.0 -

8.0 m•

neutron flux on target sample 7·105 cm-2

s-1

neutron energy range

100 keV < En

< 10 MeV (Liquid lead target, without moderator )

energy resolution

ΔE/E < 1 % with 6.0 m flight path

Page 39: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 42Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE –

neutron production

ELBEelectron beamELBEelectron beam

nELBEneutron beamnELBEneutron beam

Page 40: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 44Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE –

double ToF detector setup

neutron beam

BaF2

array for gamma detection(16 crystals, 40 cm, Ø

5.3 cm)

sample: natFe (99.8%) 91.754% 56Femass: 19.82 g 18.15 g 56Fe

• BaF2

scintillator made of two 20 cm long hexagonal crystals (inner Ø

= 53 mm)• active high voltage dividers more stable due to reduced heat production• double sided readout reduce trigger due to dark current

Page 41: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 45Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE –

double ToF detector setup

5 plastic scintillatorsfor neutron detection(1 m, 11 x 42 mm2)

neutron beam

BaF2

array for gamma detection(16 crystals, 40 cm, Ø

5.3 cm)

sample: natFe (99.8%) 91.754% 56Femass: 19.82 g 18.15 g 56Fe

• EJ-200 plastic scintillator 1 m x 11 mm x 42 mm• double sided readout reduce trigger due to dark current• active high voltage dividers more stable due to reduced heat production• high gain photomultiplier + threshold just below single electron peak

neutron detection threshold approx. 20 keV• surrounded by 1 cm Pb shielding to reduce background rate

Page 42: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 46Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE –

double ToF detector setup

5 plastic scintillatorsfor neutron detection(1 m, 11 x 42 mm2)

neutron beam

BaF2

array for gamma detection(16 crystals, 40 cm, Ø

5.3 cm)

sample: natFe (99.8%) 91.754% 56Femass: 19.82 g 18.15 g 56Fe

flight paths:source -

FC:400 cm

source -

sample:600 cm

sample -

BaF2

:30 cm

sample -

plastics:100 cm

PTB 235U fission chamber (FC)for neutron flux determination

• U-235 fission chamber (borrowed from PTB Braunschweig)• deposit = ten layers, 5 μg/mm2

U-235 (99.92%), Ø

76mm201.5 mg U-235

• P10 gas flow

Page 43: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 48Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Neutron flux measured by fission chamber

Integral at target: 2x104

n/s/cm2

Page 44: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 49Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Kinematic calculations

-Fe-56 (1.,2.,3. Level)(847, 2085, 2658 keV)-Fe-54 (1. Level)(1408 keV)-Fe-56 (2 x 1. Level)(1694 keV)

Page 45: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 50Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Ende Vortragsfolien

Page 46: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 51Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Total neutron cross section of Tantalum

Transmission measurement

Target: natTa 3.52 cm Bremsstrahlungabsorber:

natPb 3 cm•

Counting cycle*: 80% target in 20% target out

Measurement time 48 hours live time -

target in 92% (2 kHz)

live time –

target out 80% (7 kHz) measured with scalers

* Y. Danon, NIM A 485 (2002) 585

)exp(0

tnNNT ttotσ−==

Flight path: 6.52 mRepetition rate: 100 kHz

Target ladder:Pb absorberTa sample

Plastic scintillator withlow detection thresholdNIMA 575 (2007) 449

Page 47: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 52Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

Total neutron cross section of natTaEn

-

Δσstat

--

ΔEn

/En0.2 MeV –

5 % -

0.6%

2 MeV –

1.2 % -

0.8%7 MeV –

2.3 % -

1.0%

Page 48: The ERINDA and TRAKULA networks and update on inelastic scattering

Seite 53Dr. Arnd Junghans | Institut für Strahlenphysik | http://www.hzdr.de

nELBE

research

program:

Investigation of fast neutron

induced

reactions

of relevance

for nuclear

transmutation

and nuclear

safety

1. Inelastic neutron scattering (n,n‘γ) 56Fe, 23Na, Mo, Pb, and total neutron

cross sections

σtot

(Ta, Au)2. Investigation of actinides (radioactive targets)

Collaboration

with

n-TOF

at CERN Joint research

project

„Nuclear

physics

data

of relevance

for

transmutation“

(German Federal Ministry

for

Science and Technology funded

, 02NUK13)

neutron

induced

fission

cross section

of 235U, 238U 242Pu, 239Pu (photofission)