the emergence of phonology from the interplay of speech...

25
The Emergence of Phonology from the Interplay of Speech Comprehension and Production: A Distributed Connectionist Approach David C. Plaut Christopher T. Kello Department of Psychology Carnegie Mellon University Center for the Neural Basis of Cognition Carnegie Mellon University and the University of Pittsburgh February 3, 1998 To appear in B. MacWhinney (Ed.), The emergence of language. Mahweh, NJ: Erlbaum. How do infants learn to understand and produce spoken language? Despite decades of intensive investi- gation, the answer to this question remains largely a mystery. This is, in part, because, although the use of language seems straightforward to adult native speakers, speech recognition and production present the infant with numerous difficult computational problems (see Lively, Pisoni, & Goldinger, 1994). First of all, processing speech is difficult both because it is extended in time and because it is subject to considerable variability across speakers and contexts. Moreover, even with an accurate representation of the underly- ing phonetic content of a heard utterance, mapping this representation onto its meaning is difficult because the relationship of spoken words to their meanings is essentially arbitrary. On the output side, the infant must learn to produce comprehensible speech in the absence of any direct feedback from caretakers or the environment as to what articulatory movements are required to produce particular sound patterns. Finally, the processes of learning to understand speech and learning to produce it must be closely related (although certainly not synchronized; Benedict, 1979) to ensure that they eventually settle on mutually consistent solutions. In the current work, we formulate a general framework for understanding how the infant surmounts these challenges, and we present a computational simulation of the framework that learns to understand and produce spoken words in the absence of explicit articulatory feedback. Our initial focus is on addressing the relevant computational issues; we postpone consideration of how the approach accounts for specific empirical phenomena until the General Discussion. The framework, depicted in abstract form in Figure 1, is based on connectionist/parallel distributed This research was supported by the National Institute of Mental Health (Grant MH47566 and the CMU Psychology Depart- ment Training Grant on “Individual Differences in Cognition”) and the National Science Foundation (Grant 9720348). We thank Marlene Behrmann, Brian MacWhinney, Jay McClelland, and the CMU PDP Research Group for helpful comments and discus- sions. Correspondence may be directed either to David Plaut ([email protected]) or to Chris Kello ([email protected]), Mellon Institute 115—CNBC, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh PA 15213–2683.

Upload: duongduong

Post on 25-Apr-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

The Emergence of Phonology from the Interplay of SpeechComprehension and Production: A Distributed Connectionist

Approach

David C. Plaut

Christopher T. Kello

Departmentof PsychologyCarnegieMellon University

Centerfor theNeuralBasisof CognitionCarnegieMellon UniversityandtheUniversityof Pittsburgh

February3, 1998

To appearin B. MacWhinney (Ed.),Theemergenceof language. Mahweh,NJ:Erlbaum.

How do infantslearnto understandandproducespoken language?Despitedecadesof intensive investi-gation,the answerto this questionremainslargely a mystery. This is, in part, because,althoughthe useof languageseemsstraightforward to adultnative speakers,speechrecognitionandproductionpresenttheinfantwith numerousdifficult computationalproblems(seeLively, Pisoni,& Goldinger, 1994).First of all,processingspeechis difficult bothbecauseit is extendedin time andbecauseit is subjectto considerablevariability acrossspeakersandcontexts. Moreover, even with an accuraterepresentationof the underly-ing phoneticcontentof a heardutterance,mappingthis representationontoits meaningis difficult becausethe relationshipof spoken wordsto their meaningsis essentiallyarbitrary. On the outputside,the infantmustlearnto producecomprehensiblespeechin theabsenceof any directfeedbackfrom caretakersor theenvironmentasto whatarticulatorymovementsarerequiredto produceparticularsoundpatterns.Finally,theprocessesof learningto understandspeechandlearningto produceit mustbecloselyrelated(althoughcertainly not synchronized;Benedict,1979) to ensurethat they eventually settleon mutually consistentsolutions.

In the currentwork, we formulatea generalframework for understandinghow the infant surmountsthesechallenges,andwepresentacomputationalsimulationof theframework thatlearnsto understandandproducespoken wordsin the absenceof explicit articulatoryfeedback.Our initial focusis on addressingthe relevant computationalissues;we postponeconsiderationof how the approachaccountsfor specificempiricalphenomenauntil theGeneralDiscussion.

The framework, depictedin abstractform in Figure 1, is basedon connectionist/parallel distributed�This researchwassupportedby theNationalInstituteof MentalHealth(GrantMH47566andtheCMU PsychologyDepart-

mentTrainingGranton “Individual Differencesin Cognition”) andtheNationalScienceFoundation(Grant9720348).We thankMarleneBehrmann,Brian MacWhinney, JayMcClelland,andtheCMU PDPResearchGroupfor helpful commentsanddiscus-sions. Correspondencemaybedirectedeitherto David Plaut([email protected])or to ChrisKello ([email protected]),MellonInstitute115—CNBC,Carnegie Mellon University, 4400Fifth Avenue,PittsburghPA 15213–2683.

PlautandKello TheEmergenceof Phonology

Adultspeech speech

Child’s

Acoustics�

Articulation�

Forwardmodel

Semantics

(Phonology)

From othermodalities

Figure 1. An abstractconnectionistframework for phonologicaldevelopment. Ovals representgroupsof processingunits, and arrows representmappingsamongthesegroups. The intermediateor “hidden”representationswhich mediatethesemappings,andthespecificsetsof connectionsamongunit groups,areomittedfor clarity (seeFigure2 for details).Although“Phonology”is alsoa learned,hiddenrepresentation,andthereforelistedin parentheses,it it singledoutbecauseit playsauniquerolein performingthefull rangeof relevanttasks.Thedashedarrows indicatesourcesof input—eitheracousticinput from speechgeneratedby anadultmodelor by thesystemitself, or semanticinput, assumedto bederived from othermodalities,suchasvision.

processing(PDP)principles,in which differenttypesof informationarerepresentedaspatternsof activityover separategroupsof simple, neuron-like processingunits. Within the framework, phonologicalrep-resentationsplay a centralrole in mediatingamongacoustic,articulatory, and semanticrepresentations.Critically, phonologicalrepresentationsarenot predefinedbut are learnedby the systemunderthe pres-sureof understandingandproducingspeech.In this way, theapproachsidestepstheperennialquestionofwhat arethe specific“units” of phonologicalrepresentation(see,e.g.,Ferguson& Farwell, 1975;Menn,1978;Moskowitz, 1973;Treiman& Zukowski, 1996). Representationsof segments(phonemes)andotherstructures(onset,rime,syllable)arenotbuilt-in; rather, therelevantsimilarityamongphonologicalrepresen-tationsatmultiplelevelsemergesgraduallyover thecourseof development(alsoseeLindblom,1992;Lind-blom, MacNeilage,& Studdert-Kennedy, 1984;Nittrouer, Studdert-Kennedy, & McGowan, 1989). Alsonotethatthesystemlacksany explicit structurescorrespondingto words,suchaslogogens(Morton,1969)or “localist” word units(Dell, 1986;McClelland& Rumelhart,1981). Instead,the lexical statusof certainacousticandarticulatorysequencesis reflectedonly in the natureof the functional interactionsbetweentheseinputsandotherrepresentationsin the system,including semantics(seePlaut,1997;Van Orden&Goldinger, 1994;Van Orden,Pennington,& Stone,1990,for discussion).Although the currentwork fo-cuseson thecomprehensionandproductionof singlewords,thegeneralapproachis inherentlysequentialand,thus,intendedto beextensibleto higherlevelsof languageprocessing.

Using distributedrepresentationsfor wordshasimportant—andseeminglyproblematic—implicationsfor bothcomprehensionandproduction.In thecurrentformulation,comprehensioninvolvesmappingtime-varying acousticinput onto a more stablesemanticrepresentation(via phonology),whereasproductioninvolves generatingtime-varying articulatoryoutput from a stablephonological“plan” (possiblyderivedfrom semantics).Theproblemis asfollows. Distributedconnectionistmodelsarestronglybiasedby simi-

2

PlautandKello TheEmergenceof Phonology

larity; becauseunit activationsaredeterminedby aweightedsumof otheractivations,similar inputpatternstendto causesimilar outputpatterns.This propertyis a boonin mostdomains,which arelargely system-atic,becauseit enableseffective generalizationto novel inputs(see,e.g.,Plaut,McClelland,Seidenberg, &Patterson,1996). It posesa particularchallengein the currentcontext, however, becauseof the lack ofsystematicitybetweenthesurfaceformsof wordsandtheirmeanings;acoustic/articulatory similarity is un-relatedto semanticsimilarity. This challengeis not insurmountable—distributed connectionistmodelscanlearnarbitrarymappings,even for reasonable-sizedvocabularies(e.g.,a few thousandwords; seePlaut,1997),althoughthey requirea large numberof trainingpresentationsto do so. Learninganunsystematicmappingis even moredifficult, however, whenthe relevant surfaceinformationis extendedin time. Forexample,astheinitial portionof theacousticinput for awordcomesin (e.g.,the ����� in MAN), its implica-tionsfor thesemanticsof theword dependstronglyon theacousticsfor thefinal portionof theword (e.g.,thefinal ����� ; cf. MAT, MAP, MAD, etc.). However, by thetime this final portion is encountered,the initialacousticsarelonggone.

Theobvious (if vague)answerto this problemis “memory.” Thesystemmustsomehow retainearlierportionsof the input so that they canbe integratedwith laterportionsin orderto mapa representationoftheentireword ontosemantics.The critical questions,though,areexactly how this is doneandhow it islearned.On our view, theanswersto thesequestionsareof fundamentalimportancefor understandingthenatureof phonologicalrepresentations.

To solve thisproblem,weadopt(andadapt)theapproachtakenby St.JohnandMcClelland(1990,alsoseeMcClelland,St.John,& Taraban,1989)in confrontingasimilarchallengerelatingto lexical andsyntac-tic ambiguitiesin sentencecomprehension:theinformationthatresolvesa point of ambiguityoftencomesmuchlater in a sentence.St. JohnandMcClellandtraineda simplerecurrentnetwork to take sequencesof wordsforming sentencesasinput, andto derive an internalrepresentationof theeventdescribedby thesentence,termedthe SentenceGestalt. Critically, the SentenceGestaltrepresentationwasnot predefinedbut waslearnedbasedon feedbackon its ability to generateappropriatethematicrole assignmentsfor theevent(via a “query” network). For our purposes,therearetwo critical aspectsof their approach.Thefirstandmoststraightforwardis theuseof a recurrentnetwork architecturein which theprocessingof any giveninputcanbeinfluencedby learned,internalrepresentationsof pastinputs.Thesecondis moresubtlebut nolessimportant.Fromtheverybeginningof asentenceandfor everywordwithin it, thecurrent(incomplete)SentenceGestaltrepresentationwaspressuredto derive thecorrectthematicrole assignmentsof theentiresentence.It was,of course,impossiblefor thenetwork to befully accurateatearlystageswithin asentence,for exactly the reasonswe have beendiscussing:the correctinterpretationof the beginning of a sentencedependson later portionswhich have yet to occur. Even so, the network could be partially accurate—itcouldat leastimprove its generationof thoseaspectsof theroleassignmentsthatdid notdependon therestof thesentence.In doingso,it waspressuredto representinformationaboutthebeginningof thesentencewithin the SentenceGestalt,therebyindirectly makingit availableto biasthe interpretationof restof thesentenceasnecessary. In this way, the“memory” of thesystemwasnot any sortof buffer or unstructuredstoragesystembut wasdriven entirely by the functionaldemandsof the taskandthe interdependenceofdifferenttypesof information.

Thesameapproachcanbeappliedat thelevel of comprehendingsinglewordsfrom time-varyingacous-tic input. As acousticinformationaboutthevery beginningof theword becomesavailable,andthroughoutthe durationof the word, the systemcanbe trainedto activatethe full semanticrepresentationof the en-tire word (which, we assume,is madeavailablefrom othermodalitiesof input, suchasvision). As withsentence-level comprehension,thiscannotbedonecompletelyaccurately, but thenetwork canbepressuredto derive whatever semanticimplicationsarepossiblefrom theavailableinput to thatpoint (e.g.,ruling outsomesemanticfeaturesandpartially activatingothers).Moreover, thenetwork will activatethefull repre-sentationassoonastheword canbereliabledistinguishedfrom all otherwords(i.e., its uniquenesspoint;cf. Marslen-Wilson’s 1987,Cohortmodel).This typeof processingfits naturallywith evidencesupporting

3

PlautandKello TheEmergenceof Phonology

theimmediacy of on-linecomprehensionprocesses(e.g.,Eberhard,Spivey-Knowlton, & Tanenhaus,1995;Sedivy, Tanenhaus,& Spivey-Knowlton, 1995).

Within our framework, phonology(like theSentenceGestalt)is a learned,internalrepresentationthatplaysa critical role in mediatingbetweentime-varying acousticinput andstablesemanticrepresentations(seeFigure1). In particular, we assumethat a phonologicalrepresentationof an entireword builds upgraduallyover time underthe influenceof a sequenceof acousticinputs,but that,at every stage,thecur-rentapproximationis mappedto semanticsin parallel.Notethat,althoughthephonologicalrepresentationencodesthepronunciationof anentireword simultaneously, it mustnonethelessretainwhatever orderandcontentinformationin theoriginalacousticsignalis necessaryfor deriving thecorrectsemanticrepresenta-tion. In this way, learnedphonologicalrepresentationscompensatefor thedetrimentaleffectsof sequentialinputin learninganunsystematicmappingby integratingandrecodingtime-varyinginformationinto amorestableformat.Putsimply, phonologicalrepresentationsinstantiatethe“memory”necessaryto mapacousticsto semantics.

Analogousissuesarisein the productionof articulatorysequencesfrom a stablephonological“plan”(Jordan,1986). In this case,thesystemmustkeeptrackof whereit is in thecourseof executinganartic-ulation so asto apply the appropriatecontextual constraints.As an extremeexample,considerthe wordMississippi ����� �� ������ . Without clearinformationabouthaving completedboththesecondandthird sylla-bles,thesystemmightverywell continueonwith ����� �� ����� �������� . Thus,bothcomprehensionandproductionrequirea recurrentnetwork architecturethat is capableof integrating informationover time in mappingtime-varyingsurfaceformsto andfrom morestableinternal(phonological)representations.

Thereis, however, a more fundamentalproblemto solve regardingproduction. This problemstemsfrom the fact that theenvironmentprovidesno direct feedbackconcerningtheappropriateoutputpatternsfor production(i.e., the articulationsnecessaryto producecertainsounds). In a sense,the systemmustdiscover whatsequencesof articulatorycommandsproducecomprehensiblespeech.A critical assumptionin the currentapproachis that the processof learningto generateaccuratearticulatoryoutput in produc-tion is driven by feedbackfrom the comprehensionsystem—thatis, from the acoustic,phonological,andsemanticconsequencesof thesystem’s own articulations(alsoseeMarkey, 1994;Menn& Stoel-Gammon,1995;Perkell, Matthies,Svirsky, & Jordan,1995;Studdert-Kennedy, 1993).Deriving this feedbackis madedifficult, however, by the fact that,whereasthemappingfrom articulationto acousticsis well-defined,thereversemappingis one-to-many (Atal, Chang,Mathews,& Tukey, 1978).Thatis to say, essentiallythesameacousticscanbeproducedby many differentarticulatoryconfigurations.For example,if no exhalationisallowed,thenany staticpositionof the tongueandjaw will resultin silence.Silencemapsto many possi-ble articulatorystates,but eachof thosearticulatorystatesmapsonly to silence.From the perspective ofcontrol theory, themappingfrom proximaldomain(articulation)to thedistaldomain(acoustics)is termedthe forward mapping,whereasthereverseis termedthe inversemapping(seeJordan,1992,1996). Whenthe inversemappingis many-to-one,as in this case,it constitutesa “motor equivalence”problem. Thisproblemmustbesolvedif thelink betweenarticulationandacousticsis to supporttheacquisitionof speechproduction.

Oursolutionto themotorequivalenceproblemis basedonacomputationalmethoddevelopedby JordanandRumelhart(1992)(seeMarkey, 1994,for analternativeapproachbasedonreinforcementlearning).Themethodcapitalizeson thefactthat,althoughonecannotdeterministicallytranslatedistalto proximalstates,onecantranslatedistal to proximalerrors.1 This is accomplishedby first learninganinternalmodelof thephysicalprocessesthatrelatespecificarticulationsto theacousticsthey produce(recallthatthearticulation-to-acousticsmapping,althoughcomplicated,is well-defined). This forward modelmustbe invertible inthesensethatacousticerror for a givenarticulationcanbe translatedbackinto articulatoryerror—a natu-

1Althoughwe will describeJordanandRumelhart’s (1992)methodin termsof error-correctinglearning,it is applicableto anysupervisedlearningframework.

4

PlautandKello TheEmergenceof Phonology

ral instantiationof this would beback-propagationwithin a connectionistnetwork (Rumelhart,Hinton, &Williams, 1986). Sucha modelcanbelearnedby executinga varietyof articulations,predictinghow theyeachwill sound,andthenadaptingthe modelbasedon the discrepanciesbetweenthesepredictionsandtheactualresultingacoustics.In theinfant,we assumethata articulatory-acoustic forwardmodeldevelopsprimarily asa resultof canonicalandvariegatedbabblingin the secondhalf of the first year (Fry, 1966;Oller, 1980;seeVihman,1996,for review, andHoude,1997;Wolpert,Ghahramani,& Jordan,1995,forempiricalevidencesupportingthe existenceof forward modelsin humanmotor learning). Note that thestrongrelianceonlearningwithin thecurrentapproachcontrastssharplywith accountsin whichthepercep-tuomotorassociationsinvolvedin speechproductionareassumedto bespecifiedinnately(e.g.,Liberman&Mattingly, 1985).

Thelearnedforwardmodelplaysa critical role within our framework by providing thenecessaryfeed-backfor learningspeechproduction(alsoseePerkell etal.,1995).Specifically, theforwardmodelis usedtoconvert acousticandphonologicalfeedback(i.e,whetheranutterancesoundedright) into articulatoryfeed-back,which is thenusedto improve themappingfrom phonologyto articulation.We assumethat learningto producespeechtakesplacein the context of attemptsto imitate adult speech,andattemptsto produceintentionalutterancesdrivenby semanticrepresentations.In imitation,thesystemfirst derivesacousticandphonologicalrepresentationsfor anadultutteranceduringcomprehension(seeFigure1). It thenusesthere-sultingphonologicalrepresentationasinput to generateasequenceof articulatorygestures.Thesegestures,whenexecuted,resultin acousticswhicharethenmappedbackontophonologyvia thecomprehensionsys-tem. Theresultingdiscrepanciesbetweentheoriginal acousticandphonologicalrepresentationsgeneratedby theadultandthosenow generatedby thesystemitself constitutetheerrorsignalsthatultimatelydrivearticulatorylearning. In orderfor this to work, however, thesedistalerrorsmustbeconvertedto proximalerrors(i.e., discrepanciesin articulation). This is doneby propagatingphonologicalerror backto acous-tics andthenbackacrosstheforwardmodel(whichmimicstheactualphysicalprocessesthatproducedtheacousticsfrom articulation)to derive error signalsover articulatorystates.Thesesignalsarethenusedtoadaptthe productionsystem(i.e., the mappingfrom stablephonologicalrepresentationsonto articulatorysequences)to betterapproximatetheacousticsandphonologygeneratedby theadult. Intentionalnaminginvolves similar processingexcept that the initial input and the resultingcomparisonare at the level ofsemanticsratherthanat acousticsandphonology.

In summary, in the currentwork we develop a framework, basedon connectionist/parallel-distributedprocessingprinciples,for understandingthe interplayof comprehensionand productionin phonologicaldevelopment.Comprehensionis instantiatedasa mappingfrom time-varying acousticinput onto a morestableinternal phonologicalrepresentationof the entire word which is mappedsimultaneouslyonto itssemanticrepresentation.In production,thesamephonologicalrepresentationservesasthe input or “plan”for generatingtime-varyingarticulatoryoutput.Articulatoryfeedbackis notprovideddirectlybut is derivedby thesystemitself from theconsequencesof self-generatedspeechusinga learnedforwardmodelof thephysicalprocessesrelatingarticulationto acoustics.

Theseprocessescanbeinstantiatedin termsof four typesof trainingexperiences:1) babbling, in whichthe systemproducesa rangeof articulationsandlearnsto modeltheir acousticconsequences;2) compre-hension, in which acousticinput from anadult is mappedvia phonologyontoa semanticrepresentation;3)imitation, in which thesystemgeneratesarticulationsin anattemptto reproducetheacousticandphonolog-ical representationsit previously derived from anadultutterance;and4) intentionalnaming, in which thesystemusesasemanticrepresentation(perhapsderivedfrom vision)to generatearticulationsvia phonology,andthencomparesthissemanticrepresentationto theoneproducedby comprehensionof thesystem’s ownutterance.

In theremainderof thispaper, wedevelopacomputationalsimulationof theframework which,althoughsimplified,servesto establishtheviability of theapproach.We discussthe implicationsof the frameworkfor avarietyof empiricalfindingsonphonologicaldevelopmentin thesubsequentGeneralDiscussion.

5

PlautandKello TheEmergenceof Phonology

Simulation

Given the considerablescopeof the framework depictedin Figure 1, a numberof simplificationswerenecessaryto keepthecomputationaldemandsof thesimulationwithin thelimits imposedby availablecom-putationalresources.Themostfundamentalof thesewasthat,insteadof usingcontinuoustime anda fullyrecurrentnetwork (Pearlmutter, 1989), the simulationuseddiscretetime anda simple recurrentnetwork(hereafterSRN;Elman,1990).2 Thischangeresultsin a drasticreductionin thecomputationaldemandsofthesimulationbecause,oncethestatesof context unitsareset,processingin anSRNis entirelyfeedforward.Thedrawbackof this simplificationis, of course,thatwe cannotcapturethetruetemporalcomplexities ofarticulatoryandacousticrepresentations,nor their interactionswith phonologicalandsemanticrepresenta-tions.In addition,variabilityduetospeakerpitchandratewasnotincluded—theseareissuesto beaddressedby futurework.

In orderto reformulatethegeneralframework in Figure1 asanSRN,certainarchitecturalchangesarenecessary. Specifically, in theframework, themappingsbetweenphonologyandsemanticsareassumedtobebidirectionalandinteractive. Giventhatprocessingin anSRNmustbefeedforward,theinputmapping(fromphonologyto semantics)and the output mapping(from semanticsto phonology)mustbe separatedandimplementedwith separateunitsandconnections.Theresultingarchitecture(ignoringhiddenandcontextunits)mapsoutputsemantics� outputphonology� articulation� acoustics� inputphonology� inputsemantics(where“ � ” correspondsto theforwardmodel).It is importantto keepin mind,however, thatthedivisionof inputandoutputrepresentationsfor phonologyandsemanticsis not intendedto imply thattheserepresentationsareactuallyseparatein child andadult speakers—tothe contrary, we claim that the samerepresentationsunderlyboth comprehensionandproduction. Accordingly, the functionalcorrespondenceof the SRN architectureto the moregeneralframework is maintainedby runningonly subsectionsof thenetwork andby copying unit statesandtargetsasappropriate.This ensuresthat, for both semanticsandphonology, therepresentationson theinputandoutputsidesof thenetwork areidentical.

Finally, theimplementationdoesnot includeaphysicalarticulatoryapparatusthatproducesrealsound,noranauditorytransducerthatgeneratesacousticinputsfrom sound.Rather, thesephysicalprocesseswereapproximatedby coupledequationsthatmapany combinationof valuesover a setof articulatoryvariablesonto a particularset of valuesover a set of acousticvariables(seebelow). Thesevaluesare what thenetwork’s articulatoryandacousticrepresentationsencode.Considerableeffort wasspentto make theseequationsasrealisticaspossiblewhile stayingwithin theconstraintsof computationalefficiency.

Despitethesesimplifications,theimplementedsimulationneverthelessembodiesa solutionto thefun-damentalcomputationalchallengesof speechcomprehensionandproductiondiscussedabove. To theextentthatit succeedsin learningto understandandproducewords,it providessupportfor themoregeneralframe-work andapproachto phonologicaldevelopment.

Network Architecture

Figure2 shows the fully recurrentversionof the generalframework, andthe specificarchitectureof theimplementedsimplerecurrentnetwork version.Therecurrentversion(Figure2a) is equivalentto Figure1with theadditionof thegroupsof hiddenunitsandconnectionsthatcarryoutthemappingsamongacoustics,semantics,and articulation. The implementedversion(Figure 2b) hasa generalfeedforward structure,startingfrom theupperright of thenetwork andcontinuingclockwiseto theupperleft. In addition,asanSRN,thestatesof particulargroupsof unitson theprevioustimesteparecopiedto additionalcontext units

2An SRN differs from a fully recurrentnetwork primarily in that performanceerror is attributed to activationsonly for thecurrentandimmediatelyprevioustimestep,but not furtherbackin time(seeWilliams & Peng,1990).Also, in anSRN,computingtheoutputfor a given input involvesa singlepassthroughthenetwork whereas,in a fully recurrentnetwork, it typically involvesmultiple iterationsasthenetwork settlesto astablestate.

6

PlautandKello TheEmergenceof Phonology

Adultspeech speech

Child’s

Acoustics�

Articulation�Forward

model

Semantics�

(Phonology)�

From othermodalities

(equations)

Articulation�

Forwardmodel

From othermodalities

Phonology

Semantics

Phonology

speechChild’s

Semantics

(50)

(100)

(100)

(50) (50)

(100)

(12)

Adultspeech

Acoustics�

(120)

(150)(150)

(150)

In Out�

In Out�

(a) (b)

Figure 2. Thearchitecturesof (a) a fully recurrentversionof thegeneralframework in Figure1, and(b)its instantiationasa simplerecurrentnetwork (SRN).Ovals representdifferentgroupsof units (asdo thegroupsof small squaresfor AcousticsandArticulation); the numberof units in eachgroup is indicatedin parentheses.Eachsolid arrow representsa standardprojectionof full connectivity from onegroupofunitsto another. Thethin dashedarrows in (b) representprojectionsfrom “context” unitswhosestatesarecopiedfrom theprevioustime step;for thesake of clarity, theprojectionsaredepictedascomingfrom thesourceof thecopiedstatesratherthanfrom separatecontext units(whicharenotshown). Thethick dashedarrows representexternalinput: semanticpatternsfrom othermodalities(targetsfor comprehension;inputsfor intentionalnaming),acousticinputsequencesfrom anadult,andtheacousticsgeneratedby thesystem’sown articulations.

and,thus,areavailableto influenceprocessingon thecurrenttime step.It is by virtue of connectionsfromthesecontext unitsthatthenetwork canlearnto besensitive to non-localtemporaldependenciesin thetask(seeElman,1990, for discussion).Note that the actualcontext units arenot shown in the figure; rather,theconnectionsfrom context unitsaredepictedasrecurrentor feedbackprojections(shown asthin dashedarrows) from thesourceof thecopiedactivations.Also notethat thereis oneexceptionto this: In additionto a standardprojection(solid arrow) from Articulation to thehiddenunitswithin theforwardmodel,thereis alsoa feedforward “context” projection(dashedarrow). Thesetwo arrows areintendedto indicatethatthepatternsof activity overArticulationfrom boththecurrentandprevioustimestepsareprovidedasinputto theforwardmodel.Functionallyequivalentgroupsthatweresplit for thepurposesof implementationasanSRN,but wouldbeasinglegroupwithin afully recurrentimplementation,arenamedwith thesubscriptsin andout for clarity (e.g.,Phonology��� , Semantics "!�# ).

During comprehensionand production,only Acousticsand Semantics "!�# receive external input, andonly Semantics��� hasexternally specifiedtargets. All of the remaininggroupsin the network, with theexceptionof Articulation, are“hidden” in the sensethat their representationsarenot determineddirectlyby the training environmentbut develop underthe pressureof performingthe relevant tasksaccurately.Articulation hasan unusualstatusin this regard. It hasa predefinedrepresentationin the sensethat unitactivationshave fixed and externally specifiedconsequencesfor the resultingacoustics,and it is drivenexternallyduringbabbling(seebelow). On theotherhand,thenetwork itself is givenno informationabout

7

PlautandKello TheEmergenceof Phonology

theimplicationsof this representation;it mustlearnto generatetheappropriateactivationsbasedsolelyonobservingtheconsequencesof theseactivations(muchlikeactionsonamusicalinstrumenthavepredefinedacousticconsequences,but a musicianmustlearnwhich combinationof actionsproducea particularpieceof music).

Corpus

Thenetwork wastrainedon the400highest(verbal)frequency monosyllabicnounsandverbsin theBrowncorpus(Kucera& Francis,1967)with at most four phonemes(mean= 3.42). Wordswereselectedforpresentationduring training in proportionto a logarithmicfunction of their frequency of occurrence.Asthe main goal of the currentsimulationwasto establishthe viability of the generalapproach,little effortwas madeto structurethe vocabulary of the model to correspondto the actual languageexperienceofinfantsandyoungchildren. The restrictionto monosyllableswas for reasonsof simplicity andbecausemonosyllablesdominatethe productionof childrenacquiringEnglish(Boysson-Bardies,Vihman,Roug-Hellichius,Durand,Landberg, & Arao, 1992;Vihman,1993);note,however, therethereis nothingin thecurrentimplementationthatprecludesapplyingit to multisyllabicor evenmultiword utterances.

Representations

The following descriptionsprovide a generalcharacterizationof the representationsusedin the simula-tion. Many detailshave beenomittedfor clarity, particularlywith respectto the articulatoryandacousticrepresentationsandthe mappingbetweenthem—seePlautandKello (in preparation)for full detailsandequations.

Articulatory Representations. The articulatorydomainwascarved into discreteevents,roughly atpointsof significantchangein articulation.3 Eachevent wasrepresentedwith six articulatorydegreesoffreedombasedon configurationsof oral/facial musclesthat aremore-or-lessdirectly relevant to speech.Eachdimensionwasarealvaluein therange[ $ 1,1],correspondingtoastaticstatein time. Threeconstraintsenteredinto our choiceof dimensions:1) they neededto capturethe physicalsimilaritiesanddifferencesin producingdifferentphonemesin English,aswell asthe variationsin producingthe samephonemeindifferent contexts; 2) they had to lend themselves to engineeringthe equationsthat map articulationtoacoustics;and3) they hadto be mostly independentof eachother, in termsof muscularcontrol, to avoidcomplicationsof building dependenciesinto thenetwork architecture.

Thesix articulatorydegreesof freedomareasfollows(thelabelsareusedin theexamplerepresentationsshown in Figure3 below):

1. Oral Constriction(ORC). Thiscorrespondsto themaximalamountof air flow for agivenarticulatorystate. It representsthe combinedeffects of constrictingarticulatorssuchas the jaw and partsofthetongue.In general,vowelshave low oral constriction,approximantshave moderateconstriction,fricativeshave highconstriction,andstopshave completeconstriction.

2. NasalConstriction(NAC). Sincenasalconstrictionis primarily controlledby raisingandloweringthesoftpalate(Ladefoged,1993),thisdimensiondirectlycorrespondsto theheightof thesoftpalate.

3. Placeof Constriction(POC). This correspondsto the locationof the maximalpoint of constrictionfor a givenarticulatorystate.Locationis codedfrom front to back,with themostfront valueequalto a labial POC,and the mostbackvalueequalto a glottal POC.With moderateto high amountsof oral constriction,POCcodesplaceof articulationfor consonant-like articulations.With little oralconstriction,articulationbecomesvowel-like andPOChasnoeffect onacoustics.

3As pointedout above, discretizationof time wasa simplificationintroducedto permitthetheuseof anSRNarchitecture.Webelieve thatcontinuousdynamicswouldmoreaccuratelycaptureanumberof relevantphenomena.

8

PlautandKello TheEmergenceof Phonology

4. TongueHeight (HEI). This roughly codesthe maximalclosenessof the tongueto the roof of themouth,but only whenthereis little oralconstriction.Tongueheightis directlyrelatedto theopennessof avowel.

5. TongueBackness(BAK). This is directly relatedto vowel backness.As with tongueheight,it onlytakeseffectwhenthereis little oral constriction.

6. Voicing (VOC). This correspondsto a combinationof glottal openingandvocal chordconstriction,giventhatourmodelassumesconstantpulmonarypressurefor thesake of simplicity.

Eacharticulatorydegreeof freedomin thenetwork wascodedby two unitswhoseactivities fell in therange[0,1]. The value for eachdegreeof freedomwascodedby the signeddifferencebetweenthesevalues,having a possiblerangeof [ $ 1,1]. Note that the samevaluecanbe codedby differentcombinationsofunit activities; the network canlearn to useany of these. Finally, the network representedboth the pastandcurrentarticulatoryeventin orderto capturearticulatorychangeinformationthathasconsequencesforacoustics.

Acoustic Representations. As with articulation,theacousticdomainwasdividedinto discreteevents.We choseten“acoustic”dimensionsbasedon aspectsof thespeechenvironmentthataregenerallythoughtto berelevant to speechperception.Thechoiceof dimensionswasconstrainedby thesamefactorsasthearticulatorydimensions(seeabove). Thewordacousticis quotedabovebecause,althoughsoundis certainlytheprimaryperceptual/proprioceptive domainof speech,oral dimensionssuchasjaw opennessalsoplay arole. For example,newbornspayspecialattentionto certainmouthposturings(Meltzoff & Moore,1977),andthree-to four-month-oldinfantsareawareof therelationbetweencertainfacialandvocalactivities (seeLocke,1995,for review). Weincorporatedtheroleof visualperception/proprioception by includingavisualdimensionof jaw opennessin our acousticrepresentation.In fact, our modelprovidesa reasonfor whyinfantsmight paysuchcloseattentionto themouth: Visualspeechhelpsto reducethemotorequivalenceproblem,thusfacilitatingtheacquisitionof boththecomprehensionandproductionof speech.

Another importantaspectof our acousticrepresentationis that the dimensionswere normalizedforoverallspeaker variationssuchasrateandpitch(but randomvariationandcoarticulationwereincorporated;seebelow). Researchershave shown that infantsasyoungastwo monthscannormalizefor speaker vari-ation (Kuhl, 1983;Jusczyk,Pisoni,& Mullennix, 1992). Although this simplificationseemsreasonable,we believe that the mechanismfor speaker variability is an importantpart of understandingphonologicaldevelopment,andwe intendto incorporatethis into futureversionsof themodel.

Unlike the articulatorydegreesof freedom,eachacousticdimensionhadan accompanying amplitudevaluecorrespondingto thedegreeto which informationon thatdimensionwaspresentin a givenacousticevent. For example,first formantfrequency wasan acousticdimension,yet not all acousticsignalshaveformantstructure(e.g.,avoicelessfricativesuchas �%�&� ). In thiscase,thedegreesof freedomcorrespondingto formantswouldbeassignedvery low amplitudesin ourencoding.

The ten acousticdimensionsare as follows (note that we have includedhere someaspectsof thearticulation-to-acoustics mapping;furtherdetailis providedbelow):

1–3. First throughthird formantfrequencies. Sincethesearenormalized,they essentiallycodefre-quency positionrelative to a particularformantanda particularspeaker. In general,theamountof periodicityin theputative acousticwave form determinestheamplitudesof thesedimensions.

4–6. First through third formant transitionsor derivatives. Thesecodethe normalizedamountofrise or fall in eachformat from the previous to thecurrentacousticstate.Their amplitudesareidenticalto thosefor thecorrespondingformantfrequency.

7. Frication. This is a compositeof the frequency, spread,and intensityof very high frequency,non-periodicenergy. Previousresearchsuggeststhatall of thesemeasuresplay a role in distin-guishingdifferentfricativesounds,althoughtheexactrelationshipsareunclear(seeLieberman&

9

PlautandKello TheEmergenceof Phonology

Blumstein,1988,for review). Wesimplifiedmattersby collapsingthesevariablesinto oneacous-tic dimension.Fricationis presentwhenoral and/ornasalconstrictionis slightly lessthanfullyconstricted.

8. Burst. Thisdimensionis asimplificationanalogousto frication: acompositeof acousticmeasuresthatareinvolved in distinguishingplosive releasesof differentplacesof articulation.Burstingispresentwhenasufficiently largepositive changeoccursin oral or nasalconstriction.

9. Loudness. This codesthe overall amountof acousticenergy in a given event (normalizedforspeaker andstress).For example,silencehasvery little or noenergy, fricativeshave little energy,nasalshave significantlymore,andvowels have the most. Theamplitudevaluefor loudnessisredundantandthereforepermanentlysetto one.

10. Jawopenness. Thisdimensionreflectsthesizeof themouthopeningfor agivenarticulatorystate,andwascomputedbasedon theamountandplaceof oral constriction.We chosejaw opennessbecauseit is relatively visible (andpresumablysalient),but sincea speaker cannotnormallyseetheir own jaw, this dimensionalsorepresentstheanalogousproprioceptive signal.Sincethejawis alwayssomewherealongthecontinuumof openness,theamplitudevaluewasunnecessaryandthereforesetto one.

Eachof thetenacousticdimensionswererepresentedin thenetwork with a separatebankof twelve units,laid out in one dimensioncorrespondingto the [ $ 1,1] rangeof possibledimensionvalues. A specificacousticvaluewasencodedby Gaussianunit activity with meanequalto thevalueandfixedvariance.Unitactivities weredeterminedby samplingthis Gaussianat the12 equal-spacedintervals indicatedby theunitpositionswithin thebank.Thetotalactivity (i.e.,theareaundertheGaussian)wassetto equaltheamplitudeof that acousticdimension.Whereasarticulationwasrepresentedby both a pastandcurrentarticulatoryvector in order to capturechangeinformation, an acousticevent containsdimensionsthat directly codechangein time. Therefore,thenetwork representedasingleacousticeventthatchangedover time.

Articulation-to-Acoustics Mapping. Thetranslationfrom two articulatoryevents(pastandcurrent)to anacousticeventconsistedof tenequations,onefor eachacousticdimensions.Eachequationwaswrittensolelyin termsof oneor moreof thearticulatorydegreesof freedom.Thefunctionsrangedfrom primarilylinearandconsistingof oneor two variables,to highly non-linearandconsistingof four or five variables.We will not presentthedetailsof theequationshere(seePlaut& Kello, in preparation)but we outlinethemajorrelationshipsthey embodied.

1. Formantfrequency is determinedprimarily by either tongueheight and backness,or by POC. Inaddition,nasalconstrictiontendsto lowerthefirst formantfrequency (Lieberman& Blumstein,1988).

2. Formanttransitionsarebasedonchangein oraland/ornasalconstriction,in combinationwith changein thedimensionsrelevant to formantfrequencies.Therelationshipbetweenplaceof articulationina plosive releaseand the following vowel playeda major role in determiningtheseequations(seeLiberman,1996).

3. The amplitudesof the six formantdimensionsarebasedon a combinationof voicing andbothoralandnasalconstriction.

4. Thefricationandburstvaluesaredeterminedby placeof articulation.Theamplitudesof thesedimen-sionsarebasedoncurrent(and,for bursting,alsoprevious)oralandnasalconstrictionvalues.

5. Loudnessis determinedby acombinationof all six articulatorydegreesof freedom.

To illustratethe articulatoryandacousticrepresentationsandthe mappingbetweenthem,Figure3 showsthesequenceof eventscorrespondingto an“adult” utteranceof theword SPIN �%���'(�)� (seethe“Adult Utter-ances”subsectionbelow for adescriptionof how suchsequencesaregenerated).

10

PlautandKello TheEmergenceof Phonology

Articulation Acoustics

*,+�*F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

*.-0/1*F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

*.-32'*F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

*546*F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

*578*F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

* *F1 / DV

LOUDNESSBURSTFRICATION

F3 / DVF2 / DV

JAW OPEN

ORC

POCNAC

HEIBACVOC

Figure3. Thesequenceof articulatory(left) andacoustic(right) eventscorrespondingto anadultutteranceof thewordSPIN. In thesimulation,articulatorydegreesof freedomaresubjectto intrinsicvariability withinpermissibleranges;for illustrationpurposes,this variability wasnot appliedto thedepictedevents.Theseeventswere,however, still subjectto bothperseverative andanticipatorycoarticulation.Eachacousticeventis determinedby boththecurrentandpreviousarticulatoryevent(which,for thefirst, is acopy of thecurrentevent).Seethetext for definitionsof eachunit group.

11

PlautandKello TheEmergenceof Phonology

Babbling. In our theoreticalframework, babblingservesto trainaforwardmodelto learntherelation-shipbetweenarticulationandacoustics.The systemusesthis modelto convert acousticerror to articula-tory error to incrementallyimprove its own productionsduring imitation andintentionalnaming.A givenbabblingepisodeconsistedof a string of articulationsgeneratedstochasticallyfrom a modelof babblingbehavior that combinedcanonicalandvariegatedbabbling. This modelwasintendedto approximatethearticulatoryeffectsof abiastowardsmandibular (jaw) oscillationin theoralbehavior of younginfants.Thisoscillatorybiashasbeenproposedasa fundamentalconstraintonearlyspeechdevelopment(Davis & Mac-Neilage,1995;Kent,Mitchell, & Sancier, 1991;MacNeilage,in press;MacNeilage& Davis, 1990)andisconsistentwith thecentralrole of rhythmicbehavior in motordevelopmentmoregenerally(Thelen,1981;Thelen& Smith,1994). Thegeneratedarticulatorysequencesreflectedbothreduplicatedbabbling(to theextentthatPOCremainedconstantacrossthearticulatorystring)andvariegatedbabbling(to theextentthatPOCchanged).

Specifically, eachinstanceof babblingwascomposedof fivearticulatoryevents.Fourof thesix degreesof freedomin thefirst eventof a sequenceweregiven randomvalues;the remainingtwo—oralandnasalconstriction—-wererandombut their probabilitieswereweightedtowardsthe endpoints(i.e., $ 1 and1,whichcorrespondto completelyclosedandopened,respectively). Eachsubsequenteventin asequencewasgeneratedby samplingfrom a Gaussianprobabilitydistribution centeredaroundtheprevious valuesfor 5of the6 degreesof freedom(producinga biastowardsgradualchange);oral constrictionwasstochasticbutweightedtowardstheopposingsignof theprevious value,thusexhibiting a biastowardsoscillation. Theresultingarticulatorysequenceconstitutedthe babblingutterancesusedto train the articulatory-acousticforwardmodel,asdescribedbelow.

Adult Utterances. Adult word utteranceswere derived from canonicalstringsof phonemes,eachendingwith anull or silentphoneme.Notethat,althoughthecanonicalformswererepresentedasphonemes,theresultingacousticeventsdid not have a 1-to-1correspondencewith phonemes(seebelow). Moreover,eacharticulatoryeventunderlyinganacousticpatternwassubjectto considerableintrinsic variability andwasshapedby multiplephonemesdueto coarticulatoryinfluences.

The procedurefor generatingan instanceof anadult utteranceof a word wasasfollows. The word’sphonemestringwasfirst convertedinto asequenceof articulatoryevents.Mostphonemescorrespondedto asinglearticulatoryevent,althoughplosivesanddipthongswerecodedastwo events(exceptthatthesecond,“release”event of thefirst of two adjacentplosiveswasdeleted).Thearticulatoryevent(s)correspondingto a phonemeweredefinedin termsa rangeof permissiblevaluesover thearticulatorydegreesof freedom.Thecenterandsizeof eachrangewasestimatedfrom theroleandimportancethatagivendegreeof freedomplaysin producinga givenphoneme(basedon phoneticresearchdrawn largely from Ladefoged,1993).Aspecificutterancewasgeneratedby randomlysamplingfrom aGaussiandistribution centeredon therangesfor eachphoneme,andclippedattheendpoints.Therandomlydeterminedinitial valuesfor eacharticulatoryeventwerethenadjustedbasedonbothperseverativeandanticipatorycoarticulation.For agivenevent,eachdegreeof freedomwasfirst pulledtowardsthespecificvaluesof previousevents,with thestrengthof thispull scaledby thenumberof interveningeventsandthevaluerangeof the perseverative influence.Then,eachdegreeof freedomwaspulled towardsthe canonicalvaluesof the subsequentevents(i.e., the rangemidpoints,beforetheir valueswererandomlygenerated),scaledby thesamefactors.Finally, thecoarticu-latedvalueswereforcedto bewithin their respective ranges.Theresultingstringof articulatoryeventswasinput to thearticulation-to-acoustics equationsto generateastringof acousticevents.In generatingthefirstacousticevent,thefirst articulatoryeventwasinterpretedasboththecurrentandpreviousarticulatorystate,analogousto allowing for articulatorypreparationbeforebeginning an utterance.Note that, althoughthearticulation-to-acoustics equationsaredeterministic,adultutterancesof agivenwordexhibitedconsiderablevariability dueto therandomsamplingof articulatorydegreesof freedomwithin thepermissiblerangeforeacharticulatoryevent. Moreover, individual tokensof the samephonemevariedboth from this randomsamplingandfrom thecoarticulatoryinfluencesof surroundingphonemes.

12

PlautandKello TheEmergenceof Phonology

Semantic Representations. No attemptwasmadeto designsemanticrepresentationsthatcapturetheactualmeaningsof the 400 wordsin the training corpus. Rather, artificial semanticrepresentationsweredevelopedwhich, while constitutingonly a very coarseapproximationto the richnessandvariability ofactualword meaning,nonethelessembodiedthecoreassumptionsbehindthechallengesof comprehensionandproduction:namely, thatsemanticsimilarity is unrelatedto acoustic/articulatorysimilarity.

Specifically, the semanticrepresentationsof words were generatedto clusterinto artificial semantic“categories” (Chauvin,1988;Plaut,1995,1997). Twentydifferentrandombinarypatternsweregeneratedover50semanticfeatures,in whicheachfeaturehadaprobability 9.: = .2 of beingactive in eachprototype.Twentyexemplarswerethengeneratedfrom eachprototypepatternby randomlyalteringsomeof its fea-tures;specifically, eachfeaturehada probabilityof .2 of beingresampledwith 9.: = .2. Theeffect of thismanipulationis to make all exemplarswithin a category clusteraroundtheprototype,andfor all semanticpatternsto haveanaverageof 10activefeatures(range6–16)outof atotalof 50. Theresulting400semanticpatternswerethenassignedto wordsrandomlyto ensurethatthemappingsfrom acousticsto semanticsandfrom semanticsto articulationwereunsystematic.

Training Procedure

As mentionedin theIntroduction,thesystemundergoesfour typesof trainingexperiences:babbling,com-prehension,imitation, andintentionalnaming. Althougheachof theseis describedseparatelybelow, it isimportantto keepin mind thatthey arefully interleavedduringtraining.

Babbling. Therole of babblingin our framework is to train anarticulatory-acoustic forwardmodel;theonly partof thenetwork involvedin thisprocessis Articulation,Acoustics,andthehiddenunitsbetweenthem(seeFigure2). First, a particularsequenceof articulationscorrespondingto an instanceof babblingwasgenerated(asdescribedunder“Representations”above). This sequencewasthenpassedthroughthearticulation-to-acoustics equationsto producea sequenceof “actual” acousticpatterns.The articulationsalsoservedasinput to theforwardmodel(seeFigure2), which generateda sequenceof predictedacousticpatterns.The discrepancy or error betweenthe actualandpredictedacousticsat eachstep,measuredbythecross-entropy4 betweenthetwo patterns(Hinton,1989),wasthenback-propagatedthroughtheforwardmodelandusedto adjustits connectionweightsto improve its ability to predicttheacousticoutcomeof thegivenarticulations.In this way, theforwardmodelgraduallylearnedto mimic thephysicalmappingfromarticulatorysequencesto acousticsequences(asinstantiatedby thearticulation-to-acoustics equations).

Comprehension. Comprehensioninvolvesderiving thesemanticrepresentationof a word from a se-quenceof acousticpatternscorrespondingto an“adult” utteranceof theword(generatedasdescribedunder“Representations”above). Givensuchanutterance,thenetwork wastrainedto derive thesemanticsof theword in the following way. Prior to thefirst acousticevent, thecontext units for Phonology��� andfor thehiddenunitsbetweenAcousticsandPhonology��� (seeFigure2) wereinitialized to statesof 0.2. (Notethatthereareno context unitsbetweenPhonology��� andSemantics��� —this meansthat,althoughthepatternofactivity overphonologychangesasacousticinputcomesin, thisactivity mustmapto semanticsin parallel.)Then,eachacousticeventwaspresentedsuccessively overAcousticsandtheactivationsof all unitsbetweenAcousticsandSemantics��� werecomputed.For eachevent, the resultingsemanticpatternwascomparedwith the correctsemanticsfor the word andthe resultingerror waspropagatedbackthroughthe networkto Acousticsto accumulateweightderivativesfor connectionsin this portionof thenetwork (includingtheconnectionsfrom context units). After processingeachevent, the activities of the Phonology��� units andthe Acoustics-to-Phonology ��� hiddenunits werecopiedto their correspondingcontext units, to influenceprocessingof thenext acousticevent.After thelastacousticeventwaspresented(correspondingto silence),theaccumulatedweightderivativeswereusedto adjusttheweightsto improvecomprehensionperformance

4Thecross-entropy betweenapatternof activationoverasetof unitsandtheir targetactivationsis givenby ;=<?>A@ >6B�C6D%E F(G%>IH�JFLK ;M@ >NH�BOCAD%E"FLK ; G%>IH , whereG%> is theactivity of unit i and @ > is its target.

13

PlautandKello TheEmergenceof Phonology

on subsequentpresentationsof theword. Becauseerrorwasbasedon thediscrepancy of thegeneratedandcorrectsemanticsfrom the very beginning of the acousticinput sequence,the network waspressuredtoderive informationaboutthesemanticsof theincomingwordasquickly aspossible.

Imitation. Imitation involvesusinga phonologicalrepresentationderived from anadultutteranceasinputto drivearticulation,andcomparingtheresultingacousticandphonologicalrepresentationswith thoseof theadultutterance.Imitationcould,in general,bebasedon any adultutterance,includingthosewithoutany clearsemanticreferent. However, for practicalreasons(i.e., to avoid having a much larger trainingcorpusfor imitation than for comprehension),training episodesof imitation were yoked to episodesofcomprehensionin thesimulation.

Specifically, after having processedan adult utteranceof a word for comprehension(seeabove), thefinal phonologicalpatternover Phonology��� wascopiedto Phonology "!�# (seeFigure2; recall that thesecorrespondto the samegroup in the generalframework). The phonologicalpatternthen served as thestaticinput “plan” for generatinganarticulatorysequence.All of thecontext unitsbetweenPhonology "!�#andPhonology��� wereinitialized to statesof 0.2. The network thencomputedunit activationsup to andincludingArticulation. This articulatorypatternandtheonefor thepreviousstep(which, for thefirst step,wasidenticalto thecurrentpattern)weremappedthroughtheforwardmodelto generatepredictedacoustics.At thesametime,thearticulatorypatternswereusedto generateanactualacousticeventvia thearticulation-to-acousticsequations.Thediscrepanciesbetweenthenetwork’s actualacousticsandthosepredictedby theforwardmodelwereusedto adapttheforwardmodel,asduringbabbling.In addition,theactualacousticsweremappedby thecomprehensionsideof thenetwork to generatea patternof activity over Phonology�P� .The error betweenthe activationsgeneratedby the network and thosegeneratedby the adult were thencalculatedbothatPhonology��� andatAcoustics.5 Thephonologicalerrorwasback-propagatedto acoustics(without incrementingweight derivatives)andaddedto the acousticerror. The combinederror wasthenback-propagatedthroughtheforwardmodel(againwithout incrementingderivatives)to calculateerror forthecurrentarticulatorypattern.Thiserrorwasthenback-propagatedto Phonology "!�# andweightderivativeswereaccumulatedfor theproductionsideof thenetwork. At this point, the relevant unit activationswerecopiedonto context units, and the patternover Phonology "!�# wasusedto generatethe next articulatoryevent. This processrepeateduntil thenetwork producedasmany articulatoryeventsastherewereacousticeventsin theimitatedadultutterance(n.b. a moregeneralstrategy would beto continuearticulatinguntil anumberof silentacousticeventsareproduced).

Intentional Naming. Thefinal typeof trainingexperienceincludedin ourgeneralapproachto phono-logical developmentis the intentionalgenerationof an utteranceon the basisof semanticinput (perhapsderivedfrom anothermodality). In thecurrentsimulation,however, theability wastrainedonly indirectly.

Again,for reasonsof efficiency, intentionalnamingwasyokedto comprehension.After thenetwork wastrainedto comprehendagivenword,thecorrectsemanticpatternfor thewordwasthenpresentedasaninputpatternover Semantics "!�# (this patternhadbeenassumedto beavailableastargetsover Semantics��� ). Thisinput patternwasthenmappedby thenetwork to generateanoutputpatternover Phonology "!�# . Theerrorbetweenthis patternandtheoneover Phonology��� codingtheentireadultutterance(again,theseshouldbethoughtof asthe samegroup)wasthenback-propagatedto Semantics "!�# , andthe correspondingweightswereadaptedto improve the network’s ability to approximateits own phonologicalrepresentationof theadult’s utterancegiventhecorrespondingsemanticsasinput. Notethatthetargetsfor thetaskchangeasthenetwork’s own phonologicalrepresentationsevolve during thedevelopmentof comprehension;the outputsideof thesystemmustnonethelesstrackthis change.Eventually, boththecomprehensionandproductionsystemconvergeonbeingableto mapthesamephonologicalrepresentationbothto andfrom semantics.In

5Notethat theuseof a directcomparisonbetweentheacousticsgeneratedby theadultandthosegeneratedby thenetwork as-sumesaconsiderableamountof pre-acousticnormalization.It shouldbenoted,however, thattrainingimitationusingcomparisonsonly at thephonologicallevel resultsin only marginally worseperformance(seePlaut& Kello, in preparation).

14

PlautandKello TheEmergenceof Phonology

fact, this trainingprocedurewasintendedto approximatethe effectsof bidirectionalinteractionsbetweenphonologyandsemanticsin a fully recurrentversionof thesystem.

Oncethesystemhasthecapabilityof mappinga semanticrepresentationontoa phonologicalrepresen-tation,trainingduringimitation enablesthis phonologicalpatternto bemappedto ananalogousoneon theinput side,which canthenbe mappedto the correspondingsemanticsdueto training during comprehen-sion. In this way, the network canbe testedfor its ability to mapa semanticpatternvia phonologyto anarticulatorysequencewhich, accordingto its own comprehensionsystem,soundsthesameandmeansthesameastheintendedutterance.Theentiremapping(from Semantics "!�# to Semantics��� ) wasnot,however,explicitly trainedbecausethe resultingback-propagatederrorderivativeswould bevery small (dueto thelargenumberof interveninglayersof units)andbecausechildrenseemrelatively insensitive to thesemanticplausibility of their own utterances(e.g.,thefis phenomenon;Berko & Brown, 1960;Dodd,1975;Smith,1973).

Testing Procedure

Thenetwork wastrainedon3.5million wordpresentationsandbabblingepisodes.Althoughthismayseemlike anexcessive amountof training, childrenspeakup to 14,000wordsper day (Wagner, 1985),or over5 million wordsper year. For eachword presentation,the network wastrainedto comprehendthe wordandthento imitatetheresultingacousticsandphonology. Thenetwork alsoproducedandlearnedfrom anunrelatedbabblingsequence.Although,in actuality, theonsetof babblingprecedesclearattemptsat imita-tion,andfallsoff asproductionskill increases,themodelengagesin bothbabblingandimitationthroughouttraining. Babblingandearly word productiondo, in fact, overlapin time to a large degree(seeVihman,1996),andthephoneticinventorythatchildrenusewhenbeginningto producewordsis drawn largely fromthe inventoryof soundsproducedduringbabbling(Vihman& Miller, 1988). Moreover, somebabble-likeutterancesmay result from undevelopedspeechskills during attemptsto imitate or intentionallyproducewords.Suchattemptsnonthelessconstituteopportunitiesfor learningtherelationshipbetweenarticulationandacoustics;asmentionedabove, our network adaptsits forwardmodelduringbothbabblingandimita-tion. As it turnsout, theperformanceof the forwardmodelachievesa reasonablelevel of accuracy fairlyquickly, socontinuingto includebabblingepisodesthroughouttraininghaslittle impactonperformance.

After every 500,000word presentationsduring training, the network was evaluatedfor its ability tocomprehendandimitateadultspeech,andto producecomprehensibleintentionalutterances.Becausetherewas intrinsic variability amongadult utterances,the network was testedon 20 instancesof eachof the400 words in the training corpus. Performanceon eachtaskwasbasedon whethereachstimuluscouldbeaccuratelydiscriminatedfrom all otherknown words,usinga best-match criterionover semanticsand,for imitation,alsoover phonology. Specifically, whenappliedto semantics,thenetwork wasconsideredtocomprehenda word correctlyif its generatedsemanticsmatchedthecorrectsemanticsfor thatword better(in termsof normalizeddot product)than the semanticsfor any otherword in the training corpus. Thebest-matchprocedureover phonologywasa bit morecomplicatedasthereareno predefinedphonologicalrepresentationsfor wordsagainstwhich to comparethe network’s utterance.Moreover, due to intrinsicvariability, differentadult instancesof a word generatedsomewhat differentphonologicalrepresentationsduringcomprehension.Accordingly, thebest-matchcriterionwasappliedto phonologyby comparingthephonologicalpatterngeneratedby thenetwork’s utteranceof a word with thephonologicalrepresentationsgeneratedby all 8000adultutterances(20 instancesof 400words)andconsideringthenetwork’s utterancecorrectif thebest-matchingadultutterancewasoneof the20 instancesof theword.

Muchof themostimportantevidenceon thenatureof phonologicaldevelopmentcomesfrom ananaly-sisof children’s speecherrors(Ingram,1976;Menn,1983;Smith,1973;seeBernhardt& Stemberger, 1997,for review). Althougha comprehensive accountof thesystematicityandvariability of child speecherrorsremainsa long-termgoalof thecurrentapproach,aninitial attemptcanbemadeby examiningthenatureof

15

PlautandKello TheEmergenceof Phonology

thenetwork’s errorsin comprehension,imitation,andintentionalnaming.Specifically, if thebestmatchtothenetwork’s utterancewastherepresentationof a word otherthanthestimulus,thenetwork wasconsid-eredto have madeanerror, which wasthenevaluatedfor phonologicaland/orsemanticsimilarity with thestimulus.6 For thesepurposes,anerrorwasconsideredphonologicallyrelatedif it differedfromthestimulusby anaddition,deletion,or substitutionof a singlephoneme,andit wasconsideredsemanticallyrelatedifits assignedsemanticpatterncamefrom thesameartificial category (see“Representations”above).

Results

Dueto limitationson space,we presentonly a subsetof theresultsderived from thenetwork (seePlaut&Kello, in preparation,for a morecomprehensive presentation).In particular, we omit a full characteriza-tion the performanceof the forward model. This model is acquiredfairly rapidly, achieving reasonableperformancewithin the first 1 million word presentationsandbabblingepisodes.Moreover, its ability topredicttheacousticconsequencesof articulatoryeventsis ultimatelyveryaccurate,producingananaveragecross-entropy pereventof lessthan0.39summedover the120Acousticunits (cf. 33.7at thebeginningoftraining). Wheninaccurate,it tendsto produceGaussianactivity over theacousticbankswith greatervari-ancethanin theactualacousticsignal,which is anaturalindicationof reducedconfidencein theunderlyingdimensionvalue.

Correct Performance. Figure 4 shows the correctperformanceof the network over the courseoftraining on comprehension,imitation, and intentionalnamingusing the best-matchcriterion. First notethatcomprehensionperformanceimprovedrelatively rapidly, reaching84.3%correctby 1M (million) wordpresentationsand99.6%by 3.5M presentations.This level of performanceis impressive given the lackof systematicityin themappingbetweenacousticsandsemanticsandtheconsiderableintrinsic variabilityof adult utterances.Relative to comprehension,competencein productiondevelopedmoreslowly: Whenevaluatedat semantics,the network wasonly 54.2%correctat imitation by 1M presentations,althoughitdid achieve 91.7%correctby 3.5M presentations.Intentionalnamingwasslightly poorerthan imitationthroughouttraining,eventuallyreaching89.0%correct.This is not surprisingasthetaskinvolvesmappingthroughtheentirenetwork andwasnot trainedexplicitly.

Whenevaluatedat phonology, imitation performancewasmoreaccurate,achieving 96.5%correctby3.5M wordpresentations.Therapidrisein best-matchimitationperformanceatphonologyat0.5M presen-tationsis dueto thefactthatphonologicalrepresentationsarerelatively undifferentiatedat thispoint.

Overall, thenetwork achievedquitegoodperformanceatbothcomprehensionandproduction.Thefactthatcomprehensionprecedesproductionin themodelstemsdirectly from the fact that learningwithin theproductionsystemis driven by comparisonsover representationswithin the comprehensionsystem. Theexcellentperformanceonimitation,particularlyatphonology, demonstratesthatfeedbackfrom thecompre-hensionsystemvia a learnedforward modelcanprovide effective guidancefor articulatorydevelopment.Thefindingsprovide encouragingsupportfor theviability of our generalframework for phonologicalde-velopment.

Error Analysis. To furthercharacterizethenetwork’s performance,we analyzedtheerrorsmadebythe network underthe best-matchcriterion after 3.5M word presentations.As describedabove, an errorresponsewasconsideredsemanticallyrelatedto thecorrect(target)wordif it belongedto thesamecategory,andphonologicallyrelatedif it differedfrom the targetword by theaddition,deletion,or substitutionof asingle phoneme. Basedon thesedefinitions,errorswere classifiedas semantic(but not phonological),phonological (but not semantic),mixedsemanticandphonological,or miscellaneous(neithersemanticnor

6This way of definingspeecherrorsallows for only word responses,which is clearly inadequate.Determiningnonword errorresponsesis problematic,however, becausetheacousticsequencesgeneratedby thenetwork cannotbe interpreteddirectly. PlautandKello (in preparation)addressthisproblemby trainingaseparatenetwork to mapsequencesof acousticeventsontosequencesof phonemes,analogousto a trainedlinguistic listeningto andtranscribingspeech.

16

PlautandKello TheEmergenceof Phonology

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Word Presentations (in Millions)Q

0

10

20

30

40

50

60

70

80

90

100

Per

cent

Cor

rect

Comprehension (Semantics)RImitation (Phonology)SImitation (Semantics)SIntentional Naming (Semantics)S

Figure 4. Correctperformanceof the network in termsof a best-matchcriterion,on comprehension(atsemantics),imitation (at both phonologyandsemantics),andintentionalnaming(at semantics),over thecourseof training.

phonological,althoughmany sucherrorsexhibitedphonologicalsimilarity that failed to satisfyour strictdefinition).

Table1 presentsthepercentageof erroroccurrencesfor eachof theabovetypesandfor eachtask,aswellasthechanceratesof occurrencesof eacherrortype.Calculatingthechanceprobabilityof asemanticerrorwasstraightforward astherewerefive equiprobablecategories.Thechanceprobabilityfor a phonologicalerror was determinedempirically by computingthe rate of phonologicalrelatednessamongall pairs oftrainedwords.Thechancerateof a mixederrorwassimply theproductof thesetwo probabilities(i.e.,weassumedindependence,giventhatsemanticpatternswereassignedto wordsasphonemestringsrandomly).

In general,thenetwork showedastrongbiastowardphonologicalsimilarity in its errorscomparedwiththechancerate,for bothcomprehensionandimitation(althoughthis is basedon relatively few errorsin theformercase).Comprehensionandimitationalsoproducedsemanticerrorsbelow chance,whereastheratesfor intentionalnamingwerewell above chance.Interestingly, therateof mixederrorsin imitation,althoughlow, wasalmostfive timesthe chancerate,consistentwith a generalpreferencein productionfor errorssharingbothsemanticandphonologicalsimilarity with thetarget(see,e.g.,Levelt, 1989).

Althoughcomprehensionerrorswererare,whenthey occurredthey typically involved theadditionofa final plosive (mostcommonly ��TU� or ��V�� ) to yield a higherfrequency word (e.g.,PASS ���XWY�&�M� PAST���XWY��TU� ), presumablybecauseutterance-finalsilencewasmisinterpretedastheclosureeventof theplosive,andthesystemis insufficiently sensitive to theacousticsof therelease.This typeof errorwasalsocommonin imitation, presumablybecauseits feedbackduringtrainingwasderived from comprehension.Imitationalsoproduceda numberof multi-changeerror which appearto be phoneticallyconditioned(e.g., GAVE�%Z\[](^'�_� CAME �]`\[](�a� ), andsomeevidenceof clusterreduction(e.g.,FLAT �]b�c�WdT&�� MATCH ���eWgf)� ),althoughthecorpusprovidedvery few opportunitiesto observe thelatter.

At thephonemelevel, therewerefarmoreerrorsonconsonantsthanonvowelsand,amongconsonants,a relatively highererrorrateon fricatives,affricates(e.g., ��f)� ) and ��h'� (asin RING). Theseerrorsinvolvedbothadditionsanddeletions;whenthey weredeleted,they wereoftenreplacedby aplosive. In fact,plosivesaccountedfor over half of thetotal numberof insertions.By contrast,theliquids ��i6� and �]c�� weredeleted

17

PlautandKello TheEmergenceof Phonology

Table1Error RatesandPercentof Error Typesfor VariousTasks,andChanceRates

ErrorTypeTask ErrorRate Semantic Phonological Mixed Misc.Comprehension 0.45 14.1(0.71) 85.3(32.8) 0.0(0.00) 0.0(0.00)Imitation 3.52 10.1(0.51) 74.3(28.6) 1.9(4.75) 13.7(0.18)IntentionalNaming 11.0 40.9(2.05) 11.4( 4.4) 0.0(0.00) 47.7(0.62)

Chance 20.0 2.6 0.4 77.0Note: Eachvalue in parenthesesis the ratio of the observed error rate to the Chanceratelistedat thebottomof thecolumn. Performancewasmeasuredafter trainingon 3.5million word presentations.“Error Rate” is basedon 20 instancesof adult utterancesof eachof 400words(8000total observations)for comprehensionandimitation,andoneinstancefor intentionalnaming(becausethenetwork’sown articulationsarenotsubjecttovariability). Comprehensionandintentionalnamingwereevaluatedatsemantics,whereasimitationwasevaluatedatphonology.

occasionally, but never inserted.Thesecharacteristicsarein broadagreementwith thepropertiesof earlychild speecherrors(e.g.Ingram,1976).

Althoughtheseerroranalysesarepreliminary, andaresignificantlylimited by allowing only word re-sponses,they suggestthat the currentapproachcan be appliedfruitfully to understandingthe natureofchildren’s speecherrors.

General Discussion

Infantsfacea difficult challengein learningto comprehendand producespeech. The speechstreamisextendedin time, highly variable,and(for monomorphemicwords)bearslittle systematicrelationshiptoits underlyingmeaning. Articulatory skill mustdevelop without any direct instructionor feedback,andcomprehensionandproductionprocessesmustultimatelybetightly coordinated.

Thecurrentpaperoutlinesageneralframework, basedonprinciplesof connectionist/parallel distributedprocessing,for understandinghow the infant copeswith thesedifficulties, andpresentsan implementedsimulationwhich, althoughsimplified relative to the framework, nonethelessinstantiatesits fundamentalhypotheses.In particular, two key propertiesof theframework andimplementationreflecta closeinterplaybetweencomprehensionandproductionin phonologicaldevelopment.Thefirst is thatbothcomprehensionandproductionaresubserved by thesameunderlyingphonologicalrepresentations.Theserepresentationsarenot predefinedbut emerge underthe combinedpressuresof mediatingamongacoustic,semantic,andarticulatoryinformation.Thesecondkey propertyis thatthenecessaryarticulatoryfeedbackfor theproduc-tion systemis derivedfrom thecomprehensionsystem.Specifically, proximal(articulatory)erroris derivedfrom thedistal(acousticandphonological)consequencesof articulationvia a learnedarticulatory-acousticforwardmodel(alsoseeJordan,1996;Perkell et al., 1995). Thesimulationdemonstratesthata modelin-stantiatingthesepropertiescan,in fact,learnto copewith time-varying,variablespeechin comprehension,andusetheresultingknowledgeto guideproductioneffectively in imitationandintentionalnaming.More-over, its patternof errors,althoughnot matchingchild speecherrorsin detail, doesshow the appropriategeneraltrends,suggestingthattheapproachmayprovideacomputationallyexplicit basisfor understandingtheorigin of sucherrors.

Thebulk of thecurrentpaperhasfocussedonthenatureof thecomputationalproblemsposedby phono-

18

PlautandKello TheEmergenceof Phonology

logical development,andon the formulationof a particularapproachfor solving theseproblems.At thisstagein thework, relatively little attentionhasbeendirectedat relatingthesimulation,andthemoregeneralframework, to specificempiricalphenomenaconcerningphonologicaldevelopmentin infantsandyoungchildren.In theremainderof thepaper, weconsiderthreecategoriesof empiricalphenomena—therelation-shipbetweencomprehensionandproduction,thetimecourseof speechacquisition,andthephoneticcontentof speecherrors—andaddressbriefly how our approachmight accountfor somethemorecentralfindingsin each.While many of thesepointsareaddresseddirectly by theexisting framework andimplementation,someof themconstituteimportantdirectionsfor futureresearch.

Relationship Between Comprehension and Production

Oneof themostbasicfindingsin phonologicaldevelopmentis that skilled word comprehensionprecedesskilled word production(Benedict,1979;Reznick& Goldfield,1992;Snyder, Bates,& Bretherton,1981).Thefindinghaspromptedspeculationthatacertainskill level of comprehensionis necessaryfor productionskills to advance.Our modelembodiesthis notionin termsof thematurityof phonologicalrepresentationsthat mapacousticinput onto semantics.The internal representationsmustbegin to stabilizein compre-hensionbeforetheir input to theproductionsystembecomesusefulfor learningarticulation.Our approachdiffersfromVihman’s(1996)ideaof an“articulatoryfilter,” in whichthearticulatorysystemmediateswhichwordsthechild canperceive, remember, andthereforeproduce.Our framework holdsthat theperceptionandcomprehensionof speechcandevelopsomewhatindependentlyof thearticulatorysystem,althoughthematuresystemmusteventuallymediatebothtaskswith thesameunderlyingphonologicalrepresentations.

Anotherfinding that pointstowardsa link betweendevelopmentin comprehensionandproductionisthat the phoneticdistribution of late babbling(i.e., by 10 months)is influencedby the ambientlanguage(Boysson-Bardiesetal.,1992).Whenbeginningto imitateandspeakfrom intention,achild’s utterances,aswell asthoseof ournetwork, will tendto soundlikebabble(i.e.,highly variableexplorationof articulation)becausethelink betweenphonologyandarticulationhasnot yet developed.If theadultcharacterizestheseearly attemptsat speechasbabble,thenindeedbabblingwill tendto have phoneticcharacteristicsof theambientlanguage.Similarly, thephoneticcharacteristicsof earlywordproductionoverlapto a largedegreewith the characteristicsof a given infant’s babbling(Stoel-Gammon& Cooper, 1984; Vihman,Maken,Miller, Simmons,& Miller, 1985). Given that the instantiationof babblingin the currentmodel is notinfluencedby thedevelopingphonologicalrepresentations,themodeldoesnot accountfor this finding,butweplanto addressit in futureextensions.

Time Course of Speech Acquisition

A secondmajorareaof investigationin phonologicaldevelopmentrelatesto theorderof acquisitionof vari-ousspeechproductionskills. Weconsidertwofindingsto beof particularimportance.Thefirst is thatinfantsoftenhave a small repertoireof “protowords” late in thebabblingphase,but prior to trueword production(Menyuk & Menn,1979;Stoel-Gammon& Cooper, 1984;Werner& Kaplan,1984).Protowordsarechar-acterizedby relatively stablepatternsof vocalizationthatserve to communicatebroaddistinctionsbetweensituations(e.g.,requestanobjectversusrequestsocialinteraction).As discussedin the Introduction,dis-tributednetworkshave aninherenttendency to mapsimilar input patternsontosimilaroutputpatterns;thisbiasis overcomeonly graduallyin learninganunsystematicmapping.In thecurrentcontext, thismeansthatbroadlysimilar semanticpatternswill mapinitially ontosimilar phonologicalpatterns.If thephonologicalpatternsaresimilarenough,they will beheardasthesameutterance(i.e.,a protoword).

The secondfinding is an exampleof the ubiquitousphenomenonof U-shapedlearning: As the childlearnsto producemorewords,productionof originally well-learnedwordsoftenregresses(Vihman& Velle-man,1989).More generally, articulationincreasesin variability anddecreasesin phoneticaccuracy asde-

19

PlautandKello TheEmergenceof Phonology

velopmentprogresses,althoughthistrendreversesasarticulatoryskills approachmaturelevels.Thispatternis generallyinterpretedasindicatinga shift from a whole-word systemto a moresystematic,segmentally-basedone(seeJusczyk,1997;Vihman,1996). A numberof researchers(e.g.,Jusczyk,1986;Lindblom,1992;Studdert-Kennedy, 1987;Walley, 1993)have pointedto thegrowth of receptive vocabulary asexert-ing a powerful influenceon thedegreeto which phonologicalrepresentationsbecomesegmental.Earlyon,relatively undifferentiated,“wholistic” phonologicalrepresentationsmaysuffice for discriminatingamongthefew wordsknown to thechild. However, asthenumberandsimilarity of wordsthatmustberepresentedincreases,thereis greaterpressureto developamoresystematicencodingof therelevantdistinctions.Inso-farasthesamephonologicalrepresentationssubserve bothcomprehensionandproduction(asin thecurrentframework), theemergenceof moresegmentalrepresentationsthroughpressureson comprehensionshouldalsomanifestin production.

Anotherclassof time-coursephenomenaconcernstheorderin which skilled performanceis achievedfor variousphonologicalunits (e.g.,vowels,consonants,andconsonantclusters).A coarse-grainedexam-ple is the finding that the proportionof consonantsin intentional/imitative utterancesis low earlyon, andincreasesasthenumberof wordsproducedincreases(Vihmanetal.,1985;Bauer, 1988;Roug,Landberg, &Lundberg, 1989). Our framework doesnot accountfor this directly, but thereare two factorsthat biasvowel-like articulationsduringearly imitation andintentionalnamingin our model. First, our articulatoryrepresentationshave a built-in biastowardsthecentervalueof eachdegreeof freedom,mimickingaphysi-calbiasof leastarticulatoryeffort. Thisbiascausesoral constrictionto besomewhatopen(i.e.,vowel-like)by default. Second,whenthemodelbegins to compareits own acousticswith thoseof theadult, it learnsquickly thatit mustvocalizein orderto producemosttypesof sounds.Thiscoarselearningprecedeslearn-ing themorecomplicatedarticulatoryrelationshipsinvolved in producingconsonants.Thecombinationofthesetwo factorscreatesanearlybiastowardsvowel-like soundsduring imitation andintentionalspeech,which is overriddenasthesystemgainsgreatercontrolof thearticulatorydegreesof freedom.

Another, finer-grainedexampleis thatlabialsareproducedmoreoftenin thefirst wordproductionsthanin babbling(Boysson-Bardies& Vihman,1991). In learningto producelabial consonants(comparedwithmoreorally internalarticulations),infantscanusethevisual feedbackof labial articulationsin additiontofeedbackderived from acoustics(seeVihman,1996). The acousticlevel of representationin our modelincludesa visualdimensionthatcorrespondsto jaw openness,which is mostactive for labial articulations.The additionalvisual informationfor labialsshouldcausewordswith primarily labial articulationsto beproducedaccuratelysoonerthanotherwordsbecausetheerrorsignalfrom labialproductionsis richerthanfrom lessvisiblearticulations.

A similarfindingis thatchildrenmastertheproductionof stopsbeforefricativesandaffricates(Menn&Stoel-Gammon,1995). In the physicalmappingfrom articulationto acousticsin our model,the rangeoforal constrictionvaluesthatproducesfrication is muchsmallerthattherangethatproducesthecomponenteventsof aplosivesound(i.e.,closurefollowedby release).Second,mandibularoscillationduringbabblingproducesa biasfavoring closure-releasesequenceswhich approximateplosives. This, in turn, causestheforward model to learn the articulatory-acoustic relationshipfor plosives beforefricatives. The forwardmodelwill thusprovide moreaccuratearticulatoryfeedbackfor plosivesthanfor fricativesasthesystemlearnsto producewords.

Phonetic Content of Speech Errors

Detailedanalysesof speecherrorshave provided someof the most importantconstraintson theoriesofphonologicaldevelopment.Perhapsthemostbasicandwidespreadtypesof errorsthatchildrenmakeduringthe early stagesof word productionare onesof simplification or reduction. Menn and Stoel-Gammon(1995)listedthreesucherrortypesthatwe addressin this section:1) stopsaresubstitutedfor fricatives;2)consonantclustersarereducedto singleconsonants;and3) voicelessinitial stopconsonantsaredeaspirated

20

PlautandKello TheEmergenceof Phonology

(e.g.,TOE is heardasDOE).Thatplosivesaremasteredbeforefricatives(seeabove) is relevant to thefirst point. If theproduction

systemcannotactivatethearticulatoryrepresentationspreciselyenoughto producefricatives,thenplosivesarethe likely alternative. With respectto consonantreduction,bothacousticandarticulatoryfactorsmaybe involved. The acousticsimilarity of BOND and BLOND, for example,is very high, which meansthatlearningdistinctphonologicalrepresentationsfor themwill bedifficult. Thesimilarrepresentationsthatsuchcontrastswill drivemaybesufficiently distinctfor driving differentsemantics,but notdifferentarticulations.On the articulatoryside, vowels and consonantsconstrainsomewhat complementarysetsof articulatorydegreesof freedom.Consequently, consonantclusterspermitrelatively lesscoarticulation—andhenceentailgreaterdifficulty—comparedwith transitionsbetweenconsonantsandvowels(alsoseeKent,1992). Also,thebiasto producesimpleover complex onsetsmay, in part,bedueto their generallyhigherfrequency ofoccurrencein speech.Finally, the deaspirationof initial unvoicedstopsmaybe explainedby articulatorydifficulty (i.e.,a least-effort bias;seeabove).

Conclusion

In conclusion,we proposea distributedconnectionistframework for phonologicaldevelopmentin whichphonologyis a learnedinternalrepresentationmediatingbothcomprehensionandproduction,andin whichcomprehensionprovidesproductionwith errorfeedbackvia a learnedarticulatory-acoustic forwardmodel.An implementationof the framework, in the form of a discrete-timesimplerecurrentnetwork, learnedtocomprehend,imitate,andintentionallynamea corpusof 400 monosyllabicwords. Moreover, the speecherrorsproducedby thenetwork showedsimilar tendenciesasthoseof youngchildren.Althoughonly afirststep,the resultssuggestthat the approachmay ultimately form the basisfor a comprehensive accountofphonologicaldevelopment.

References

Atal, B. S., Chang,J. J., Mathews, M. V., & Tukey, J. W. (1978). Inversionof articulatory-to-acoustictransformationin thevocal tractby a computersortingtechnique.Journal of theAcousticalSocietyofAmerica, 63, 1535–1555.

Bauer, H. (1988). Theethologicalmodelof phoneticdevelopment:I. Clinical LingisticsandPhonetics, 2,347–380.

Benedict,H. (1979). Early lexical development:Comprehensionandproduction. Journal of Child Lan-guage, 6, 183–201.

Berko, J., & Brown, R. (1960). Psycholinguisticresearchmethods.In P. H. Mussen(Ed.), Handbookofresearch methodsin child development(pp.517–557).New York: Wiley.

Bernhardt,B. H., & Stemberger, J.P. (1997).Handbookof phonological development. New York: AcademicPress.

Best,C. T., McRoberts,G. W., & Sithole,N. M. (1988). Examinationof theperceptualre-organizationforspeechcontrasts:Zulu click discriminationby English-speakingadultsandinfants. Journal of Experi-mentalPsychology: HumanPerceptionandPerformance, 14, 345–360.

Boysson-Bardies,B. de.,& Vihman,M. M. (1991). Adapatationto language:Evidencefrom babblingofinfantsaccordingto targetlanguage.Journalof Child Language, 67, 297–319.

Boysson-Bardies,B. de., Vihman,M. M., Roug-Hellichius,L., Durand,D., Landberg, I., & Arao,F. (1992).Materialevidenceof infant selectionfrom target language:A cross-linguisticphoneticstudy. In C. A.Ferguson,L. Menn,& C. Stoel-Gammon(Eds.),Phonological development:Models,research, implica-tions. Timonium,MD: York Press.

21

PlautandKello TheEmergenceof Phonology

Chauvin,Y. (1988). Symbolacquisitionin humansandneural (PDP) networks. PhDthesis,UniversityofCalifornia,SanDiego.

Davis,B. L., & MacNeilage,P. F. (1995).Thearticulatorybasisof babbling.Journalof Speech andHearingResearch, 38, 1199–1211.

Dell, G.S.(1986).A spreading-activationtheoryof retrieval in sentenceproduction.Psychological Review,93, 283–321.

Dodd,B. (1975). Children’s understandingof their own phonologicalforms. QuarterlyJournal of Experi-mentalPsychology, 27, 165–173.

Eberhard,K. M., Spivey-Knowlton, M. J.,& Tanenhaus,M. K. (1995). Eyemovementsasa window intoreal-timespokenlanguagecomprehensionin naturalcontexts. Journalof PsycholinguisticResearch, 24,409.

Elman,J.L. (1990).Findingstructurein time. CognitiveScience, 14, 179–211.Ferguson,C. A., & Farwell,C. B. (1975). Wordsandsoundsin earlylanguageacquisition.Language, 51,

419–439.Fry, D. B. (1966). Thedevelopmentof thephonologicalsystemin thenormalanddeafchild. In F. Smith,

& G. A. Miller (Eds.),Thegenesisof language. Cambridge,MA: MIT Press.Hinton,G. E. (1989).Connectionistlearningprocedures.Artificial Intelligence, 40, 185–234.Houde,J.F. (1997). Sensorimotoradaptationin speech production. PhDthesis,MassachusettsInstituteof

Technology, Departmentof BrainandCognitive Sciences.Huttenlocher, J.(1974).Theoriginsof languagecomprehension.In R. L. Solso(Ed.),Theoriesin cognitive

psychology. Hillsdale,NJ:Erlbaum.Ingram,D. (1976).Phonological disability in children. London:EdwardArnold.Jordan,M. I. (1986). Attractor dynamicsandparallelismin a connectionistsequentialmachine. In Pro-

ceedingsof the 8th AnnualConferenceof the Cognitive ScienceSociety(pp. 531–546).Hillsdale, NJ:Erlbaum.

Jordan,M. I. (1992).Constrainedsupervisedlearning.Journalof MathematicalPsychology, 36, 396–425.Jordan,M. I. (1996).Computationalaspectsof motorcontrolandmotorlearning.In H. Heuer, & S.Keele

(Eds.),Handbookof perceptionandaction: Motor skills. New York: AcademicPress.Jordan,M. I., & Rumelhart,D. E. (1992). Forward models: Supervisedlearningwith a distal teacher.

CognitiveScience, 16, 307–354.Jusczyk,P. W. (1986). Towarda modelof thedevelopmentof speechperception.In J.S.Perkell, & D. H.

Klatt (Eds.),Invarianceandvariability in speech processes. Hillsdale,NJ:Erlbaum.Jusczyk,P. W. (1997).Thediscoveryof spokenlanguage. Cambridge,MA: MIT Press.Jusczyk,P. W., Pisoni,D. B., & Mullennix, J. (1992). Someconsequencesof stimulusvariability on on

speechprocessingby 2-monthold infant. Cognition, 43, 253–291.Kent,R. D. (1992). Thebiology of phonologicaldevelopment. In C. A. Ferguson,L. Menn,& C. Stoel-

Gammon(Eds.), Phonological development: Models, research, implications. Timonium, MD: YorkPress.

Kent,R.D., Mitchell, P. R.,& Sancier, M. (1991).Evidenceandroleof rhythmicorganizationin earlyvocaldevelopmentin humaninfants.In J.Fagard,& P. H. Wolff (Eds.),Thedevelopmentof timingcontrol andtemporal organizationin coordinatedaction. Oxford: Elsevier Science.

Kuhl, P. K. (1983). Perceptionof auditoryequivalenceclassesfor speechin earlyinfancy. Infant BehaviorandDevelopment, 70, 340–349.

Kucera,H., & Francis,W. N. (1967).Computationalanalysisof present-dayAmericanEnglish. Providence,RI: Brown UniversityPress.

Ladefoged,P. (1993).A coursein phonetics. Orlando,FL: HarcourtBrace.Levelt, W. J.M. (1989).Speaking:Fromintentionto articulation. Cambridge,MA: MIT Press.Liberman,A. M. (1996).Speech: A specialcode. Cambridge,MA: MIT Press.

22

PlautandKello TheEmergenceof Phonology

Liberman,A. M., & Mattingly, I. (1985). Themotor theoryof speechperceptionrevised. Cognition, 21,1–36.

Lieberman,P., & Blumstein,S. E. (1988). Speech physiology, speech perception,andacousticphonetics.Cambridge,England:CambridgeUniversityPress.

Lindblom, B. (1992). Phonologicalunits asadaptive emergentsof lexical development. In C. A. Fergu-son,L. Menn,& C. Stoel-Gammon(Eds.),Phonological development:Models,research, implications.Timonium,MD: York Press.

Lindblom, B., MacNeilage,P. F., & Studdert-Kennedy, M. (1984). Self-organizingprocessesandthe ex-planationof phonologicaluniversals.In B. Butterworth,B. Comrie,& O. Dahl (Eds.),Explanationsforlanguage universals. Berlin: Mouton.

Lively, S.E., Pisoni,D. B., & Goldinger, S.D. (1994). Spokenword recognition:Researchandtheory. InM. A. Gernsbacher(Ed.),Handbookof psycholinguistics(pp.265–301).New York: AcademicPress.

Locke, J. L. (1995). Developmentof thecapacityfor spoken language.In P. Fletcher, & B. MacWhinney(Eds.),Thehandbookof child language (pp.278–302).Oxford: Blackwell.

MacNeilage,P. F. (in press).Theframe/contenttheoryof evolution of speechproduction.Behavioral andBrain Sciences.

MacNeilage,P. F., & Davis, B. L. (1990).Acquisitionof speechproduction:Theachievementof segmentalindependence.In W. J. Hardcastle,& A. Marchal (Eds.),Speech productionand speech modelling.Dordrecht:Kluwer Academic.

Markey, K. L. (1994). Thesensorimotorfoundationsof phonology: A computationalmodelof early child-hoodarticulatoryandphoneticdevelopment(TechnicalReportCU-CS-752-94).Boulder:UniversityofColorado,Departmentof ComputerScience.

Marslen-Wilson,W. (1987).Functionalparallelismin spokenword-recognition.Cognition, 25, 71–102.McClelland,J. L., & Rumelhart,D. E. (1981). An interactive activation modelof context effectsin letter

perception:Part1. An accountof basicfindings.Psychological Review, 88, 375–407.McClelland,J. L., St. John,M., & Taraban,R. (1989). Sentencecomprehension:A paralleldistributed

processingapproach.Language andCognitiveProcesses, 4, 287–335.Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manualgesturesby humanneonates.

Science, 198, 75–78.Menn,L. (1978). Phonologicalunitsin beginningspeech.In A. Bell, & J.B. Hooper(Eds.),Syllablesand

segments. Amsterdam:North-Holland.Menn,L. (1983). Developmentof articulatory, phonetic,andphonologicalcapabilities.In B. Butterworth

(Ed.),Language production, Vol. 2 (pp.3–50).New York: AcademicPress.Menn, L., & Stoel-Gammon,C. (1995). Phonologicaldevelopment. In P. Fletcher, & B. MacWhinney

(Eds.),Thehandbookof child language (pp.335–359).Oxford: Blackwell.Menyuk,P., & Menn,L. (1979).Earlystrategiesfor theperceptionandproductionof wordsandsounds.In P.

Fletcher, & M. Garman(Eds.),Languageacquisition:Studiesin first language development. Cambridge,UK: CambridgeUniversityPress.

Morton,J.(1969).Theinteractionof informationin wordrecognition.Psychological Review, 76, 165–178.Moskowitz, B. A. I. (1973). The acquisitionof phonologyandsyntax: A preliminarystudy. In K. J. J.

Hintikka, J.M. E. Moravcsik,& P. Suppes(Eds.),Approachesto natural language. Dordrecht:Reidel.Nittrouer, S.(1993).Theemergenceof maturegesturealpatternsis notuniform: Evidencefrom anacoustic

study. Journalof Speech andHearingResearch, 30, 959–1172.Nittrouer, S., Studdert-Kennedy, M., & McGowan, R. S. (1989). The emergenceof phoneticsegments:

Evidencefrom thespectralstructureof fricative-vowel syllablesspokenby childrenandadults.Journalof Speech andHearingResearch, 32, 120–132.

Oller, D. K. (1980).Theemergenceof thesoundsof speechin infancy. In G.Yenicomshian,J.F. Kavanagh,& C. A. Ferguson(Eds.),Child phonology 1: Production. New York: AcademicPress.

23

PlautandKello TheEmergenceof Phonology

Pearlmutter, B. A. (1989).Learningstatespacetrajectoriesin recurrentneuralnetworks. Neural Computa-tion, 1, 263–269.

Perkell, J.S.,Matthies,M. L., Svirsky, M. A., & Jordan,M. I. (1995).Goal-basedspeechmotorcontrol:Atheoreticalframework andsomepreliminarydata.Journalof Phonetics, 23, 23–35.

Plaut,D. C. (1995). Semanticandassociative priming in a distributedattractornetwork. In Proceedingsofthe17thAnnualConferenceof theCognitiveScienceSociety(pp.37–42).Hillsdale,NJ:Erlbaum.

Plaut,D. C. (1997).Structureandfunctionin thelexical system:Insightsfrom distributedmodelsof namingandlexical decision.Language andCognitiveProcesses, 12, 767–808.

Plaut,D. C.,& Kello, C. T. (in preparation).A distributedconnectionistapproach to phonological develop-ment. Manuscriptin preparation.

Plaut,D. C., McClelland,J. L., Seidenberg, M. S., & Patterson,K. (1996). Understandingnormalandimpairedword reading:Computationalprinciplesin quasi-regulardomains.Psychological Review, 103,56–115.

Reznick,J. S., & Goldfield, B. A. (1992). Rapidchangein lexical developmentin comprehensionandproduction.DevelopmentalPsychology, 28, 406–413.

Roug,L., Landberg, I., & Lundberg, L. J. (1989). Phoneticdevelopmentin early infancy: A studyof fourSwedishchildrenduringthefirst eighteenmonthsof life. Journalof Child Language, 16, 19–40.

Rumelhart,D. E., Hinton,G. E.,& Williams, R. J. (1986).Learninginternalrepresentationsby errorprop-agation. In D. E. Rumelhart,J. L. McClelland,& thePDPResearchGroup(Eds.),Parallel distributedprocessing:Explorationsin themicrostructureof cognition.Volume1: Foundations(pp.318–362).Cam-bridge,MA: MIT Press.

Sedivy, J. C., Tanenhaus,M. K., & Spivey-Knowlton, M. J. (1995). Integrationof visual and linguisticinformationin spokenlanguagecomprehension.Science, 268, 1632.

Smith,B. L. (1973).Theacquisitionof phonology: A casestudy. Cambridge,U.K.: CambridgeUniversityPress.

Snyder, L. S.,Bates,E.,& Bretherton,I. (1981).Contentandcontext in earlylexical development.Journalof Child Language, 6, 565–582.

St. John,M. F., & McClelland,J. L. (1990). Learningand applyingcontextual constraintsin sentencecomprehension.Artificial Intelligence, 46, 217–257.

Stoel-Gammon,C.,& Cooper, J.A. (1984).Patternsof earlylexical andphonologicaldevelopment.Journalof Child Language, 11, 247–271.

Studdert-Kennedy, M. (1987). Thephonemeasa perceptomotorstructure.In A. Allport, D. MacKay, W.Prinz,& E. Scheere(Eds.),Language perceptionandproduction. New York: AcademicPress.

Studdert-Kennedy, M. (1993).Discoveringphoneticfunction. Journalof Phonetics, 21, 147–155.Thelen,E. (1981).Rhythmicalbehavior in infancy: An ethologicalperspective. DevelopmentalPsychology,

17, 237–257.Thelen,E.,& Smith,L. B. (1994).A dynamicsystemsapproach to thedevelopmentof cognitionandaction.

Cambridge,MA: MIT Press.Treiman,R., & Zukowski, A. (1996). Children’s sensitivity to syllables,onsets,rimes, and phonemes.

Journalof ExperimentalChild Psychology, 61, 193–215.VanOrden,G. C., & Goldinger, S. D. (1994). Interdependenceof form andfunctionin cognitive systems

explains perceptionof printed words. Journal of ExperimentalPsychology: HumanPerceptionandPerformance, 20, 1269.

VanOrden,G. C.,Pennington,B. F., & Stone,G. O. (1990).Word identificationin readingandthepromiseof subsymbolicpsycholinguistics.Psychological Review, 97, 488–522.

Vihman,M. M. (1993).Variablepathsto earlywordproduction.Journalof Phonetics, 21, 61–82.Vihman,M. M. (1996).Phonological development:Theoriginsof languagein thechild. Oxford: Blackwell.Vihman,M. M., Maken,M. A., Miller, R., Simmons,H., & Miller, J. (1985). Frombabblingto speech:A

re-assessmentof thecontinuityissue.Language, 61, 397–445.

24

PlautandKello TheEmergenceof Phonology

Vihman,M. M., & Miller, R. (1988). Wordsandbabbleat the thresholdof lexical acquisition. In M. D.Smith,& J. L. Locke (Eds.),Theemergent lexicon: Thechild’s developmentof a linguistic vocabulary.New York: AcademicPress.

Vihman,M. M., & Velleman,S. L. (1989). Phonologicalreorganization:A casestudy. Language andSpeech, 32, 149–170.

Wagner, K. R. (1985).How muchdochildrensayin aday?Journalof Child Language, 12, 475–487.Walley, A. C. (1993). The role of vocabulary developmentin children’s spoken word recognitionand

segmentationability. DevelopmentalReview, 13, 286–350.Werker, J.F., & Tees,R. C. (1984).Cross-languagespeechperception:Evidencefor perceptualreorganiza-

tion duringthefirst yearof life. InfantBehaviorandDevelopment, 7, 49–63.Werner, H., & Kaplan,D. (1984). Symbolformation: An organismic-developmental approach to language

andtheexpressionof thought. Hillsdale,NJ:Erlbaum.Williams, R. J., & Peng,J. (1990). An efficient gradient-basedalgorithmfor on-line trainingof recurrent

network trajectories.Neural Computation, 2, 490–501.Wolpert,D. M., Ghahramani,Z., & Jordan,M. I. (1995).Forwarddynamicmodelsin humanmotorcontrol:

Psychophysicalevidence. In G. Tesauro,D. S. Tourtezky, & T. K. Leen (Eds.),Advancesin neuralinformationprocessingsystems7 (pp.43–50).Cambridge,MA: MIT Press.

25