the effect of the 4-amino functionality on the ... filethe effect of the 4-amino functionality on...

13
The effect of the 4-amino functionality on the photophysical and DNA binding properties of alkyl-pyridinium derived 1,8-naphthalimides Swagata Banerjee, Jonathan A. Kitchen, Thorfinnur Gunnlaugsson* and John M. Kelly* Electronic Supplementary Information (ESI) Figure ESI 1A: 1 H-NMR of 5 in CDCl 3 (400 MHz). Figure ESI 1B: 13 C-NMR of 5 in CDCl 3 (100 MHz). Ethanol Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Upload: trinhkhue

Post on 27-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

The effect of the 4-amino functionality on the photophysical

and DNA binding properties of alkyl-pyridinium derived

1,8-naphthalimides

Swagata Banerjee, Jonathan A. Kitchen, Thorfinnur Gunnlaugsson* and John M. Kelly* Electronic Supplementary Information (ESI)

Figure ESI 1A: 1H-NMR of 5 in CDCl3 (400 MHz).

Figure ESI 1B:

13C-NMR of 5 in CDCl3 (100 MHz).

Ethanol

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 2: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 1c:

1H-NMR of 4 in DMSO-d6 (400 MHz).

Figure ESI 1d:

13C-NMR of 4 in DMSO-d6 (100 MHz).

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 3: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 1e:

1H-NMR of 2 in DMSO-d6 (600 MHz).

Figure ESI 1f:

13C-NMR of 2 in DMSO-d6 (150 MHz).

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 4: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 2a:

1H-NMR of 7 in CDCl3 (400 MHz).

Figure ESI 2b:

13C-NMR of 7 in CDCl3 (100 MHz).

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 5: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 2c:

1H-NMR of 6 in CDCl3 (400 MHz).

Figure ESI 2d:

13C-NMR of 6 in CDCl3 (100 MHz).

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 6: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 2e:

1H-NMR of 3 in DMSO-d6 (600 MHz).

Figure ESI 2f:

13C-NMR of 3 in DMSO-d6 (150 MHz).

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 7: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

4. 5. Figure ESI 4: (a) The plot of concentration of 3 vs. absorbance at 450 nm, (b) Normalised UV/vis

absorption spectrum of 3 at various concentrations in water, (c) 1H NMR spectrum (600 MHz) of 3 in

D2O at various concentrations.

250 300 350 400 450 500 550 600

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ab

so

rba

nc

e

Wavelength (nm)

2 M

8 M

100 M

(a) (b)

(c)

0.0 2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ab

so

rba

nc

e a

t 4

50

nm

[Naphthalimide] (M)

1. 2. Figure ESI 3: (a) The packing of 2 showing the π–π interactions (c) H-bonding network,

where (......) shows classical NH or OH hydrogen bonding interactions and (......)denotes

non-classical CH based hydrogen bonding, (b) Demonstration of out of plane orientation of

pyridyl ring in the solid- state structure of 2 due to non-classical H-bonding interactions

(a) (b)

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 8: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

FiFigure ESI 5: The changes in the UV/vis absorption spectra of (a) 2 (6.9 μM) and 3 (7.9 μM) in the presence

of increasing concentration of AMP (0-100 mM) in 10 mM phosphate buffer (pH 7.0).

350 400 450 500 550

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ab

so

rba

nc

e

Wavelength (nm)

350 400 450 500 550 600

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ab

so

rba

nc

e

Wavelength (nm)

(a) (b)

8. 9. Figure ESI 4: Effect of solvent polarity on the (a) UV/vis and (b) fluorescence spectra of 3.

300 350 400 450 500 550

0.00

0.02

0.04

0.06

0.08

0.10

Ab

so

rba

nce

Wavelength (nm)

Butanol

Isopropanol

Propanol

Ethanol

Water

500 550 600 650 700

0

40

80

120

Flu

ore

sce

nce

In

ten

sity (

a.u

.)

Wavelength (nm)

Butanol

Isopropanol

Propanol

Ethanol

Methanol

Water

(a) (b)

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 9: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

12. Figure ESI 6: The changes in the fluorescence spectra of (a) 2 (6.9 μM) (λex = 460 nm) and 3 (7.9 μM)

(λex = 450 nm) in the presence of increasing concentration of AMP (0-100 mM) in 10 mM phosphate

buffer (pH 7.0).

500 550 600 650 700

0

20

40

60

80

100

120

Flu

ore

sc

en

ce

In

ten

sit

y (

a.u

.)

Wavelength (nm)

500 550 600 650 700

0

50

100

150

200

250

300

350

400

Flu

ore

sc

en

ce

In

ten

sit

y (

a.u

.)

Wavelength (nm)

(a) (b)

Figure ESI 7: Overall changes in the steady state emission spectra of 2 (7.0 μM) in the presence

of increasing concentration of st-DNA (0–1120 μM) in 10 mM phosphate buffer containing 100

mM NaCl (pH 7.0) (λex = 480 nm). Inset: Plot of I/I0 vs. P/D for 2 in 10 mM phosphate () and 10

mM phosphate buffer containing 100 mM NaCl ().

0 20 40 60 80 100

1.0

1.2

1.4

1.6

10 mM Phosphate buffer

10 mM Phosphate buffer + 100 mM NaCl

I/I 0

P/D

500 550 600 650 700

0

20

40

60

80

100

120

140

160

180

P/D = 160

P/D = 20P/D = 18

Flu

ore

sc

en

ce

In

ten

sit

y (

a.u

.)

Wavelength (nm)

P/D = 0

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 10: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Figure ESI 9: The LD spectra of st-DNA (400 μM) in the presence of varying

concentration of 3 (P/D 030) in 10 mM phosphate buffer (pH 7.0).

14.

200 250 300 350 400 450 500 550 600-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

LD

Wavelength (nm)

st-DNA

P/D = 5

P/D = 10

P/D = 20

P/D = 30

16. Figure ESI 8: The changes in the UV/vis absorption spectra of 3 (5.2 μM) in the presence of (a) poly

(dA-dT)2 (0-172 μM) and (b) poly (dG-dC)2 (0-190 μM )CD in 10 mM phosphate buffer (pH 7.0).

350 400 450 500 550

0.00

0.01

0.02

0.03

0.04

0.05

0.06A

bs

orb

an

ce

Wavelength (nm)

350 400 450 500 550

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ab

so

rba

nc

e

Wavelength (nm)

(a) (b)

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 11: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Table ESI 1: Crystal data and structure refinement for 2.

Identification code sb29

Empirical formula C20H22ClN3O4

Formula weight 403.86

Temperature 108(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 8.1105(16) Å α = 98.63(3)°.

b = 8.8677(18) Å β = 96.32(3)°.

c = 14.245(3) Å γ = 110.67(3)°.

Volume 932.9(3) Å3

Z 2

Density (calculated) 1.438 Mg/m3

Absorption coefficient 0.238 mm-1

F(000) 424

Crystal size 0.21 x 0.13 x 0.08 mm3

Theta range for data collection 2.51 to 24.99°.

Index ranges -9<=h<=9, -10<=k<=10, -16<=l<=16

Reflections collected 10726

Independent reflections 3166 [R(int) = 0.0537]

Completeness to theta = 24.99° 95.7 %

Figure ESI 10: The CD spectra of st-DNA (150 μM) in the presence of varying

concentration of 3 (P/D 020) in 10 mM phosphate buffer (pH 7.0).

250 300 350 400 450 500

-1.5x104

-1.0x104

-5.0x103

0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

Mo

lar

Ell

ipti

cit

y (

de

gre

e c

m2d

mo

l-1)

Wavelength (nm)

st-DNA

P/D 2.5

P/D 5

P/D 10

P/D 20

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 12: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9812 and 0.9517

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3166 / 0 / 254

Goodness-of-fit on F2 1.220

Final R indices [I>2sigma(I)] R1 = 0.0691, wR2 = 0.1633

R indices (all data) R1 = 0.0730, wR2 = 0.1656

Largest diff. peak and hole 1.018 and -0.338 e.Å-3

Table ESI 2: Crystal data and structure refinement for 3.

Identification code sbpf6

Empirical formula C22 H22 F6 N3 O2 P

Formula weight 505.40

Temperature 100(2) K

Wavelength 1.54178 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 8.8081(4) Å = 85.580(2) °

b = 9.2489(4) Å = 89.039(2) °

c = 14.9085(6) Å = 62.137(2) °

Volume 1070.27(8) Å3

Z 2

Density (calculated) 1.568 Mg/m3

Absorption coefficient 1.866 mm-1

F(000) 520

Crystal size 0.24 x 0.11 x 0.04 mm3

Theta range for data collection 8.34 to 63.95°.

Index ranges -10<=h<=9, -10<=k<=10, -17<=l<=17

Reflections collected 7357

Independent reflections 3360 [R(int) = 0.0301]

Completeness to theta = 63.95∞ 95.1 %

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013

Page 13: The effect of the 4-amino functionality on the ... fileThe effect of the 4-amino functionality on the photophysical and ... (0-100 mM) in 10 mM phosphate buffer (pH 7.0). 350 400 450

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7526 and 0.5895

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3360 / 0 / 310

Goodness-of-fit on F2 1.074

Final R indices [I>2sigma(I)] R1 = 0.0496, wR2 = 0.1445

R indices (all data) R1 = 0.0521, wR2 = 0.1468

Largest diff. peak and hole 0.595 and -0.358 e.Å-3

Table ESI 3 Hydrogen bonds for 2 [Å and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(1)-H(1X)...O(10)a 0.85 2.05 2.882(4) 166.2

N(1)-H(1Y)...O(20)b 0.85 2.17 2.978(4) 158.2

O(10)-H(10X)...O(1)c 0.85 2.00 2.838(3) 170.0

O(10)-H(10Y)...Cl(1) 0.99 2.19 3.168(3) 166.9

O(20)-H(20X)...Cl(1) 0.83 2.33 3.150(3) 170.6

O(20)-H(20Y)...Cl(1)d 0.97 2.21 3.167(3) 168.2

Symmetry transformations used to generate equivalent atoms: a -x,-y,-z

b x-1,y-1,z-1

c x,y+1,z

d -x+2,-y+2,-z+1

Electronic Supplementary Material (ESI) for Organic & Biomolecular ChemistryThis journal is © The Royal Society of Chemistry 2013