the effect of desdyni mission on volcano...

21
The effect of DESDynI mission on volcano deformation modeling The effect of DESDynI mission on volcano deformation modeling SangHo Yun, Paul Rosen, Paul Lundgren Jet Propulsion Laboratory Howard Zebker, Paul Segall Stanford University 1 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology FRINGE 2009 WORKSHOP

Upload: trannhi

Post on 18-Mar-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

The effect of DESDynI mission on  volcano deformation modeling

The effect of DESDynI mission on  volcano deformation modeling

Sang‐Ho Yun, Paul Rosen, Paul LundgrenJet Propulsion Laboratory

Howard Zebker, Paul SegallStanford University

1

National Aeronautics andSpace Administration

Jet Propulsion LaboratoryCalifornia Institute of Technology FRINGE 2009 WORKSHOP

(N+4)‐D measurements of volcanic activities 

2

Temporal Domain (1)

GPS, seismometer, tilt meter, …Temporal Domain (1)

GPS, seismometer, tilt meter, …

Spectral Domain (N)

Hyperspectral

imagerySpectral Domain (N)

Hyperspectral

imagery

Spatial Domain (3)

InSAR, Optical imagery Spatial Domain (3)

InSAR, Optical imagery 

FRINGE 2009 WORKSHOP

Presenter
Presentation Notes
The word “transient” refers to a behavior in temporal domain, but I also would like to highlight its crucial implication in spatial domain. Ideally and hopefully in the near future, (N+4)-dimensional measurements will be made simultaneously for volcano deformation study. These are three main domains. The number in the parenthesis shows the number of dimension in each domain. N is the number of channels in the sensor. These are instruments or products that are kind of “winners” in each domain. For example, GPS has high temporal resolution, whereas InSAR has high spatial resolution. Spectral domain is increasing its dimension to 256 even for spaceborne measurements, but the sensitivity of deformation source model to each channel is not very well known yet. This talk focuses on why InSAR should increase its sampling rate and be in a better position in temporal domain.

Question

3

What happens weeks, days and hours  before and during volcanic eruptions?

EQs & Tectonics Seed Question 7: What kinds of new tectonics/volcanic 

processes will be detectable with Sentinel data? How will it improve what we 

already detect with current systems?

Volcanoes Seed Question 1: Is ALOS sufficient, and if not will other satellites 

such as RADARSAT, TerraSAR‐X and COSMO‐SkyMed be able to fill the 

void?

What happens weeks, days and hours  before and during volcanic eruptions?

EQs & Tectonics Seed Question 7: What kinds of new tectonics/volcanic 

processes will be detectable with Sentinel data? How will it improve what we 

already detect with current systems?

Volcanoes Seed Question 1: Is ALOS sufficient, and if not will other satellites 

such as RADARSAT, TerraSAR‐X and COSMO‐SkyMed be able to fill the 

void?

FRINGE 2009 WORKSHOP

Presenter
Presentation Notes
In particular, what happens …. ------- Well, you might say just look at the GPS data weeks, days, and hours before the eruption. Probably, It doesn’t help a lot. In order to capture spatially varying near surface transient magma migration, GPS is not a

Sierra Negra, Galápagos

4Chadwick et al., 2006

Geist

et al., 2008

Amelung, Jónsson

et al., 2000

Events we have been missing?

The caldera center of Sierra Negra

has uplifted for 26 years and erupted for 8 days in October 2005 

(Amelung

et el. 2000; Chadwick et al. 2006; Yun et al. 2007; Geist

et al. 2008). 

5

1979 1992 2000 20061997

Vertical motion of caldera center

FRINGE 2009 WORKSHOP

Spatial distribution of events

6

ASTER (2005/11/02) + SRTM DEM

2 km

aa

bb

cc

dd

?a.  Uplift: 26 years

b.  Faulting:  seconds

c.   Lateral flow: < 3 hours

d.  Uplift + dike:  < 3 hours

e.  Fissure eruption:  4 days

f.  Vent eruption:  4 days

(Geist et al., 2008)

ee

ff

?

FRINGE 2009 WORKSHOP

Presenter
Presentation Notes
The Sierra Negra Volcano in the Galapagos Islands began erupting on October 22, 2005. In early November, Sierra Negra’s lava flow was so hot it could be seen at night—by a thermal infrared satellite sensor, that is. On November 2, 2005, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) flying onboard NASA’s Terra satellite captured this nighttime image of the volcano. First viable target would be eruption events. Then the next viable target with even higher temporal resolution instrument would be crack propagation and magma migration in response to the crack or faulting.

Magma chamber geometry

7

2 km

Best‐fit model using the binary parameter 

optimization with a uniform pressure 

boundary condition (Yun, 2007)

FRINGE 2009 WORKSHOP

Best‐fit composite model

8

Fault slip + dike opening 

+ sill opening/closing.

Based on InSAR (Yun et 

al., 2007), GPS (Chadwick 

et al., 2006), seismic (Mw 

5.4), fieldwork data (Geist

et al., 2008), and ASTER 

image.

Inversion constrained by 

InSAR data adjusted with 

GPS data to isolate 

eruption period. (94% 

data variance explained).

Faulting event caused 

irreversible deformation 

along the western edge 

of the sill (Yun 2007).

Fault slip

Dike opening

Sill closing

9

Simulated interferograms of volcanic deformation for 46 days starting from 12 days before the eruption of Sierra Negra volcano, Galapagos, based on InSAR data processing (Yun et al., 2007) and geophysical inversion (Yun 2007). An earthquake (Mw 5.4) occurred three hours prior to the eruption, which induced lateral magma migration. During the three hours dike intrusion occurred, which caused fissure eruption on the northern rim of the caldera. Most of the non-steady deformation occurred during the 8-day eruption, but they are quickly dominated by the large co-eruptive subsidence signal and covered by lava flow. The maximum co-eruptive subsidence was about 5.4 m.

-8 days -4 days -3 hours -2 hours

Eruption begins

+3 days +6 days +8 days +34 days

Eruption ends

-1 ~ 0 hours

Earthquake Mw 5.4 Lateral magma migration

Co-eruptive subsidence

Pre-eruptive uplift

Post-eruptive uplift

-12 days

Dike

Faults

Lava

Sierra Negra4 km

Reconstructed interferograms

“ALOS”

FRINGE 2009 WORKSHOP Envisat

15 cm / fringe

Presenter
Presentation Notes
The existing L-band InSAR mission can produce the last interferogram only at best. One color cycle represents 12 cm LOS displacement (ascending orbit).

Were there other week‐long events?

Cerro Azul

volcano eruption, Galapagos

14 days, 2008 (Dennis Geist, personal comm.)

Afar dike intrusion, East Africa 

10 days, 2007 (Calais et al., Nature 2008, Wright personal comm.)

Papua New Guinea dike intrusion

14 days, 2006 (Wicks, personal comm.)

Miyakejima

volcano eruption, Japan

13 days, 2000 (Ukawa

et al., EPS 2000)

10FRINGE 2009 WORKSHOP

Volcano eruption database

11

3872 eruption events recorded for 1900/1/1 –

2800/12/31 

(Global Volcanism Program, Smithsonian Institution, Siebert and Simkin 2002‐)

Number of volcanoes that have erupted since 1900 with no uncertainty in month  =  333

FRINGE 2009 WORKSHOP

40 eruptions / year

12

WW I WW II

Reporting and population trend 

instead of  increased volcanism

The apparent sharp increase in the 

mid‐20th century following WWII 

reflects the onset of the IAVCEI 

regional cataloging of volcanic 

events and the beginning of 

publication of annual catalogs of 

volcanic activity (Siebert, personal 

comm.)

FRINGE 2009 WORKSHOP

13FRINGE 2009 WORKSHOP

Probability of eruption during a 5‐year mission

14

Acatenango 0.1286 Concepcion 0.6005 Jan Mayen 0.0448 Marchena 0.0448 Rocard 0.0877 Tori-shima 0.1676Adatara 0.0877 Copahue 0.0448 Kaba 0.2050 Marion Island 0.0448 Ruang 0.1676 Trident 0.3382Agung 0.0448 Cotopaxi 0.0877 Kaitoku Seamount 0.0448 Masaya 0.4975 Ruapehu 0.8544 Tristan da Cunha 0.0877Ahyi 0.0448 Cumbal 0.0448 Kanaga 0.0877 Mauna Loa 0.4739 Ruby 0.0877 Tungurahua 0.0877Akademia Nauk 0.0448 Curacoa 0.0448 Kanlaon 0.6005 Mayon 0.5200 Ruiz, Nevado del 0.0877 Tupungatito 0.2050Akan 0.5415 Dabbahu 0.0448 Karangetang [Api Siau] 0.7475 McDonald Islands 0.0448 Rumble III 0.1286 Ubinas 0.0448Akita-Komaga-take 0.0877 Dalaffilla 0.0448 Karkar 0.1286 Medvezhia 0.0448 Sabancaya 0.1286 Ukinrek Maars 0.0448Akita-Yake-yama 0.1286 Deception Island 0.0877 Karthala 0.4492 Merapi 0.6005 Sakura-jima 0.3679 Ulawun 0.6966Akutan 0.5200 Dempo 0.4739 Karymsky 0.3382 Meru 0.0448 San Cristobal 0.4233 Unnamed 0.3072Alaid 0.2050 Didicas 0.0877 Kasatochi 0.0448 Metis Shoal 0.1286 San Jorge 0.0448 Unzen 0.0877Alayta 0.0448 Dieng Volc Complex 0.3382 Katla 0.0448 Michael 0.3382 San Miguel 0.3679 Usu 0.1676Ambrym 0.7102 Eastern Gemini Seamount 0.0448 Katmai 0.0448 Michoacan-Guanajuato 0.0448 San Pedro 0.0448 Vailulu'u 0.0877Amukta 0.0448 Ebeko 0.3072 Kavachi 0.6005 Miravalles 0.0448 San Salvador 0.0448 Veniaminof 0.4739Anatahan 0.1676 Egon 0.1676 Kelimutu 0.0877 Miyake-jima 0.3679 Sangeang Api 0.2050 Vestmannaeyjar 0.0877Aniakchak 0.0448 Epi 0.1676 Kelut 0.3382 Momotombo 0.0448 Santa Ana 0.1286 Vesuvius 0.0448Aoba 0.0877 Erebus 0.0877 Kerinci 0.4739 Monowai Seamount 0.1286 Santa Maria 0.0448 Villarrica 0.6966Ardoukoba 0.0448 Etna 0.9694 Kharimkotan 0.0448 Montagu Island 0.0448 Santorini 0.1676 Visoke 0.0448Arenal 0.0448 Falcon Island 0.0448 Kick 'em Jenny 0.3962 Moua Pihaa 0.0877 Sarychev Peak 0.3072 Waiowa 0.0448Asama 0.8731 Farallon de Pajaros 0.1286 Kikai 0.3072 Mutnovsky 0.2406 Savai'i 0.0877 Watt, Morne 0.0448Askja 0.0448 Fayal 0.0448 Kilauea 0.9036 Nasu 0.0877 Seguam 0.1286 Westdahl 0.1286Aso 0.9234 Fernandina 0.4233 Kirishima 0.2747 Negra, Sierra 0.2050 Semeru 0.4975 White Island 0.4739Atka 0.0448 Fogo 0.0877 Kiska 0.0877 Negro, Cerro 0.5415 Shikotsu 0.6355 Wolf 0.1676Augustine 0.2406 Fournaise, Piton de la 0.6005 Kizimen 0.0448 Niigata-Yake-yama 0.2747 Shiretoko-Iwo-zan 0.0448 Wrangell 0.1286Avachinsky 0.2406 Fourpeaked 0.0448 Kliuchevskoi 0.9036 Nikko-Shirane 0.0448 Shishaldin 0.4739 Yake-dake 0.6355Awu 0.2406 Fuego 0.5200 Kolokol Group 0.0877 Nila 0.0877 Shiveluch 0.4492 Yucamane 0.0448Axial Seamount 0.0448 Fukujin 0.0877 Komaga-take 0.3382 Nishino-shima 0.0448 Sirung 0.2050 Yunaska 0.0448Azul, Cerro 0.2050 Fukutoku-Okanoba 0.3072 Korovin 0.1676 Niuafo'ou 0.2050 Slamet 0.6966 Zao 0.0448Azuma 0.0877 Galeras 0.3962 Koryaksky 0.1286 North Gorda Ridge 0.0448 Socorro 0.0877 Zavaritzki Caldera 0.0448Babuyan Claro 0.0448 Galunggung 0.1286 Krafla 0.2406 Novarupta 0.0448 Soputan 0.6823 Zheltovsky 0.0448Bagana 0.2406 Gamalama 0.4739 Krakatau 0.7588 Nyamuragira 0.7588 Sorikmarapi 0.0877 Zhupanovsky 0.0877Bam 0.2747 Gamkonora 0.2050 Kuchinoerabu-jima 0.3679 Nyiragongo 0.2406 Soufriere Guadeloupe 0.0877Banda Api 0.0448 Garbuna Group 0.1286 Kuju 0.0448 Okataina 0.4492 Soufriere Hills 0.0877Banua Wuhu 0.0877 Gareloi 0.0877 Kupreanof 0.0448 Okmok 0.3382 Soufriere St. Vincent 0.1286Barcena 0.0448 Gaua 0.2747 Kurikoma 0.0448 On-take 0.0448 Spurr 0.0877Bardarbunga 0.0877 Gede 0.2050 Kusatsu-Shirane 0.4739 Oshima 0.7898 St. Andrew Strait 0.0448Barren Island 0.1676 Gorely 0.2050 Kuwae 0.2406 Pacaya 0.2406 St. Helens 0.1676Batur 0.4492 Goriaschaia Sopka 0.0448 Kverkfjoll 0.0448 Pagan 0.3072 Stromboli 0.0877Bayonnaise Rocks 0.2050 Great Sitkin 0.0448 La Palma 0.0877 Pago 0.1286 Sumbing 0.0877Bezymianny 0.8671 Grimsvotn 0.1676 Langila 0.5621 Paluweh 0.2747 Sundoro 0.1676Bogoslof 0.1286 Grozny Group 0.1676 Lascar 0.5621 Papandayan 0.1286 Suoh 0.0448Bristol Island 0.0877 Guagua Pichincha 0.3382 Lassen Volc Center 0.0448 Pavlof 0.5817 Supply Reef 0.0877Bulusan 0.3679 Heard 0.3072 Lautaro 0.0448 Pelee 0.0877 Suwanose-jima 0.4233Calbuco 0.1676 Hekla 0.2747 Lengai, Ol Doinyo 0.3382 Perbakti-Gagak 0.0448 Taal 0.3679Callaqui 0.0448 Home Reef 0.0877 Leroboleng 0.0448 Peuet Sague 0.1286 Tacana 0.0877Cameroon 0.3072 Hudson, Cerro 0.0877 Lewotobi 0.4233 Pilas, Las 0.0877 Tair, Jebel at 0.0448Camiguin 0.0448 Huila, Nevado del 0.1286 Llaima 0.6184 Pinatubo 0.1286 Talang 0.3072Carran-Los Venados 0.1286 Hunga Tonga-Hunga Ha'apai 0.0448 Loihi 0.0448 Planchon-Peteroa 0.1676 Tandikat 0.0448Cendres, Ile des 0.0448 Ibu 0.2050 Lokon-Empung 0.5415 Poas 0.6966 Tangkubanparahu 0.3679Cereme 0.0877 Ijen 0.2406 Long Island 0.2050 Popocatepetl 0.2050 Tao-Rusyr Caldera 0.0448Chaiten 0.0448 Iliboleng 0.3679 Lonquimay 0.0448 Purace 0.2050 Teahitia 0.1676Chichon, El 0.0448 Iliwerung 0.3072 Lopevi 0.5817 Puyehue-Cordon Caulle 0.0877 Telica 0.6674Chiginagak 0.0877 Inielika 0.0877 Macdonald 0.3679 Rabaul 0.3072 Tenerife 0.0448Chikurachki 0.4233 Ioto [Iwo-jima] 0.3962 Mahawu 0.0448 Ranakah 0.0448 Tengger Caldera 0.6674Chillan, Nevados de 0.0877 Irazu 0.2406 Maipo 0.0448 Raoul Island 0.0877 Terceira 0.0448Chirinkotan 0.1286 Irruputuncu 0.0448 Makian 0.0448 Raung 0.7696 Tiatia 0.0877Chokai 0.0448 Iwate 0.0448 Makushin 0.1286 Redoubt 0.1676 Tinakula 0.2747Cleveland 0.3962 Iwo-Tori-shima 0.1286 Maly Semiachik 0.0448 Reventador 0.3679 Tofua 0.0448CoAxial Segment 0.0448 Iya 0.0877 Manam 0.5621 Rincon de la Vieja 0.4492 Tokachi 0.4233Colima 0.3072 Izalco 0.3382 Manda Hararo 0.0448 Rinjani 0.2747 Tolbachik 0.4975Colo [Una Una] 0.0448 Izu-Tobu 0.0448 Marapi 0.7356 Ritter Island 0.1676 Tongariro 0.6674

Detectability

Binary parameter of a remote sensing mission

A function of the mission’s revisit period and the duration of a volcanic event.

Detectability

= 1   if: 

The mission has a non‐zero probability to perfectly image the event (Case A).

The mission has 100 % probability of acquiring data during the event (Case B).

Detectability

= 0   otherwise   

15

Case A Case B

FRINGE 2009 WORKSHOP

Expected detectability

improvement

The duration of 1209 eruptions (31.2 % of 

total) were shorter than 46 days (ALOS’

revisit period).

The duration of 518 eruptions (13.4 % of 

total) were between 8 days (DESDynI) and 

46 days (ALOS).

43 % of the “missing”

events by ALOS will 

be “detected”

with DESDynI.

During its 5‐year mission, 30 eruption 

events are expected to be further 

“detected”

with DESDynI.

16

DESDynI ALOSFRINGE 2009 WORKSHOP

Presenter
Presentation Notes
Replace histograms, change line to arrows

Number of eruption cycles

Number of volcanoes that have erupted more than once since 1900 = 234 

Total number of eruption cycles from those volcanoes = 2071

Number of volcano eruption cycles (< 5 years) = 1455 (70.3 % of total)

Number of volcano eruption cycles (< 3 years) = 1232 (59.5 % of total)

Descope‐induced percent decrease in the number of eruption cycles that could be 

covered = 15.3 % 

17FRINGE 2009 WORKSHOP

Presenter
Presentation Notes
Replace histogram, add histogram + VEI plot Add slides of avis (igram, gps)

18

Simulated interferograms of volcanic deformation for 46 days starting from 12 days before the eruption of Sierra Negra volcano, Galapagos, based on InSAR data processing (Yun et al., 2007) and geophysical inversion (Yun 2007). An earthquake (Mw 5.4) occurred three hours prior to the eruption, which induced lateral magma migration. During the three hours dike intrusion occurred, which caused fissure eruption on the northern rim of the caldera. Most of the non-steady deformation occurred during the 8-day eruption, but they are quickly dominated by the large co-eruptive subsidence signal and covered by lava flow. The maximum co-eruptive subsidence was about 5.4 m.

-8 days -4 days -3 hours -2 hours

Eruption begins

+3 days +6 days +8 days +34 days

Eruption ends

-1 ~ 0 hours

Earthquake Mw 5.4 Lateral magma migration

Co-eruptive subsidence

Pre-eruptive uplift

Post-eruptive uplift

-12 days

Dike

Faults

Lava

Sierra Negra4 km

Reconstructed interferograms

FRINGE 2009 WORKSHOP

“ALOS”

Envisat

15 cm / fringe

Presenter
Presentation Notes
The existing L-band InSAR mission can produce the last interferogram only at best. One color cycle represents 12 cm LOS displacement (ascending orbit).

The Fringe Movie

19

Note: Frame

interval is not 

constant

Uplift: 1 frame / dayFaulting:

2 frames / secMagma move: 8 frames / hrDike intrusion: 8 frames / hrSubsidence: 1 frame / day

FRINGE 2009 WORKSHOP

20

-8 days -4 days -3 hours -2 hours

Eruption begins

+3 days +6 days +8 days +34 days

Eruption ends

-1 ~ 0 hours

Earthquake Mw 5.4 Lateral magma migration

Co-eruptive subsidence

Pre-eruptive uplift

Post-eruptive uplift

-12 days

Dike

Faults

Lava

Sierra Negra4 km

Reconstructed interferograms revisited

Simulated interferograms of volcanic deformation for 46 days starting from 12 days before the eruption of Sierra Negra volcano, Galapagos, based on InSAR data processing (Yun et al., 2007) and geophysical inversion (Yun 2007). An earthquake (Mw 5.4) occurred three hours prior to the eruption, which induced lateral magma migration. During the three hours dike intrusion occurred, which caused fissure eruption on the northern rim of the caldera. Most of the non-steady deformation occurred during the 8-day eruption, but they are quickly dominated by the large co-eruptive subsidence signal and covered by lava flow. The maximum co-eruptive subsidence was about 5.4 m.

FRINGE 2009 WORKSHOP

“ALOS”

Envisat

15 cm / fringe

Presenter
Presentation Notes
The existing L-band InSAR mission can produce the last interferogram only at best. One color cycle represents 12 cm LOS displacement (ascending orbit).

Conclusions

21

Dike intrusions and fast magma migration (such as the ones induced by 

faulting events) are likely to be captured by

DESDynI mission.

31.2 % of volcanic eruptions are not detected by ALOS.  43 % of them will be 

detected by DESDynI.  This is about 30 eruptions for 5 years.

Descoping

from 5 years to 3 years would cause 40 % decrease in number of 

events covered and 15.3 % decrease in the number of eruption cycles 

covered.

ALOS, Envisat, ERS, and Radarsat

are not frequent enough to detect such 

events.  TerraSAR‐X might detect them.  COSMO‐SkyMed

is likely to image 

those events, if data are available.

Dike intrusions and fast magma migration (such as the ones induced by 

faulting events) are likely to be captured by

DESDynI mission.

31.2 % of volcanic eruptions are not detected by ALOS.  43 % of them will be 

detected by DESDynI.  This is about 30 eruptions for 5 years.

Descoping

from 5 years to 3 years would cause 40 % decrease in number of 

events covered and 15.3 % decrease in the number of eruption cycles 

covered.

ALOS, Envisat, ERS, and Radarsat

are not frequent enough to detect such 

events.  TerraSAR‐X might detect them.  COSMO‐SkyMed

is likely to image 

those events, if data are available.

FRINGE 2009 WORKSHOP

Presenter
Presentation Notes
In particular, what happens …. ------- Well, you might say just look at the GPS data weeks, days, and hours before the eruption. Probably, It doesn’t help a lot. In order to capture spatially varying near surface transient magma migration, GPS is not a