the dong group at ut austin - metal carbene-involved c-h...

45
Dong XING March 9 th 2016 Metal Carbene-Involved C-H Functionalization --New Pathways and Synthetic Applications Guangbin Dong Group Meeting @ UT Austin

Upload: others

Post on 20-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Dong XINGMarch 9th 2016

    Metal Carbene-Involved C-H Functionalization--New Pathways and Synthetic Applications

    Guangbin Dong Group Meeting @ UT Austin

  • Metal Carbene-Involved C-H Functionalization

    The C‐H activation/C‐C formation proceeds in a single step through a three‐centered hydride transfer‐like transition state with a small activation energy

    Sp3 C-H Functionalization

    Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181

    This concerted three‐centered transition state allows efficient asymmetric control by chiral metal catalysts

  • Metal Carbene-Involved C-H Functionalization

    Aromatic sp2 C-H Functionalization

    Competitive Buchner Ring Expansion

  • Metal Carbene-Involved C-H Functionalization

    N N2

    CO2Me

    Br

    +Rh2(S-DOSP)4

    NCO2Me

    Br N

    MeO2C

    Br24%64% ee

    36%0% ee

    +

    The zwitterionic intermediate‐involving pathway makes it difficult to achieve asymmetric control by chiral metal catalysts

    Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769

    Aromatic sp2 C-H Functionalization

  • Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 7896Racemic version reported by Rovis: Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364

    Directing Group-Assisted Enantioselective Aromatic C-H Functionalization

    via “CMD” Mechanism

  • Plausible mode for the enantioselectivity

  • Scope of the diazo compounds

  • Enantioselective C(sp2)-H Insertion of Aniline Derivatives with Diazo Cpds

    Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700

  • Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700

    Proposed Pathway for this transformation

  • Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700

    Mechanism Studies

  • Substrate Scope

    Scope of Diazo Cpds Scope of Aniline Substrates

    Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700

  • R1N2

    CO2R2

    1,2-proton transfer

    R1CO2R2

    Xpath a

    X

    M

    R1 CO2R2

    HX

    H

    R1

    OM

    OR2

    active zwitterionic intermediate

    Zhang, J. et al JACS, 2014, 136, 6904Shi, X. et al ACIE, 2014, 53, 9817Zhou, Q,-L et al JACS, 2015, 137, 8700

    H

    X +

    R1M

    CO2R2

    metal catalyst

    path b

    electrophilictrapping

    chiral co-cat.

    R1

    X

    CO2R2

    Benzylic QuaternaryCarbon Center

    X

    Our Design—Electrophilic Interception of the Zwitterionic Intermediate

  • Precedent—Using Indole & N‐Phenyl Diazoamide as Zwitterionic Precursor

    13

  • Jia, S.; Xing, D.*; Zhang, D.; Hu, W.* Angew. Chem. Int. Ed., 2014, 53, 13098Synfacts, 2014, 10(11), 1171

    Using Imine as the Electophile & Rh&Chiral PPA Co-Cat. System

  • Substrate Scope-1

    entry 3 Ar1/Ar2 4 yield (%)b drc ee (%)d

    1 3a p-Cl-C6H4/Ph 4a 74 91:9 99

    2 3b p-Br-C6H4/Ph 4b 68 92:8 98

    3 3c p-F-C6H4/Ph 4c 67 91:9 99

    4 3d p-CF3-C6H4/Ph 4d 68 87:13 98

    5 3e 3,4-Cl2-C6H3/Ph 4e 73 95:5 90

    6 3f Ph/Ph 4f 57 88:12 96

    7 3g p-Me-C6H4/Ph 4g 43 82:18 98

    8 3h p-F-C6H4/p-Cl-C6H4 4h 68 86:14 99

    9 3i p-Cl-C6H4/p-Br-C6H4 4i 57 85:15 99

    10 3j Ph/m-Br--C6H4 4j 56 80:20 97

  • 4k84%

    90:10 dr; 99% ee

    4l83%

    90:10 dr; 99% ee

    4m71%

    91:9 dr; 99% ee

    4n79%

    92:8 dr; 98% ee

    4o40%

    78:22 dr; 97% ee

    4t74%

    91:9 dr; 98% ee

    4p71%

    95:5 dr; 99% ee

    4u55%

    88:12 dr; 99% ee

    4v73%

    90:10 dr; 99% ee

    MeO2C

    HN

    p-F-C6H4

    Z2N Ph

    p-Cl-C6H4 MeO2C

    HN

    p-F-C6H4

    Z2N Ph

    p-Br-C6H4 MeO2C

    HN

    p-F-C6H4

    Z2N Ph

    p-Me-C6H4 MeO2C

    HN

    p-F-C6H4

    Z2N Ph

    m-OMe-C6H4

    EtO2C

    HN

    p-F-C6H4

    Z2N Ph

    Ph

    MeO2C

    HN

    p-Br-C6H4

    N Ph

    Ph

    Et

    Bn

    MeO2C

    HN

    p-Br-C6H4

    N Ph

    Ph

    Me

    Z

    MeO2C

    HN

    p-Br-C6H4

    N Ph

    Ph

    Et

    CO2Et

    MeO2C

    HN

    p-Br-C6H4

    Bn2N Ph

    Ph

    4s68%

    90:10 dr; 98% ee

    MeO2C

    HN

    p-Br-C6H4

    N Ph

    Ph

    Me

    Bn

    4q58%

    95:5 dr; 99% ee

    MeO2C

    HN

    Ph

    Bn2N Ph

    Ph4r

    51%95:5 dr; 97% ee

    MeO2C

    HN

    p-Me-C6H4

    Bn2N Ph

    Ph

    Substrate Scope-2

  • Control Expt. & Intermolecular KIE

    Control Experiment

    Intermolecular KIE

  • Proposed Transition State

  • NO

    Z

    Pg1

    NPg2

    Z: carbon substituent

    NH

    NN

    HN O

    OH

    Me

    (+)-gliocladin C

    ONH

    NN

    HN O

    OH

    Me

    (+)-bionectin A, R = H(+)-gliocladine C, R = Me (+)-leptosin D, R = i-Pr(+)-T988A, R = CH2OH(+)-bionectin B, R = CH(OH)Me

    OH

    SS

    RNH

    NN

    HN O

    OH

    Me

    (+)-gliocladin A, R = OH(+)-gliocladin B, R = H

    R

    SMe

    SMe

    “Electrophilic Trapping” Protocol for Synthesis of Mixed 3,3’-Bisoxindoles

    NN

    NN

    Me

    MeH

    H

    Me

    Me

    N NMeHMe

    (-)-idiospermuline

    NN

    NNH

    H

    Me

    Me

    HNNH

    O

    O

    O

    O

    Bn

    Bn

    (+)-WIN 64821

    NH

    N

    N

    HNH

    H

    NN

    O

    O

    O

    O

    R

    R

    R = Me, (+)-dideoxyverticillinR = CH2OH, (+)-chaetocin

    SS

    SSMe

    Me

    NH

    N

    N

    HN

    Me

    MeH

    H

    (-)-Chimonanthine

  • NO

    Pg

    N2

    ElectrophileNPg

    2

    HN

    O

    Z

    Pg1

    NPg2

    Z: carbon substituent

    “Electrophilic Trapping” Protocol for Synthesis of Mixed 3,3’-Bisoxindoles

    via

    N

    N

    [Rh]

    O

    R1

    R2

    N

    N

    O[Rh]

    R1

    R2

    zwitterionic intermediate

  • Xing, D.*; Jing, C.; Li, X.; Qiu, H.; Hu, W.* Org. Lett. 2013, 15, 3578.

    Synfacts, 2013, 9(10), 1078

    Using Ethyl Glyoxylate as the Electrophile

  • Xing, D.*; Jing, C.; Li, X.; Qiu, H.; Hu, W.* Org. Lett. 2013, 15, 3578.

    Synfacts, 2013, 9(10), 1078

    Synthetic Applications

  • Jing, C.; Xing, D.*; Wang, C.; Hu, W.* Tetrahedron 2015, 71, 3597

    Using Formaldehyde as Electrophile

  • oxonium ylide

    NR

    O

    Rh OH2

    Using Formaldehyde as Electrophile

    NR1

    O

    N2

    R2

    HCHO (aq)+

    ArNH2

    Rh2(OAc)4NR1

    OR2

    ArHNOH

    H2ONR1

    OR2

    HOOH

    Rh2(OAc)4

    21 examples42 - 98% yields

    14 examples26 - 74% yields

    Wang, C.; Xing, D.*; Wang, D.; Wu, X.; Hu, W.* J. Org. Chem. 2014, 79, 3908

  • Using in situ Generated Iminoester as the Electrophile

    Rh(II) (1 mol%)

    chiral PPA(5 mol%)

    ArNH2

    60 - 92% yieldup to >20:1 drup to 99% eeN

    O

    R2

    N2

    N

    N HN

    CO2EtO

    R1

    R2

    CO2Et

    O

    CH2Cl2

    +NR1 +

    1

    2 5

    Ar

    Jing, C.; Xing, D.*; Hu, W.* Org. Lett. 2015, 17, 4336

  • Using in situ Generated Iminoester as the ElectrophileControl Experiment

    Gong, L.-Z. et al Angew. Chem. Int. Ed. 2014, 53, 10763.

    NO

    NBn

    RNH2

    Br

    O

    CO2EtH

    3b 4N

    N HN

    CO2EtO

    Bn

    R

    BrRh2(OAc)4(2 mol%)

    (S)-6j (5 mol%)4 Å MSxylene25 oC

    7a (R = Boc)7r (R = Bn)

    1 h:5b (R = Boc): 13% yield, >95:5 d.r., 14% ee5r ( R= Bn): < 5%20 h:5b (R = Boc): 92% yield, >95:5 d.r., 67% ee5r ( R= Bn): 12% yield, >95:5 d.r., 57% ee

    As a comparation, Gong’s similar work follows a stepwise pathway

  • Metal-Free Synthesis of 3-Aryloxindoles

    Zhai, C.;. Xing, D.*; Jing, C.; Zhou, J.; Wang, C.; Wang, D.; Hu, W.* Org. Lett. 2014, 16, 2934

    N2N

    N2

    O

    R NO

    R

    H Ar

    Friedel-Craftsalkylation

    N

    Ar

    O

    R

    diazonium ion

    H N HN

    NH

    O

    F

    MeO

    Cl

    BMS-204352

    F3C

    MaxiPostTM

  • Metal-Free Synthesis of 3-Halooxindoles

    N

    O

    N2 NBS(1.0 equiv)

    CH2Cl20 oC

    NO

    Br

    +

    1a 2a 3a

    N

    O

    Br

    95%2a:3a = 93:7

    N

    O

    N2 NXS(1.0 equiv)

    CH2Cl20 oC

    NO

    X

    +

    1a 2 3

    N

    O

    X

    95%2a:3a = >95:5

    X = Cl, I

    Unpublished results

  • Proposed [4+1] Cycloaddition of 3-Diazoxindole

    NMe

    NMeO

    O

    Cl

    NH

    NMeO

    O

    NMeO

    MeO

    O2N

    anti-tumor acetylcholinesterase(AChE) inhibitory

    NH

    NO

    anti-bacterial

    OS

    Cl

    NH

    NO

    SO2N

    anti-tubercular

    Cl

    Cl

    MeN

    O

    ClCl

  • O CuL

    CO2Ar

    R1 R2

    via

    Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046

  • Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046

  • Zhou, J.‐L.; Wang, L.‐J.; Xu, H.; Sun, X.‐L.; Tang, Y. ACS Cat. 2013, 3, 685

  • NO

    R1

    OR3

    R5R4

    Failed Substrates:

    All attempts for the synthesis of dihydrofuran-spirooxindole failed

    Development for the synthesis of 2-pyrrolin-spirooxindole

  • Our designed strategy for spirooxindole synthesis

    Entry Cat. (mol%) solvent T (°C) Yield (%)b Drc

    1 Rh2(OAc)4 (2) CH2Cl2 40 64 > 95:5

    2 Rh2(OAc)4 (2) CHCl3 40 51 > 95:5

    3 Rh2(OAc)4 (2) toluene 40 73 > 95:5

    4 Rh2(OAc)4 (2) EtOAc 40 60 > 95:5

    5 Rh2(OAc)4 (2) toluene 60 55 > 95:5

    6 Rh2(OAc)4 (2) toluene 15 77 > 95:5

    7 d Rh2(OAc)4 (2) toluene 15 68 > 95:5

    8 Cu(OTf)2 (10) CH2Cl2 40 43 > 95:5

    9 CuPF6(MeCN)4(10) CH2Cl2 40 48 > 95:5

    Unpublished Results

  • NMe

    NO

    PhPMP

    CO2Me

    NMe

    NO

    PhPMP

    CO2Me

    F

    NMe

    NO

    PhPMP

    CO2Me

    Cl

    NMe

    NO

    PhPMP

    CO2Me

    Br

    NMe

    NO

    PhPMP

    CO2Me

    Me

    NMe

    NO

    PhPMP

    CO2Me

    MeO

    NBn

    NO

    PhPMP

    CO2Me

    NBoc

    NO

    PhPMP

    CO2Me

    NCbz

    NO

    PhPMP

    CO2Me

    NMe

    NOPMP

    CO2MeF

    NMe

    NOPMP

    CO2MeCl

    NMe

    NOPMP

    CO2MeBr

    NMe

    NOPMP

    CO2Me

    NMe

    NOPMP

    CO2MeO2N

    NMe

    NOPMP

    CO2MeMe

    NMe

    NOPMP

    CO2MeS

    NMe

    NO Br

    CO2Me

    Br

    O2N

    3a, 77% 3b, 65% 3c, 70% 3d, 63% 3e, 71%

    3f, 87% 3g, 49% 3h, 85% 3i, 81% 3j, 76%

    3k, 84% 3l, 62% 3m, 90% 3n, 79% 3o, 61%

    3p, 52% 3q, 96%

    Me

    Unpublished Results

  • 3h

    Et3SiH, TFADCM, 78 °C

    N

    NO

    PhPMP

    CO2Me

    Boc

    K2CO3, DME/H2O

    refluxNH

    NO

    PhPMP

    CO2Me

    N

    NPh

    PMP

    CO2Me

    Boc

    98%

    73%

    4, dr > 95:5 65, dr > 95:5

    LiBH4

    87%

    NBS, Et3SiH

    DCM, 0 °CN

    NO

    PhPMP

    Boc

    BrOMe

    HO

    N

    NO

    PhPMP

    CO2Me

    Boc

    HO

    N

    NO

    PhPMP

    CO2Me

    Boc

    m-CPBA

    DCM, 40 °C65%

    7 8, dr > 95:5

    THF, 0 °C

    78%

    OH

    Unpublished Results

  • Initial Biological Evaluations

  • HCT116 (p53 wild‐type)HCT116 (p53 knock out)SASJ‐1 (p53 wild‐type)

    PTP1BAurora AXBP1 splicingNFkB pathwaySirt1HDAC6

    Collaborators: Prof. Jia Li’s Group from National Center for Drug Screening of China

    Initial Biological Evaluations

  • 39

    HCT116 (p53 wild-type & knock out)

    Initial p53‐MDM2 interaction inhibiting

    Entry Cpd IC50 (uM)HCT116 (wt)

    IC50 (uM)HCT116 (ko)

    1 001 27.4 32.42 018 8.9 21.13 002 19.9 14.14 004 26.8 31.55 003 19.9 21.36 006 35.4 10.97 010 17.7 21.48 022 30.1 11.19 011 27.7 26.410 020 3.0 11.3

    Entry Cpd IC50 (uM)HCT116 (wt)

    IC50 (uM)HCT116 (ko)

    11 008 26.9 >10012 009 5.7 21.813 021 37 2914 007 17 2515 017 23 5016 012 85 1917 013 15.5 >10018 016 26 1519 022 14.5 25.620 023 16 >100

  • 40

    Entry Cpd IC50 (uM)HCT116 (wt)

    IC50 (uM)HCT116 (ko)

    1 301 16 > 1002 302 25 2003 303 23 604 304 27 675 305 26 246 306 12 307 307 21 348 308 14 259 309 17 25

    Entry Cpd IC50 (uM)HCT116 (wt)

    IC50 (uM)HCT116 (ko)

    10 310 1.6 3211 311 15 1212 312 24 20013 313 16 >10014 314 20 >10015 315 21 2416 316 8.4 16.517 317 6.5 1918 318 16 >10019 319 12 >100

    HCT116 (p53 wild-type & knock out)

    Initial p53‐MDM2 interaction inhibiting

    N

    N HN

    CO2RO

    R4

    R3

    Ar

    R1

    R2

    series 3(19 cpds)

  • 41

    A549(Lung cancer cell line)

    Antitumor activity‐1

    Entry Cpd IC50 (uM)1 001 27.42 018 8.93 002 19.94 004 26.85 003 19.96 006 35.47 010 17.78 022 30.19 011 27.7

    10 020 3.0

    Entry Cpd IC50 (uM)11 008 26.412 009 6.413 021 64.514 007 8.815 017 20.216 012 15.217 013 4.318 016 20.819 022 24.520 023 12.5

    5 out of 23 cpds: IC50

  • 42

    HCT116 (colon cancer cell line)

    3 out of 19 cpds: IC50

  • 43

    SASJ-1 (plasma cancer cell line)

    7 out of 21 cpds: Inh% @10 M > 85%

    Entry Cpd Inhibition@10 M

    1 WCJ001 44.09 2 WCJ002 29.64 3 WCJ003 12.09 4 WCJ004 24.34 5 WCJ005 9.34 6 WCJ006 19.75 7 WCJ007 92.65 8 WCJ008 62.01 9 WCJ009 87.74 10 WCJ010 52.60

    Entry Cpd Inhibition@10 M

    11 WCJ011 98.09 12 WCJ012 94.85 13 WCJ013 96.10 14 WCJ014 32.69 15 WCJ015 94.22 16 WCJ016 50.60 17 WCJ017 41.59 18 WCJ018 93.54 19 WCJ019 78.89 20 WCJ020 16.14 21 WCJ021 20.65

    Antitumor activity‐3

  • 44

    Entry Cpd IC50 (M)1 WCJ007 >10 2 WCJ009 >10 3 WCJ011 4.14

    Entry Cpd IC50 (M)4 WCJ012 >10 5 WCJ013 4.75 6 WCJ015 >10 7 WCJ018 1.76

    Antitumor activity‐3

    SASJ-1 (plasma cancer cell line)

  • Thanks for Your Attention!