the development of the time bridge astronomical photometer · the following block diagram (see fig....

50
The development of the time bridge astronomical photometer Item Type text; Thesis-Reproduction (electronic) Authors Kesselman, Martin Samuel, 1923- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 21/04/2021 05:36:52 Link to Item http://hdl.handle.net/10150/553798

Upload: others

Post on 05-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

The development of the timebridge astronomical photometer

Item Type text; Thesis-Reproduction (electronic)

Authors Kesselman, Martin Samuel, 1923-

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 21/04/2021 05:36:52

Link to Item http://hdl.handle.net/10150/553798

Page 2: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

THE DEVELOPMENT OF THE TIME BttlDGE

ASTKONOMICAL PHOTOMETER

by

M artin S.’ Keggelnan

A T hesis

su b m itted to th e f a c u l ty o f the

D epartm ent o f Physics

in p a r t i a l f u l f i l lm e n t o f th e

req u irem en ts f o r th e degree of

MASTER OF SCIENCE

in the G raduate C o lleg e , U n iv e rs ity of A rizona

1950

Page 3: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

"X; Kl'

nr;?il0 ::so-; ; B Jtii":?*ijui.-!

n.t sv::1;: ,'.

3 .':'-' 'i d v v l r i u r '2 orl'vi v-.j n c : : n i r d ; ; ; :

r.c.: ? v;f7

-3 --'j ' i o ,

‘l-> •’.on.:-.

k< p r 5 1 i: •• '£ u q n iL%!

. o.'iv -iCrV: .?..?•■ fjn.tnpot

^ xk r k S #

*V.» xdin/rovJL;;U o-Jaab^O orfd n i

/

b / -i /■':■/ o:i s i uOif

, ; ; i :— !v ■■•♦-'■ v/ : novocrccrA • r-i' lOvODilLi''

Page 4: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

m i f fy ? s oV /

TABLE OF CONTENTS

I . In tro d u c tio n :

1. S ta tem en t o f problem2 . P h o to e le c t r ic method in

s t e l l a r photom etry3 . H ie ;tim e b rid g e as a s t e l l a r

photom eter

I I . Theory and o p e ra tio n o f the tim e b r id g e photom eter- c r

page

1 . The b r id g e c i r c u i t analogy ' ^2 . The req u irem en ts f o r a tim e b r id g e 3* B r ie f e x p la n a tio n o f th e v a rio u s

c i r c u i t s4 . B lock diagram : 9

Power Supply . ‘ " ■ ■ "

: ! • V oltage r e g u la t io n 132• V oltage r e g u la t io n curve 163 . S t a b i l i t y m : 17

IV . Development o f th e in p u t c i r c u i t

1 . Hie m onostab le m u l t iv ib r a to r 1@2 . E xperim en ta l d e lay g a te 203 . C o n d itio n s f o r s ta b le o p e ra t io n 214 . Hie in p u t d e lay g a te 235 . O p era tio n s and waveforms 246 . D e te ra in a t io n o f k 2®

. 7 . S e n s i t iv i ty curves’ - 338 . P h an ta s tro n d e lay c i r c u i t 359 . O p era tio n and waveshape 37

V. C onclusion ' t = - , 43

V I. B ib lio g rap h y

219766' 6 6

r-4 01 10

to b- r-

Page 5: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

INTRODUCTION

The o r ig in a l id e a f o r th e tim e b rid g e photom eter wae

th a t o f D r. R. E. Corby o f th e D epartm ent o f Physios a t th e

U n iv e rs ity o f A rizona, th e o r ig in a l work h av in g been done

by W.H. P arker in 1948• The work was co n tin u ed and f u r th e r

improvements e f f e c te d by S • Becker in 1949.~ The p re s e n t

problem was u n d ertak en in an e f f o r t to s t i l l f u r th e r improve

and r e a l i z e th e f u l l c a p a b i l i t i e s o f th e in s tru m e n t. One o f

th e c i r c u i t s , developed by Mr. B ecker, em ploying th e tim e

b r id g e p r in c ip le showed g r e a t prom ise a t low l i g h t l e v e l s .

I t was th e re fo re d ec id ed t h a t a d d i t io n a l r e s e a r c h sh ou ld be

c a r r ie d b u t to ad a p t th i s p r in c ip le o f th e bridge to s t e l l a r

pho tom etry . In th e o r i g i n a l in s tru m e n t, d i f f i c u l t y was

en co u n tered in co u p lin g th e o u tp u t o f th e p h o to m u lt ip i ie r

tu b e to th e r e s t o f th e tim e b r id g e . To accom plish th i s

co u p lin g D.C. a m p lif ie r s were u se d , and s e r io u s problem s in

s t a b i l i t y were in tro d u c e d . !Bie l im i t in g f a c t o r in th e p re ­

v ious equipm ent was s t a b i l i t y . T h ere fo re th e p re s e n t program

1 . "Development o f an E le c tro n ic P ho tom eter", W.H. P a rk e r , T hesis p rep ared in D ept, o f P h y sio s , U niv . o f A rizona 1948. U niv. L ib . G a ll #E9791.

2 . "P ho tom etric M ethods", S . B ecker, T h esis p rep a red in Physics D epartm ent, U niv. o f A riz o n a ., 1949, t r i v .

‘LibraT*;' I'r ,■ ' ■ i :

Page 6: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

2

had a (tw ofold p u r p o s e : . to .d e v e lo p a new in p u t c i r c u i t In

o rd e r t h a t r th e coup ling from . th e p h o to m u lt ip l ie r tube may

be accom plished by a more d i r e c t m ethod; and to in c re a s e th e

o v e r a l l s t a b i l i t y o f th e e q u lp n e n t.

S in ce , th e tim e b r id g e is , to_ be used f o r s t e l l a r photo­

m e try , a; survey o f th e problem s in v o lv ed and tech n iq u es used

w i l l be c o n s id e re d . Photom etry , had i t s o r ig in in , 1915 when

E ls t e r and G e lte l developed th e f i r s t u s e f u l p h o to tu b e .

S ince t h a t th n e : th e gas p h o to m u lt ip l ie r and f i n a l l y th e

m u ltie le m e n t p h o to m u lt ip l ie r have been dev e lo p ed . I t la

t h i s l a s t m entioned tube which was used in th e tim e b r id g e .

The m easurem ent. o f s t e l l a r l i g h t i n t e n s i t i e s i s in h e re n tly

d i f f i c u l t s in c e th e l i g i t energy in v o lv ed i s o f th e o rd e r o f

5X101.% w a t t s . This i s th e amount o f l i g h t t h a t i s c o l­

le c te d by eye from a s t a r t h a t i s j u s t v i s i b l e , and, a s t r o ­

nom ically sp eak in g , a b r ig h t s t a r . ^

The p h o to e le c t r ic m ethods u sed in astronom y a re th e

fo llo w in g : : : ̂ ^ ^ ...

(a) vThe..".output c u r r e n t o f a p h o to m u lt ip l ie r tube i s

a p p lie d d i r e c t l y to a s e n s i t iv e g a lv an o m eter. T h is . i s an -ex

trem ely s e n s i t iv e m ethod, W t d i f f i c u l t to ..do s in c e i t . i s

n ecessa ry to r e f r i g e r a t e th e p h o to m u lt ip l ie r tube i f very4 ............

sm a ll l i g h t I n t e n s i t i e s a re to be d e te rm in ed .

3 . " P h o to e le c t r ic Phenomena*, Hughes & D uBridge, p . 3 5 .

4 . " E le c t r o n ic s ' in Astronomy", G.E. K ro h ,.E le c tro n ic s v o l . 2 n o . 8 Aug. 1948 p . 101.

Page 7: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

3

I r h :.n Llj-: i.: • ' ' \ - «■: ; : '(b) D.C. a m p lif ie r s a re used to am plify th e sm a ll

c u r re n ts in v o lv e d , and a continuous re a d in g i s p o ss ib le*

Hie s e n s i t i v i t y o f th is method i s l im ite d by s t a b i l i t y f a c ­

to r s •

(cj A.C• a m p lifiers are used when the l i $ i t s tr ik in g

th e p h o to c e ll i s m ech an ica lly in te r r u p te d . The o u tp u t ou r-y:. ■ :. A o;. T.f - '-v: '■ c •:u;- , :r e n t o f the p h o to m u ltip lie r i s p u ls a t in g and e x i s t in g A.C.

a m p lif ie r tech n iq u es a r e u se d . G re a te r s t a b i l i t y and s e n s ! -: " -fi , • • V : J “ ” . •. r': - ' /'e' ' r >-* " * ‘ 1 ' V- r- . ; „ *-• . *• • ' • . . - * . *•

t i v l t y 1# 'pb# mlble" w ith ' till#''"'type Inmtikimeht then li: posmible

w ith D.C. a m p l i f ie r s • To d a te th i s in s tru m e n t is th e b e s t*

o f a l l th o se tech n iq u es which r e q u ir e a c o n s ta n t read ing*t * 1 ! V' '"V 1 " i ; ; - f. P, ' ■ ^ 'j ‘ * i •> i <" ̂' T t - ' f*. "* " 3 ; - * - - ;; -. '•*. ‘ - * ' =

(d) A ccum ulation M ethod: The o u tp u t c u r re n t o f the

m u l t i p l i e r tube ' i s u sed to ch a rg e’ a condenser vh io h is th en

d isch a rg ed th ro u g h a g a lv an o m ete r. Though more in c o n v en ie n t

then th e c o n s ta n t re a d in g ty p e in s tru m e n ts , i t i s co n s id e red

a s u p e r io r m ethod.

Having co n s id ered th e v a r io u s methods and t h e i r r e l a ­

t iv e m e r i t s , i t would seem d e s i r a b le to in d ic a te What ch a r­

a c t e r i s t i c s th e tim e b r id g e has which would make i t d e s i r a b le

from th e a s tro n o m ic a l s ta n d p o in t . The tim e b rid g e g iv es a

con tinuous re a d in g vh ioh makes i t a co n v en ien t in s tru m e n t.

F urtherm ore i t i s o f th e accum ulation type w hich, as in d ic a te d

p re v io u s ly , i s d e s i r a b le . S ince the astronom er is u s u a l ly

5 . Sm ith , J . , The L im itin g M agnitude O bservab le w ith aP h o to e le c tr ic S t e l l a r Photom eter, A s tro p h y s io a l Jo u rn a l 176:296, (1932).

Page 8: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

4

Ntin te r e s te d in th e average v a lu es o f i n t e n s i t i e s r a th e r than

th e in s ta n ta n e o u s v a lu es (which a re g iven by a l l methods

ex cep t th e accum ulation m ethod) the tim e b r id g e i s u n u su a lly

d e s i r a b le . The o p e ra t io n i s as fo llo w s . The p e r io d o f o p e r­

a t io n i s 1 /60th o f a second . W ith no 11^ t f a l l i n g on th e

p h o to m u ltip lie r tu b e , a p u lse i s g en e ra ted which i s seme

f r a c t io n o f th e p e rio d o f o p e ra t io n . I t i s added to a nega-

t iv e p u lse a c ro ss th e tim e b rid g e and a zero o u tp u t r e s u l t s •

However, when l i g h t i s f a l l i n g on th e pho to tu b e th e condenser’ V.;-; V". 7'b.charges up a d d i t io n a l ly d u rin g th e same f r a c t io n o f th e p e r -

•• > •• • ' ; " > * ' • • - ' t • ' • •• — , ...- - ■' ' - - » - • «■ •» "• • - * ' L-:. i." «. «• .. • . • -- 1 "

io d to cause a w ider p u ls e . Now th e tim e b r id g e has an■' - V. •, C-p -y- V V f l ■ I."--': ; : . .o u tp u t w hich i s a p o s i t iv e p u lse r e p r e s e n t in g th e energy

t h a t f e l l on th e p h o to tube d u rin g th a t f r a c t io n o f th e p e r io d <r." :: - : v. " pr Iv-V;'. - p ■- vh:; - v r;:.-

This p u lse i s in te g r a te d and i t g iv es a m e te r re a d in g . % eV- ;:m e te r re a d in g r e p re s e n ts th e in te g r a te d v a lu e o f th e l i g h t

in te n s i f y

\' v

V

l on'

i ; %

I" / c;. y ■■ * - '• ’ « : •.

v - r '

b o i '

v:- : ■;:

Cb - . r . :

Page 9: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

5

I I

.

THEOKY AND OPEttATIOH OF THE

TH E BHIDOE PHOTOMETER

The tim e b rid g e may be d e f in e d ae an in s tru m e n t whieh

i s capab le o f i n t e r p r e t in g v o lta g e changes as changes in

tim e . Though tim e may be in no way connected w ith th e

in fo rm a tio n which th e d ev ice r e c e iv e s , th e in fo rm a tio n re n -\

dered i s p ro p o r t io n a l to th e in p u t , b u t th e p aram ete r i s

now tim e . C onsider th e o rd in a ry b r id g e c i r c u i t ( in f i g .

2 -1 ) in which th e r e s i s t o r s R3 arid S4 have been a d ju s te d to

g iv e no rea d in g on th e g a lv an o m eter. I f th e sw itc h ac ro ss

K3 were to be. c lo se d , D would r i s e very r a p id ly to seme

h ig h e r p o te n t i a l and th e m e te r would read c o rre sp o n d in g ly .

The sw itch a t R3 i s now opened, C r i s e s in p o t e n t i a l , and

th e e q u ilib r iu m c o n d itio n i s r e s to r e d . The rea d in g depended

on th e d i f f e r e n c e in th e tim e in t e r v a l between th e o ccu rren ce

of th e v o lta g e changes. The b r id g e i s th e r e fo r e s e n s i t iv e

to ev en ts which o ccu r a t d i f f e r e n t t im e s . I f b o th sw itch es

were to be o p e ra ted s im u lta n eo u s ly then th e m e te r would f a i l

to in d ic a te . I f one o f th e sw itch es o p e ra te s a f t e r th e o th e r

then a re a d in g r e s u l t s . I t i s s i g n i f i c a n t to n o te th a t th e

sw itches m ust be in a p a r t i c u l a r p o s i t io n b e fo re a re a d in g

w i l l r e s u l t . I t i s th e re fo r e n e c e ssa ry to s e t th e system

a f t e r each s e r ie s o f e v e n ts . I f th e sw itch es a re re p la c e d

Page 10: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

A -h

C 1//

Page 11: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

by s u i t a b le ooRtroX c i r c u i t s i t i s p o s s ib le to b u ild a tim e

b r id g e . By analogy to the above, i f a f ix e d p o s i t iv e p u lse

i s g en e ra ted and a p p lie d to A/ arid a h e g a tiv e p u lse i s s im u l-

ta n eo u s ly g en e ra ted and a p p lie d to B, th e b r id g e rem ains ;

b a lan ced . : I f th e - p o s i t iv e p u lse a p p lie d to A i s now allow ed *

to vary in w id th so as to exceed the n e g a tiv e p u ls e ^ e n th e

d i f fe re n c e w i l l be in d ic a te d . The tim e b r id g e then m ust have

a means of g e n e ra tin g s i» u I ta r ie d u e ly two p u lse s o f o p p o s ite

p o l a r i t y . There mus t a ls o be p ro v is io n f o r th e v a r ia t io n o f

one p u lse w ith some in p u t s ig n a l . % e d i f f e r e n c e between

th e two p u lse s m ust be d e te m in e d and th i s "d iffdrarice used

to o p e ra te seme c o n v e n ien t in d ic a to r such aS a m il l ia m e te r .

The fo llo w in g b lo ck diagram (See F ig . 2^2) "wi1! ! i l l u s t r a t e '

th e r e la t io n s h ip o f each c i r c u i t w ith r e fe re n c e to th e -o th e r s .

S in ce i t i s Im p o rtan t t h a t th e l i g h t from a s t a r be used to

vary th e o u tp u t o f th e p o s i t iv e g a te , a pho to tube i s in d i ­

c a te d . The b lock diagram i s p e r f e c t ly g e n e ra l , and i t i s in

th e ad a p tio n o f the g e n e ra l p r in c ip le to a p a r t i c u l a r fu n c tio n

th a t th e method o f v a r ia t io n need be c o n s id e re d .

The fo llo w in g w i l l e x p la in th e o p e ra tio n o f th e v a rio u s

c i r c u i t s . The e x p la n a tio n w i l l n e c e s s a r i ly be b r i e f s in c e

many o f th e se c i r c u i t s were used by Mr. Becker in h is o r ig ­

in a l work bn t h i s in s tru m e n t. R efe ren ce w i l l be made to th e

& "P ho tom etric M ethods", S . B ecker. U. o f A. T hesis 1949. x. '

Page 12: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

8

sch em a tic , f i g . 2 -3 . .

The t r ig g e r g e n e ra to rs d e s ig n a te d as T ^ , TgA>T^g, and

Tgg in th e schem atic a re b ia se d beyond c u t - o f f , to th e

ex ten t, t h a t only upper t i p o f th e v ary in g s in u s o id a l in p u t

w i l l cause conduction to tak e p la c e . The o u tp u t o f th e f i r s t

tube i s n e g a tiv e , and i t i s coupled th rough th e c a p a c ito r

to th e cathode r e s i s t o r o f th e fo llo w in g s ta g e , which i s

a ls o beyond c u to f f . D i f f e r e n t i a t io n ta k es p la ce and p o s i­

t iv e p u lse s on ly a re a c c e p te d . The e f f e c t then i s to p ro ­

duce a n e g a tiv e p u lse which may be used to key th e rem ain ing

c i r c u i t s . The p u lse developed i s 150v in m agnitude and 600

m icroseconds wide a t the b a se .

The t r i g g e r p u lse i s fed to th e v a r ia b le p u lse g en era ­

t o r , Ty to T ig . The o p e ra t io n o f th i s g a te w i l l be co n s id e red

in d e t a i l in C hap ter I I I .

The f ix e d n e g a tiv e g a te , d e s ig n a te d as tu b es 3 , 4 , 5

and 6 in th e sch em a tic , in th e q u ie s c e n t s t a t e , has tubes

5 and 6 conducting h e a v i ly . Bie n e g a tiv e p u lse i s a p p lie d

to Tc which in tu rn coup les a la rg e n e g a tiv e p u lse to tu b e 5 : . , ! : i

6 . The n e g a tiv e v o lta g e coup led tiurough th e condenser tu rn s ' / ' ....... - " ; % :6 o f f and th e a c tio n i s m a in ta in e d , s in c e th e drop in c u r re n t

due to 6 , th rough i t s common cathode r e s i s t o r , allow s 4 to

conduc t, thus h o ld in g th e p o te n t i a l a c ro s s th e cathode r e ­

s i s t o r in 5 down. This a c t io n co n tin u es u n t i l such tim e as

the charge on th e condenser can be n e u t r a l iz e d th rough th e

h ig h r e s is te n c e in th e g r id c i r c u i t o f tube 6 . As soon as

Page 13: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

P kof

Q e n e r + 4

Fig 2 2 B / ock D i a g r a m

Page 14: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

10

th e g r id r i s e s s u f f i c i e n t l y , tube 6 conducts and th e g a te

r e v e r t s to th e i n i t i a l c o n d i t io n s • a p ro v is io n was made in

t h i s g a te to vary i t s w id th by means o f a v a r ia b le condenser

in th e g r id c i r c u i t o f T6. The m atch ing o f th e two p u lse s

i s now accom plished in th e f ix e d g a te by i t s m anual v a r ia ­

t i o n . This has th e advan tage o f h o t d i s tu r b in g th e o p e ra ­

t in g p o in t o f th e v a r ia b le g a te as was done p re v io u s ly . The

b e s t o p e ra t in g p o in t f o r th e v a r ia b le g a te may be chosen

f o r maximum s e n s i t i v i t y , and i t rem ains f ix e d .

The o u tp u t o f th e two g a te s a re how added th rough th e

u se o f th e .b r id g e . By re fe re n c e to f i g . 8 - 1, i t can be seen

th a t co rresponds to 5QK r e s i s t o r in th e p la te c i r c u i t o f

Tio and th e r e s i s ta n c e th rough th e power su p p ly . Rg c o r re s ­

ponds to th e 1 0 0 K ,re s is to r in th e cathode c i r c u i t o f Tg, and

Rg and R4 co rrespond to th e 1 Megohm and th e 50K r e s i s t o r

r e s p e c t iv e ly . The s e le c t io n o f th e v a lu e s o f Rg and R4

depend on th e r e l a t i v e am p litu d es o f th e r e s p e c t iv e p u ls e s .

The n e g a tiv e p u lse has an am p litu d e o f 185 v o l ts and th e

p o i.i t iv e p u lse i s 200 v o I ts in am p litu d e . The o u tp u t o f th e

b rid g e i s a p o s i t iv e p u lse when l i g h t i s a c t in g on th e photo­

c e l l . This p o s i t iv e p u lse i s coupled to th e p u lse a m p lif ie r

and th e r e fo r e i t i s n ecessa ry to b ia s th e a m p lif ie r so th a t

i t i s c u t o f f , to in s u re th e a m p lif ie r w i l l on ly accep t p o s i­

t iv e p u ls e s . I f th e a m p lif ie r can accep t e i t h e r p o s i t iv e o r

n e g a tiv e p u lse s , i t i s d i f f i c u l t to s e t th e o p e ra t in g p o in t w ith

Page 15: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

11

7 •no s ig n a l In p u t . A f te r p a ss in g th rough th e second a m p lif ie r

a p o s i t iv e puls© i s a p p lie d to th e g r i d >o f th e 616

The a m p lif ie r s have se rv ed a n o th e r p u rp o se , namely th a t o f

nc lean in g " up th e p u ls e .

The o u tp u t tube accep ts th e p o s i t iv e going p u lse s and

an in te g r a t io n i s perform ed in th e p la te c i r c u i t . That i s

to s a y , i f th e tube i s co n s id e red as a r e s i s t o r w ith a v a ry ­

in g v o lta g e a p p lie d a c ro s s th e r e s i s t o r and co n d en ser, which

a re in s e r i e s , and i f th e o u tp u t i s ta k en ac ro ss th e conden-8

s e r , t h a t o u tp u t i s the in te g r a te d in p u t . B a s ic a lly th e

s i t u a t i o n i s as fo llo w s : i f

e ( t ) * 1kp4 q/C and q/C « i R p ( l )

th en i t can be shown th a t

Q u a l i ta t iv e ly a l l th e c i r c u i t s have been co n s id e red

excep t t h a t o f th e p h o to m u lt ip l ie r tu b e . Any o f th e m u l t i ­

p l i e r tu b es may be used as th e 1P21 o r th e 1P22 depending on

th e w avelengths and s e n s i t i v i t i e s d e s i r e d . E i th e r a b a t te r y

shou ld be used o r a w e ll r e g u la te d power su p p ly . The h ig h

v o lta g e power su p p ly used w ith th i s in s tru m e n t i s sch em a ti­

c a l ly re p re s e n te d in th e schem atic f o r th e e n t i r e su p p ly .

7 . "P ho tom etric M ethods, S . B ecker", U n iv e r s i ty o f A rizonaT h e s is , (1949). •

8 . " E le c tro n ic C irc u its and Tubes", C ru f t E le c tro n ic s S t a f f , p . 147, McGraw-Hill Book Company, In c . (1 9 4 7 ).

Page 16: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

12

The o u tp u t o f th e p h o to m u ltip lie r was ta k en ac ro ss one o f

th e r e s i s t o r s In th e s e n s i t i v i t y c o n tro l w hich a re In s e r ie s

w ith dynode n in e .

Page 17: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

13

I I I

POWER SUPPLY

As s ta te d in th e in t r o d u c t io n , th e prime purpose o f

t h i s work was to d ev e lo p a new in p u t c i r c u i t and to in c re a s e

o v e r a l l s t a b i l i t y * I t was reco g n ized e a r ly in th e problem

th a t th e d e te rm in in g f a c to r in s t a b i l i t y would be a w e ll

r e g u la te d power su p p ly . The f i r s t c o n s id e ra tio n in d ec id in g

what type o f supply to u se would be d ic ta te d by th e ty p e o f

lo a d . In th i s case th e load i s c o n t in u a l ly v a ry in g s in c e

p u lsed c i r c u i t s a re in v o lv e d . The c o n s id e ra tio n th en i s to

c o n s tru c t a supply which i s in d ep en d en t o f th e v a ry in g lo a d .

I f such a supp ly i s c o n s tru c te d , th en th e r e w i l l be no i n t e r ­

a c tio n o f one c i r c u i t on th e o th e r , and s ta b le o p e ra t io n

r e s u l t s • The v o lta g e r e g u la t io n th a t i s d e s ire d may be

accom plished in a number o f w ays. To e l im in a te l in e v o lta g e

changes, th e l in e v o lta g e was passed th ro u g h a s o la t r a n s ­

fo rm er w hich, i f i t i s loaded to i t s r a te d c a p a c i ty , w i l l

h o ld th e v o lta g e s te a d y , though th e re may be f lu c tu a t io n s o f

as much as te n v o l t s . This i s t r u e o f slow v a r ia t io n s in

v o lta g e , ttap id v a r ia t io n s s t i l l may come th rough and be fe d

in to th e power su p p ly . Die power supply t h a t was f i n a l l y

decided upon made u se o f v o lta g e r e g u la to r gas tu b e s . The

o th e r cho ice was to u se s e r ie s r e g u la to r tu b e s , which a re

Page 18: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

S c h e n n 3 ^ - v c D a m o j th e ITnne ^ n c ig ^ P v»o4*om e4ei

<►i Zoo Zr

1 i Aftt,

1*-

tHc^- A v y w

Tie

i r.C-Ot

loo K

• l

IOOK

5 K

-* - / 6"o v

*-

i - f

/ 9 o o ir«

V 1 1 -

I

->*lSov

3 oo v-

-e •* 15o v

o Q irnci

^ — 3o o V- To Clrxassil

O— \5ov

O -T StiOV

Page 19: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

(o za $q 5 0 6o 7o 8 o

/oat/ Curren t ( *1-4)

fiq. 3 - 2 Voltagre R c q u la4-toia Curv e

Page 20: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

r e g u la r vacuum tu b e s • The schem atic in d ic a te s how th e

r e g u la t io n was to be a c h iev e d . The o u tp u t o f th e f i l t e r

(and th i s a p p lie s to bo th th e p o s i t iv e 300 v o l t supply and

th e n e g a tiv e su p p ly ) were fe d ac ro ss th re e v o lta g e r e g u la to r

tubes in s e r i e s , and th e v o lta g e dropped . This would I s o la t e

f u r th e r th e in p u t f lu c tu a t io n s from th e rem ainder o f th e

c i r c u i t . From th i s p o in t th e v o lta g e was fe d in to two sep a ­

r a t e c i r c u i t s f o r th e two 500 v o l t su p p lie s t h a t were needed .

G reat c a re was tak en to decouple th e two power su p p lie s

th rough th e use o f KG f i l t e r s . The c h a r a c t e r i s t i c s o f th e

power su p p lie s i s In d ic a te d by f ig u re 3- 2 . The v o lta g e reg u ­

l a t io n was good o v er a range: o f ap p ro x im ate ly 20 m illia m p s .

I t was in th i s range th a t th e equipm ent was o p e ra te d . Of

c o n s id e ra b le s ig n i f ic a n c e was th e m anner in which th e o th e r

p o s i t iv e supp ly m a in ta in e d a s te ad y v o lta g e re g a rd le s s o f

th e v ary in g lo a d . S in ce th e s u p p lie s a r e i d e n t i c a l only one

curve was ta k e n . This th en gave us good rea so n to b e l ie v e

t h a t th e power s u p p lie s would do th e work ex p e c te d . S ince

t h i s curve r e p re s e n ts a slow change, which th e vo I t age reg u ­

l a t o r tu b es could fo llo w , some o th e r means o f d e te rm in in g

what would happen i f a v a ry in g load were p laced on th e supp ly

was n e c e s s a ry . W ith th e load c u r r e n t s e t a t v a r io u s v a lu e s ,

th e o u tp u t o f an audio o s c i l l a t o r was fe d in to th e supp ly a t

v a rio u s p o in ts to de term ine i f th e s ig n a l would be coupled

to th e o th e r su p p ly . No s ig n a l could be observed on th e

sco p e , r e g a rd le s s o f th e above, when in a c tu a l o p e ra t io n

Page 21: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

f ' i 3 - 3

l OOU -A. /COOVL*

/ooo A.-

vvwwISK

V olbd^e few<v- m r m n ---------- —

to Vi- VVWVwvlb<

4 * (d - 4

TZShj>

5k look

zaoki

a io k

1 F 7

JLio K

2ZOK

125 k

i

i oe K

leo K

6 Vf?150

1 e» K r . /o - / » ok a '« d # r-o

Page 22: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

w

th e re was s t i l l some s a a l l v a r ia t io n in v o lta g e between th e

power su p p lie s , and co u p lin g was observed between th e o irQ u its

which may, o r may n o t , he due to the power s u p p l i e s . The

h ig h v o lta g e supp ly used fo r, p h o to m u lt ip l ie r i s o f conven­

t i o n a l d es ig n (see F ig . 3-5)# The p a r t i c u l a r c i r c u i t i s

u sed in o th e r pho tom etric equipm ent f o r th e same p u rp o se .

From th e s ta n d p o in t 'o f s t a b l e o p e ra t io n i t a lso m ust be w e ll

r e g u la te d . S ince i t i s u sed s a t i s f a c t o r i l y in o th e r eq u ip ­

m ent, no f u r th e r t e s t s w ere made on i t . F o r th e b e s t- •

stability, a h ig h v o lta g e b a t te r y shou ld be u se d . * ‘

The o v e r - a l l s t a b i l i t y o f th e f i n a l l y designed c i r c u i t

l e f t much to be d e s i r e d . The power s u p p lie s f a i l e d to de-

l iv e r a smo o th o u tp u t , thus add ing to th e in s t a b i l l t y , and

th e re was co u p lin g between th e g a te s a t What w o u ld :c o rre s ­

pond to low l i g h t i n t e n s i t i e s . D eeeup ling sh o u ld have been

ach ieved th rough th e p ro p e r arrangem ent o f th e p h y s ic a l

components on th e c h a s s i s , c a r e f u l w ir in g and a good power

su p p ly . A ll th e se had presum ably been ta k e n in to c o n s id e ra ­

t i o n . To a tte m p t to de te rm ine where th e co u p lin g was coming

from , b a t t e r i e s were u sed in p la c e o f th e power s u p p l ie s .

Each c i r c u i t was i s o l a te d in d e p e n d e n tly . The f i la m e n t sup­

p l i e s were d u p lic a te d so th a t no p h y s ic a l o r e l e c t r i c a l

co n n ec tio n s rem ained . All tubes were checked by rep la cem en t.

None o f th e se th in g s gave any c lu e as to where th e co u p lin g

was coming. The co u p lin g was p e c u l ia r in t h a t i t was i n t e r ­

m i t t e n t . There were tim es when th e co u p lin g was a b se n t and

Page 23: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

17

th e equipm ent worked f in e a t th e low l i g h t l e v e l s . There

d id seem to be some co n n ectio n between th e o u tp u t c i r c u i t

and th e co u p lin g , s in c e i t i s p o s s ib le to remove th e o u tp u t

tu b e , re p la c e i t ; and th e co u p lin g w i l l f a i l to appear f o r

a v d iile . This i s a very p e rp le x in g problem and no adequate

s o lu t io n has been fo u n d . % e s o lu t io n may l i e in a more

c a r e fu l p lacem ent o f p a r ts and com ponents, b u t t h i s was in ­

a d v isa b le to do a t t h a t tim e .

There rem ains th e problem o f e x p la in in g where i n s t a b i l ­

i t y is l ik e ly to o ccu r due to v o lta g e f lu c tu a t io n s . F lu c ­

tu a t io n s o f v o lta g e in any c i r c u i t which i s .concerned w ith

th e g e n e ra tio n o f th e p u lse s w i l l cause i n s t a b i l i t y . F lu c ­

tu a t io n s in any o f the a m p lif ie r s which g iv e r i s e to v a r ia ­

t io n s in am p litudes w i l l n o t a f f e c t th e o u tp u t . S ince i t

was shown in s e c t io n 2 t h a t th e o u tp u t i s th e in te g ra te d

in p u t to th e f i n a l s ta g e , th e o u tp u t w i l l vary on ly i f th e

w id th o f th e p u lse v a r ie s , p ro v id in g t h a t th e p rev io u s

a m p lif ie r s a re o p e ra t in g a t s a tu r a t i o n . Under th o se co n d i­

t io n s sm a ll f lu c tu a t io n s in v o lta g e w i l l n o t a f f e c t th e

am p litude o f th e in p u t to th e o u tp u t s ta g e , t te fe r in g to

th e g e n e ra l sc h em a tic , i t i s n ecessa ry t h a t th e fo llo w in g

tubes be p rov ided w ith s t a b i l e v o l ta g e s « Tubes 3 , 4 , 5 ,

and 6 , f o r th e f ix e d g a te g e n e ra to r , and tu b e s 7 , 8 , 9 , 11,

and 12. Tube 10 i s only an i s o l a t i o n s ta g e and does n o t

e n te r in to th e d e te rm in a tio n o f th e p u lse w id th . F u r th e r ­

m ore, th e v o lta g e sou rces shou ld be e n t i r e ly in d ep en d en t.

Page 24: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

18

In connec tion w ith th e v a r io u s ex p e rim en ta l c i r c u i t s t r i e d ,

f u r th e r in fo rm a tio n co n cern in g th e s t a b i l i z a t i o n o f th e

p u lse s w i l l be given*

Page 25: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

i v

DEVELOBfiENT OF THE IHPUT CIHGUIT

As in d ic a te d in th e in tro d u c to ry m a te r i a l , i t became

ap p a re n t t h a t th e in p u t c i r c u i t o r ig in a l ly in u se w ith th i s

in s tru m e n t was u n s a t i s f a c to r y , s in c e i t in v o lv ed th e u se o f-

D.C• a m p l i f ie r s . In th e fo llo w in g m a te r ia l an e x p la n a tio n

o f th e v a r io u s c i r c u i t s t r i e d w i l l be g iv en .an d , where pos­

s i b l e , some a n a ly s is o f th e c i r c u i t s w i l l be a tte m p te d . The

c i r c u i t s u sed could be c la s s e d as m u l t iv ib r a to r s on p h an ta s-

t r o n s . The m u l t iv ib r a to r type w i l l be t r e a t e d f i r s t .

The f i r s t c i r c u i t which was developed could very p ro p e r ly

be c a l le d a m onostab le m u l t iv ib r a to r o f th e type in f i g . 3- 2 ,

3 -3 . In b o th cases th e c o n t r o l l in g tim e c o n s ta n ts a re in a

g r id c i r c u i t . In th e d e s ig n o f such c i r c u i t s i t i s n ecessa ry

to d e te rm in e how th e tim e o f de lay v a r ie s w ith th e v a rio u s

c i r c u i t p a ram e te rs , and w hat f a c to r s g iv e r i s e to good wave

fo rm s. Having a knowledge o f th e s e f a c to r s i t i s p o s s ib le

to then d e te rm in e what m ust be done to g e t s t a b le o p e ra t io n .

S ince th e tim e th a t tu b e VI rem ains c u t o f f (see f i g . 3-2)

depends o n •th e v a r ia t io n o f th e g r id v o Ita g e w ith tim e, th e

fo llo w in g eq u a tio n s may be w r i t te n : Where v i s In s ta n ta n e o u s

v o lta g e on th e g r id o f VI, Vi r e p re s e n ts th e i n i t i a l v o lta g e

on th e g r i d ; v0 i s th e v o lta g e ac ro ss th e co n d en ser; Vg

' - V - r

Page 26: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

V,.

3~2 T ypic&l Mevto s ta klc Mult*»iribr*A Vote.

^8^^* tpcr-i nn en "t a I Dc / A y Q Dr Xnput

Page 27: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

21

r e p r e s e n ts th e p o te n t i a l a t w hich th e g r id a llo w s th e te b e

to conduct, and Vf i s th e $x>tentlml to wfaloh th e condenser

would charge i f p e rm itte d to do s o .

.... V = Vf-vc , .. _ . ■ : . : . : • . .

Vo = (V f+ V i) < l-« x p (- t/ttC )) ( 3 )

from which i t may be shown t h a t th e tim e o f d e lay T i s ’

T = HO in |(yr -hV1. ) / ( V g+ V fj} . (4)

The manner in which T v a r ie s may be seen i f th e d e r iv a t iv e

o f th e above ex p re ss io n i s w r i t t e n .

dT=d(RC) : ln [(Vf + V i)/(V f 4- Vg )J

+ KC dV-t) - (dVg+ dVf)]t Vf +• Vi) (Vg + Vf) J

F o r good s t a b i l i z a t i o n then i t i s n e c e ssa ry to have RC/Vf -h Vi)

and KG/(Vg4- V f} b o th s m a ll . This i s accom plished by making

th e denom inators la r g e ; t h a t i s to say th e waveform am pli­

tude shou ld be l a r g e • G en era lly th i s means t h a t la rg e load

r e s i s to r s \m u s t be u se d . To u se h ig h load r e s i s ta n c e s i s to

ou t down on th e c u r r e n t th rough th e tu b es and g iv e o p e ra t io n

a t a low er g® ( th e m u tu a l co n d u c tan ce ), which m ust be h ig h

i f a f a s t waveform i s to be d e r iv e d . F or f a s t waveforms2> - :: - • • . ' 9 -■ : ■ ' ' ^ ' • :

0® 'c l c 2 m ust be la r g e , where i s th e m u tu a l conductance

and C^* i s th e lumped in te r s le o t r o d e c a p a c ita n c e from th e

g r id of tube one to ground. The same i s t r u e o f Cg*. Seme

compromise i s n ecessa ry f o r good s t a b i l i t y and good waveform.

W ith t h i s as background m a te r ia l , i t i s now p o s s ib le to ex­

p la in th e o p e ra t io n o f th e c i r c u i t in f i g . 3 -3 . d(KC) can

9^ “Waveforms" , B. Chance, M .I.T . R a d ia tio n L a b o ra to r ie s S e r ie s Vol. 19 :179 , M cGraw-Hill Book Company, In c . New York (1949).

Page 28: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

m

be made eq u a l to zero by cho ice o f oompomenta, s in e e tem­

p e ra tu re e f f e c t a re re s p o n s ib le f o r change. - . : r

In th e q u ie sc e n t c o n d itio n VI i s co n d u c tin g and V2 la

c u t o f f . A n e g a tiv e t r i g g e r p u lse Is fe d to th e g r id o f VI.

The p la te p o te n t i a l o f VI r i s e s , and t h i s r i s e in p o te n t i a l

i s a p p l ie d a c ro s s th e condenser C to th e g r id o f V2 , - cau sin g

th e tube to conduct, and i t s p la te p o te n t i a l d ro p s . This

d rop in p o te n t ia l a c ro s s th e d iv id e r S2, M4, R3 i s s u f f i c i e n t

to h o ld VI c u to f f u n t i l such tim e th a t th e g r id o f V2 can

charge th rough th e 9001. The p o te n t i a l a t th e g r id w i l l drop

to its* c u t o f f p o in t , and th e cy c le can be re p e a te d . I t is

n ecessa ry t h a t th e g r id o f V2 be b ia se d s u f f i c i e n t l y n e g a tiv e .

so th a t th e p o s i t iv e go ing wave from Vl w i l l n o t cause i t to

draw g r id c u r r e n t . The c i r c u i t o p e ra te d f o r r e l a t i v e l y s h o r t

p u ls e s , b u t a t no tim e d id i t o f f e r s ta b le o p e ra t io n . S ince-v. A. ' : ' ■ ■ . : - . ' ■ " ' ■ : . - .. ■ ........

our prev ious a n a ly s is showed th a t E- shou ld be f ix e d f o r

s ta b le o p e ra t io n , i t can be seen th a t th i s p a r t i c u la r c i r c u i t

c o n tro ls th e tim e in te r v a l in two ways: one through v ary ing•• ̂ , : ' - : - ' : V ‘ • . - : . .th e charge c u r re n t to th e condenser; and th e o th e r i s the

v a r ia t io n o f th e g r id p o te n t i a l . The l a t t e r was ex trem ely

u n d e s ira b le . From th is c i r c u i t i t became ap p a re n t t h a t th e

v a r ia t io n o f tim e m ust be independent o f th e g r id c i r c u i t s

o f any o f th e tubes and depend only on th e ch a rg in g r a t e

th rough the 9001. The maximum delay th a t th i s c i r c u i t gave

was, 60£ o f th e p e rio d v tiich f o r th i s equipm ent i s l /6 0 of a

second . A d iode was p laced frcm th e g r id o f V2 to -50v to

Page 29: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

23

a id in g e t t in g th e ch a rg e , b u t i t d id n o t a l t e r th e s t a b i l ­

i t y o f th e c i r c u i t , and th e c i r c u i t was d is c a rd e d in fa v o r

o f a n o th e r .

S ince th e m u l t iv ib r a to r type c i r c u i t f a i l e d to g ive

th e s t a b i l i t y d e s i r e d , an e n t i r e l y new ty p e o f c i r c u i t

was d es ig n ed — th e p h a n ta s tro n . S ince th i s d i f f e r s m arkedly

from th e m u l t iv ib r a to r , th e d is c u s s io n o f i t w i l l be de­

la y ed , and the c i r c u i t f i n a l l y u sed w i l l be c o n s id e re d ,

s in c e i t , in some r e s p e c ts , resem bles th e m onostab le m u l t i ­

v ib r a to r . ;

THE INPUT DELAY GATE:

The f i n a l c i r c u i t f o r th e in p u t i s shown in f i g . 3-4f

The c i r c u i t v a lu es u sed w i l l be found in th e g e n e ra l sch e­

m a tic d iagram . To e x p la in th e o p e ra t io n o f th e g a te , r e f e r ­

ence w i l l be made to f i g . 3-2 and f i g . 3-3 , th e e q u iv a le n t

c i r c u i t . From com parison o f th e e q u iv a le n t c i r c u i t to th e

c i r c u i t o f th e m onostab le m u l t iv ib r a to r , f i g . 3 -4 , i t can

be shown th a t th e two a re a lm ost i d e n t i c a l . In th e case of

th e m onostab le m u l t iv ib r a to r th e tim e c o n s ta n t r e s i s t o r K ■ ; | . :•

i s r e tu rn e d to a p o s i t iv e p o t e n t i a l , and VI i s o u t o f th e

c i r c u i t in th e o p e ra tin g c o n d i t io n . In th e c i r c u i t developed. : • ■ v i : ;.

th e tim e c o n s ta n t r e s i s t o r i s th e p la te r e s i s ta n c e o f th e

9001, o r T4, and i t i s re tu rn e d to a n e g a tiv e p o t e n t i a l .

T h e re fo re , our p rev io u s d is c u s s io n o f m u l t iv ib r a to r s shou ld

he a p p l ic a b le to th i s p a r t i c u l a r c i r c u i t . ’

Page 30: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

t V

- 3 0 0 V

D ‘z.i a y-Z\> pU~f Q * r c "

Page 31: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

25

'B ieq ii le a c e n t eond itloB a a re as fo llo w s : T1 ia eon- ,

d u c tin g h e a v i ly 5 T2 i s . o u t o f f ? f5 i s co n d u c tin g h e a v ily o r

as h e a v ily as T4 w i l l a llow i t to oenduot. A. n e g a tiv e in ­

i t i a t i n g p u lse is a p p lie d to th e g r id o f T1 whloh causes A

to r i s e in p o t e n t i a l , s in c e th e tu b e was co n d u c tin g h e a v i ly .

The r i s e in A, coupled th rough th e con d en ser, causes B to

r i s e a l s o . B i s norm ally a t some n e g a tiv e p o t e n t i a l , and

th e r i s e , due to th e i n i t i a t i n g p u lse m ust be o f s u f f i c i e n t

m agnitude to cause T3 to ou t o f f . S in ce T3 o p e ra te s a t .

n e a r ly zero b ia s , a r i s e , o f 20 v o l ts w i l l g iv e th e d e s ire d ,

r e s u l t . I f T3 i s co n d u c tin g h e a v i ly , C i s a t some n e g a tiv e

p o te n t i a l , ; s in c e th e ca thode i s a t some n e g a tiv e p o t e n t i a l .

This n e g a tiv e p o te n t i a l i s s u f f i c i e n t , to cause T2. to rem ain

a t o u t o f f . When th e ca th o d e , o r B, r i s e s in p o te n t i a l T3

i s c u t o f f and C r i s e s to i t s p la te supp ly p o te n t ia l* 0

goes very p o s i t iv e , and th i s a c t io n w i l l a llo w T2 to conduct

h e a v i ly . S in ce T1 and T2 have a common cathode r e s i s t o r th e

heavy conduction o f IS th rough th e common r e s i s t o r w i l l keep

T1 c u t o f f u n t i l such tim e as T3 i s a b le to draw c u r r e n t .

This c o n d itio n w i l l e x i s t a g a in when th e tim in g condenser

has charged th rough T4 f o r a s u f f i c i e n t p e r io d o f tim e to

cause th e p o te n t ia l ac ro ss T4 to drop to th e c r i t i c a l p o in t

o r c u to f f p o in t o f T3 . At such tim e, T3 s t a r t s to conduct;

th e p o te n t i a l a t o f a l l s ? th e conduction th rough th e common

ca thode r e s i s t o r d e c re a s e s , and T1 s t a r t s to conduct a g a in .

This w i l l cause A to f a l l in p o t e n t i a l . % le drop in

Page 32: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

26

p o te n t ia l i s coupled th rough th e eondenser to B, and th e

e n t i r e p rocedure i s re p e a te d u n t i l th e q u ie s c e n t o p e ra tin g

c o n d itio n i s re a c h e d . A p e r io d o f tim e i s n e c e s s a ry , a f t e r

the v a rio u s tubes have reach ed th e i r q u ie s c e n t s t a t e , f o r

th e condenser to re a c h i t s i n i t i a l o p e ra t in g p o in t , s in c e

i t m ust charge th rough H i, th e p la te r e s i s ta n c e o f T3, and :

i t s load r e s i s t a n c e . T3 i s capab le o f co n d u c tin g h e a v i ly ,

and th e charge i s tak en from th e n e g a tiv e s id e o f th e con­

d en ser r a p id ly * Some d i f f i c u l t y i s en co u n te red in charg in g

th e condenser th ro u g h R l. The c i r c u i t u sed was f o r a r e l a ­

t iv e ly s h o r t d e la y ; and th e d io d e was connected to ground

and was e f f e c t iv e ly o u t o f th e c i r c u i t . However, i f lo n g e r

p u ls e s .a r e to be worked w ith , th en th e d iode p la te shou ld

be connected to 300 v o l t s . This a id s in e l im in a tin g s c a l in g —

th e i n a b i l i t y o f th e c i r c u i t to reach th e c o r r e o t o p e ra tin g

p o in t b e fo re th e a r r i v a l o f th e n e x t i n i t i a t i n g p u ls e . This

d is c u s s io n in d ic a te s q u a l i t a t iv e l y th e o p e ra t io n o f th e g a te .

Seme o f i t s c h a r a c te r i s t i c s and p ro p e r t ie s w i l l be co n s id e red

n e x t .

Hie v a r io u s c h a r a c t e r i s t i c waveforms a re in d ic a te d in

f i g . 3-4 and f i g . 3 -5 . S in ce th e waveform a t G i s th e con­

t r o l l i n g f a c t o r in changing th e o p e ra tio n from th e q u ie s c e n t

to th e o p e ra t in g c o n d itio n , i t can be ex p ec ted t h a t th e wave

form s d e r iv e d f ran th is g a te w i l l be very s te e p . Such i s

th e c a se . The le ad in g edges tend to fo llo w th e i n i t i a t i n g

p u lse which has gone s lo p e , b u t th e t r a i l i n g edges a re a lm ost

Page 33: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

Wave Form at

A

I— T HI*-------------- - P

Zoo v

__________ ir

F iq .

C

C har a c 'c W a u c s of tkc I n p u t G a t e

Page 34: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

2-0 vi

•Vave Form a t D

F ie . 1

- iOOvr

Wave Form a t E

- 5 C h a r a c t e r i s t i c Waveforms o f m e Input C i r c u i t

Page 35: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

2 1

e n t i r e ly w ith o u t s lo p e —a t l e a s t as seen on th e o s o i l l o -

soope. The m atch ing o f th e t r a i l i n g edges o f th e two g a te s

shou ld be very a c c u r a te . I f th e second g a te has th e same

c h a r a c t e r i s t i c s lo p e , then th e n o n l in e a r i ty due to d i f f e r ­

ences in t r a i l i n g edge s lo p e would be g r e a t ly m inim ized*

The waveforms r e p re s e n t d e lay tim es o f 60% o f a p e r io d ,

where th e p e r io d .is l / 6 0 th o f a seco n d . T his p a r t i c u l a r

g a te was found to be very s e n s i t iv e to p la te v o lta g e changes.

O p era tin g a t th e above f ig u r e , a change o f f iv e v o lts in

th e supply v o lta g e caused th e g a te to s c a l e . F ilam en t v o l t ­

age changes produced .20% v a r ia t io n s in p u lse w id th , when

changed 10%. This se rv e s to p o in t o u t th e n e c e s s i ty o f

e x c e l le n t v o lta g e r e g u la t io n . The only change In r e s i s ta n c e ,

which produced a v a r ia t io n in p u lse w id th , was a v a r ia t io n

in n l f i g . 3 -4 . This m ig h t be u sed as a means o f v a ry in g

th e p u lse w id th o f a f ix e d g a te , i f two s im i la r g a te s were

to be u se d .

DETEKMIMAHON OF k :

From th e e q u iv a le n t c i r c u i t o f th i s ( f i g . 3- 6 ) p a r t i ­

c u la r g a te , i t can be shown th a t th e i n i t i a l p o t e n t i a l a c ro ss

th e condenser in the q u ie sc e n t c o n d itio n is

Vi = (KP14-K2 ) 300 , Rp4 (ISO) - —n K pl-t- K2 + t t i ttp4 -t- Kp3 + tt4

Vf = 300Vg = 170 _

From eq u a tio n 4 th e c o n s ta n t in

T = kKC

Page 36: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

Flgo 3-b The E q u i v a l e n t C i r c u i t o r t h e I n p u t Gate i n t h e Q u i e s c e n t C o n d i t i o n

Page 37: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

Is e q u iv a le n t to

k * In (Vf + V i)/V c + V f)

e v a lu a t in g th e above e x p re s s io n we g e t .

k = ^ 4 ( 6 )

Prom th e s e n s i t i v i t y cu rv e , a d e te rm in a tio n o f th e a c tu a l

c o n s ta n t may be d e r iv e d . S in ce th e s e n s i t i v i t y curve g iv es

change in p u lse w id th w ith change in g r id v o lta g e i t may be

reduced to a c tu a l change in p u lse w id th by add ing a c o n s ta n t

term to th e o rd in a te and a b s c is s a . The s lo p e would rem ain

th e seme. From th e s lo p e o f th e s e n s i t i v i t y curve

k = . 1 4 ................' ’ ' .......... ..... 7 - ’ ' '

% e p la te r e s i s t a n c e which we have assumed c o n s ta n t changes,

as in d ic a te d by th e s e n s i t i v i t y cu rv e . T h e re fo re , th e above

i s p robably th e m ost r e l i a b l e o f th e two v a lu e s . The d i s ­

crepancy between th e two v alues su g g es ts t h a t th e s e n s i t i v i t y

o f th e g a te i s n o t b e in g f u l ly u t i l i z e d .

S E N S I T I V I E T t :. :: V - V . ' ' : J , *' r -

The c p e s tio n o f s e n s i t i v i t y o f th e g a te has been men­

t io n e d . Two s e n s i t i v i t y curves have been ta k e n : one f o r

th e low v a lu e s o f in p u t g r id v o ltag e? and th e o th e r f o r h ig h

v a lu e , to d e te rm in e how much g r id v o lta g e change ban be a c ­

commodated by th e g a te w ith o u t s e a l in g . F ran th e curves s o -

p lo t t e d i t i s seen t h a t , f o r a f iv e in illia m p o u tp u t, i t i s

n ec e ssa ry to have an in p u t o f 16 m i l l i v o l t s • S in ce from

p rev io u s c o n s id e ra tio n s i t was shown t h a t

Page 38: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

T = KC ARp

and■ . b .

T = TARn- '

77P •Kp . (7) ;. i- ;r:

I t m ust be s p e c i f ie d t h a t th e m easurem ents were made w ith a

p u lse w id th o f 60% o f a p e r io d . The cu rves r e v e a l an l a -

p o r ta n t f a c t as to th e low v a lu es o f g r id v o l ta g e . There

i s a n o n l in e a r i ty a t low v a lu es which makes th e p re s e n t

in s tru m e n t u n r e l i a b le . As was m entioned p re v io u s ly , in con­

s id e r in g th e power s u p p lie s in t h e i r r e la t io n s h ip to s t a b i l i t y ,

th e re appeared to be i n t e r a c t i o n between th e g a te s . The

curves in d ic a te t h a t i t ta k e s two m i l l i v o l t s to b reak th e

g a tes lo o s e , t t ia t i s to say th a t when th e p u lse o f th e v a r ­

ia b le g a te approaches th e f ix e d g a te , i t a u to m a tic a lly chan­

ges i t s p u lse w id th in d ep en d en tly o f th e g r id v o lta g e , so

t h a t th e two become th e same w id th w ith co rresp o n d in g lo s s

o f o u tp u t. H erein l i e s one reaso n f o r th e poor s e n s i t i v i t y.V- *' r " - *

f o r t h i s in s tru m e n t. I f th e r e were no lo o k in g in , perhaps

th e curve would take th e s lo p e which i t appears to s t a r t ­

fo llo w in g a t th e tim e i t b reaks away from th e o th e r g a te .

The f ix e d g a te appears to in f lu e n c e th e v a r ia b le g a te th ro u g h ­

o u t i t s o p e ra t io n . On th a t b a s is i t m ig h t be rea so n ab le

t h a t , w ith no co u p lin g between g a te s , th e p re s e n t a r ra n g e ­

m ent could be th re e tim es as s e n s i t iv e as i t i s . The o th e r

Page 39: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

*

Page 40: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to
Page 41: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

re a so n i s t h a t 9001 i s o p e ra t in g a long th e curved p o r tio n

o f th e o h a r a c te r ie t i e p la te c u r r e n t , p la te v o lta g e cu rv e ,

th e r e f o r e , th e p la te r e s i s ta n c e can change very l i t t l e .

The u se o f a pentode w ith no lo ad r e s i s t o r in i t s p la te c i r ­

c u i t would p la c e th e o p e ra tio n in a more d e s i r a b le reg ion*

th e feed b ack back r e s i s t o r K4 ( f i g . 3 -6 ) could be p laced in

th e sc re en c i r c u i t* In t h i s same reg io n th e re i s an o th e r

c o n t r ib u t in g f a c to r to th i s n o n lin e a r i ty * S in ce th e p u lse s

do n o t have i n f i n i t e s lo p e s , th e o u tp u t o f th e b r id g e i s a

t r i a n g u l a r wave r a th e r th an a square w ave. Were i t n o t f o r

th e co u p lin g e f f e o t t h i s would show up r a th e r m ark ed ly , s in c e

th e f ix e d p u lse g e n e ra to r has a g r e a te r e lo p e th e n th e V arl*

a b l e . g a te • , .<: • • - -̂ - ;■ ■. 1. -.•« . ... ...

F ran th e d is c u s s io n o f th e in p u t d e lay g a te , i t can be

seen th a t a s im p le scheme has been a r r iv e d a t in -coupling

from th e p h o to m u lt ip l ie r to th e d e la y g a te , w herein th e

co u p lin g tube ( th e 9001) forms th e r e s i s ta n c e f o r a KC tim ­

in g netw ork . I t was f o r t h a t purpose t h a t t h i s work was

u n d e rta k e n . Rie s ig n a l developed by; th e p h o to tu b e i s p la c e d

on th e g ird o f th e 9001, betw een g r id and -300 v o I ts * The

v a r ia t io n s o f p la te v o lta g e w i l l n o t i n t e r f e r e w ith th e

a c t io n o f th e s ig n a l . :

PHANTASTRON DELAY GATE:

A fte r th e f i r s t a ttem p ts to develop a s ta b le m u l t iv i ­

b r a to r c i r c u i t f a i l e d , i t was dec ided t h a t an e n t i r e ly

Page 42: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

m

d i f f e r e n t ty p e o f c i r c u i t sh o u ld be developed which had/

u n u su a lly f in e s t a b i l i t y — th e p h a n ta s tro n . F o r a change o f

- 10% in p la te v o lta g e the o u tp u t p u lse v a r ie d t . 1%, and

f o r a change in f i la m e n t v o lta g e 'o f 1‘ 10% th e change in p u lse

w id th is . ag a in * . 1%, b u t in th e ;o p p o s i te d i r e c t io n to th e10 ' ; "

p rev io u s change. T h e re fo re ,1- u n re g u la te d power s u p p lie s: r- . . . :m igh t be ad v an tag eo u s. However, w ith good r e g u la t io n even

b e t t e r s t a b i l i t y shou ld be fo rthcom ing* Two;methods o f

v a ry in g th e p u lse w id th ,w ere p o s s ib le : one by v a ry in g a

c o n tro l v o l ta g e , and th e o th e r by v a ry in g th e RC tim e o f

th e feedback c i r c u i t . . E i th e r method produces a l in e a r: . . ! , .

v a r ia t io n in p u lse w id th . The c i r c u i t employed i s in d ic a te d

in f i g . 3 -7 . This p a r t i c u l a r c i r c u i t g en e ra ted b o th a nega­

t iv e and p o s i t iv e sq u a re wave, and w*a capab le o f g iv in g

d elay s o f 90% o f th e p e r io d • This long d e la y depends g r e a t ly

on the tu b e u sed , and i t? was found t h a t only a SAC7 p e r ­

m it te d g e r» ra t io n o f such a wide p u ls e . The d i f f e r e n c e

l i e s in th e sm a ll in te r e le c t r o d e c a p a c ita n c e o f th i s p a r ­

t i c u l a r tu b e . In th i s r e s p e c t t h i s c i r c u i t gave th e m ost: i ;

s ta b le o p e ra tio n f o r la rg e d e lay p e rio d s o f any o f th e: : - •

c i r c u i t s t e s t e d . ;

The d e lay tim e i s a l i n e a r fu n c tio n o f th e p la te v o l t ­

age and th e kC tim e o f th e feedback netw ork (see f i g . 3 -8 ) .

T = KgCg(V-V0 ) /E bb

10 . C lose; :IUN. and Lebenbaum, M .I . , D esign o f P h an ta s tro n Time Delay C i r c u i t s , b’l e o t r o h l o s : ' 19 :100 . (1948).

Page 43: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

/, Replaced/ ^ t-3cov

■ O O I

r o n D e l a y CfQ i e I n p u t C / r c m t

Page 44: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

38

where V and V0 r e p r e s e n t th e s e t t i n g o f th e d iode T3, w hitii

in tu rn determ ine* th e v a lu e o f p la te v o lta g e on T8 . For

a g iven s e t t i n g o f p la te v o lta g e , Rg could he v a r ie d to g iv e

v a r ia b le d e lay t im e s . Both method* were t r i e d and n e i th e r

proved s u c c e s s fu l . The f i r s t a ttem p t was to u se a very

la rg e tim e c o n s ta n t , and vary th e p la te v o lta g e by means o f

th e o u tp u t o f th e co u p lin g tu b e from the p h o to m u lt ip l ie r

tube (as shown in f i g . 3 -8 ) . S in ce th e v a r ia t io n in tim e

i s p ro p o r t io n a l to th e change in v o l ta g e , th e s e n s i t i v i t y

was no t s u f f i c i e n t . F u rth e rm o re , i t was in v io la t io n o f th e .

tim e b r id g e p r in c ip l e , s in c e t h i s m ig h t be co n s id e red a ty p e

o f D.C. A m p lif ic a tio n . From f i g . 3 -8 , th e v a rio u s wave forms

a re shown. I f th e 9001 were p laced in the g r id c i r c u i t , in

p lace o f Kg, th e problem o f Im p ressin g a s ig n a l on th e 9001

g r id would n o t be too g r e a t , s in c e th e g r id o f T2 rem ains

p r a c t i c a l ly c o n s ta n t d u r in g th e d e lay tim e . T his was done,

bu t whenever th e s ig n a l v o lta g e was im pressed th e g a te ceased

o p e ra t io n . The g r id a p p a re n tly could n o t be loaded in any

way and s t i l l o p e r a te . The f i r s t m ethod, t h a t o f u s in g a

v o lta g e change, wasn’ t s u f f i c i e n t l y s e n s i t i v e , and th e second

method was in o p e ra t iv e . The p h a n ta s tro n could no t be used as

an in p u t c i r c u i t f o r th e tim e b r id g e . At th e su g g e s tio n of

D r. Corby, th e m u l t iv ib r a to r type g a te was d ev e lo p ed .

l i . GI5ae "- R .R i: apd Lebenbam, Deelgn o f , PhantmatronTime DelarTrCihcuits . fflefttrohloi'; ; 19:100. (1 9 4 8 ).

Page 45: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

A b r i e f e x p la n a tio n o f th e o p e ra t io n o f th e p h an taa tro n

w i l l be g iv e n # ite fe ren o e w i l l be made to f i g . 3- 8 . T3 i s

s e t a t seme a r b i t r a r y p o te n t i a l , and th i s means th a t the ■

p la te v o lta g e cannot r i s e alxiVe th i s v a lu e . In th e q u ie s -^ .

ce n t c o n d itio n th e sc re e n g r id o f T3 i s s u f f i c i e n t l y nega­

t iv e to s to p th e c u r re n t which would norm ally p ass to th e

p l a t e . The b ia s on th e tu b e i s o f th e o rd e r o f one o r two

v o l ts s in c e T1 i s connected to a p o s i t iv e v o l ta g e . The tube

would have zero b ia s i f T1 were n o t p r e s e n t , due to th e

la rg e value o f Kg. The sc re e n g r id then ta k es a l l th e space

c u r r e n t th a t would norm ally p ass to th e p l a t e . A n e g a tiv e

t r i g g e r i s a p p l ie d to th e g r id o f T2 th rough T l. The p o ten ­

t i a l o f th e g r id drops and th e p o te n t i a l o f th e ca thode drops

s in c e i t i s unbypassed by a condenser to m a in ta in i t a t a

cons t a n t p o t e n t i a l . This i s th e e q u iv a le n t o f r a i s i n g th e

su p p re sso r in p o te n t i a l and some p la te c u r re n t w i l l f lo w .

The sc re en g r id th en r i s e s in p o t e n t i a l . The sudden flow o f

p la te c u r r e n t th ro u g h RL, which i s a la rg e r e s i s t o r , causes

a sudden drop in p la te v o l ta g e . T his sudden change i s ap­

p l ie d th rough th e condenser Cg to th e g r id o f T2 which cannot

charge r a p id ly th ro u g h Rg. T h e re fo re , t h i s n e g a tiv e v o lta g e

rem ains on th e g r id and causes th e tu b e to co n tin u e to draw

p la te c u r r e n t . Cg s t a r t s to charge th rough Kg a n d .th e g r id

v o lta g e r i s e s . This w i l l cause more p la te c u r r e n t to flo w ,

and a g r e a te r drop i s a p p lie d to th e g r id o f T2 which w i l l

ten d to e q u a liz e th e change in v o lta g e due to th e d isc h a rg e

?,1.0766

Page 46: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

- - c

W a v e Form a t

F i g . 3-t i P h a n t a a t r o n D e la y Gate and Waveforms

Page 47: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

th rough Rg. Rie n e t e f f e c t th en i s f o r th e g r id to rem ain

c o n s ta n t in p o t e n t i a l . This c o n d itio n e x is ts u n t i l such' " . . .

tim e as th e p la te v o lta g e drops to some very low v a lu e and

th e c o n d it io n s , upon which th e l i n e a r o p e ra t io n o f t i l l s

c i r c u i t depend, a r e no lo n g e r f u l f i l l e d . There i s no lo n g e r

s u f f i c i e n t v a r ia t io n in p la te v o lta g e to o f f s e t th e r i s e in

g r id v o l ta g e , and th e g r id r i s e s u n t i l i t re ac h es th e po­

t e n t i a l a t which T1 s t a r t s to co n d u c t. The ca thode fo llo w s

th e g r id p o s i t iv e , which i s th e same as p e rm it t in g th e sup­

p re s s o r to go n e g a tiv e , and th e p la te c u r r e n t i s aga in cu t

o f f . The S creen p o te n t i a l d ro p s , and th e cy c le i s com pleted

when th e s t r a y c a p a c ita n c e s a re charged up a g a in . To d e t e r ­

mine j u s t w hat c o n d itio n s a re n ec e ssa ry f o r th e o p e ra tio n

o f th e p h a n ta s tro n , to g iv e l in e a r d e la y s , th e fo llo w in g

a n a ly s is may be m ade. W ith re fe re n c e to f i g . 3 -8 , th e t o t a l

p la te c u r r e n t t h a t flow s i s g iven by th e fo llo w in g e x p re s s io n

ip a iL + l c * V (8 )

where 1^ i s th e c u r r e n t t h a t p asses th rough th e load r e s i s ­

to r? i 0 i s th e ch a rg in g c u r r e n t o f Cg, and i a i s th e c u r re n t

n ecessa ry to charge th e s t r a y c a p a c ita n c e s . From th e tube

c h a r a c t e r i s t i c s

Ip = 8m(«g + » s g / ' t ig + (9)

where Cg, egg v ep , a re th e in s ta n ta n e o u s p o te n t ia l s o f th e

g r id , sc re e n g r id , and th e p la te r e s p e c t iv e ly . The q u a n t i­

t i e s in th e denom inator a re th e a m p lif ic a t io n f a c to r s f o r

th e sc re en g r id and p l a t e . I f v 0 i s th e in s ta n ta n e o u s

Page 48: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

v o lta g e a c ro ss th e condenser a t any tim e.

ip = 8m [ (% b -h i^ v c ) + G sg/^sg +% b-RLiL)/W p] ( 10 )

S o lv ing ; f o r 1% we g e t _

Bg |i%b -Va-̂ flU + W u 1o ' la1 +an Rl + fin R l/»p (11)

I f d / d t ( 1^) i s to be c o n s ta n t , then th e denom inator m ust be

a c o n s ta n t , and th e num erator e i t h e r a c o n s ta n t o r some

l in e a r fu n c t io n o f tim e . I f th e o p e ra t io n o f th e c i r c u i t

i s above th e "knee" o f th e c h a r a c t e r i s t i c * p - ip curve f o r

th e pen tode7 then th e tube c h a r a c t e r i s t i c s a re e s s e n t i a l l y

c o n s ta n t. In th e n u m era to r, i g i s g e n e ra lly sm a ll compared

to i Q, a t l e a s t i t i s in th e c i r c u i t t h a t has been c o n s id e re d ,

and th e on ly v a lu e s to be in v e s t ig a te d a re v0 and i 0 .

i 0 = (Ebb-egVRg ( 12)

S in ce th e change In g r id v o lta g e i s sm a ll, i 0 can be co n s id e red

a c o n s ta n t . I t i s now p o s s ib le to show t h a t vc i s a l i n e a r

fu n c tio n o f tim e , and so com plete the d is c u s s io n .

d( v0 ) / d t = io /C

which i s a c o n s ta n t from eq u a tio n 12 . From t h a t which has

been d e r iv e d , i t fo llo w s th a t so long as th e p la te v o lta g e

rem ains in th e l i n e a r re g io n o f th e c h a r a c t e r i s t i c p la te

v o l ta g e - p la te c u r r e n t c u rv e s , th e change in p u lse w id th w i l l

be a l in e a r fu n c tio n o f th e change in p la te v o lta g e , and th e

q u ie sc e n t c o n d itio n w i l l be r e s to r e d when th e re i s any de­

p a r tu re from th i s c o n d itio n f o r l i n e a r i t y .

Page 49: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

45

V

CO N ew s ION

The purpose o f t i l l s program has been p a r t i a l l y a t t a in e d .

A new in p u t c i r c u i t has been developed which i s r e l a t i v e l y

s im p le , s t a b l e , and which p e rm its d i r e c t co u p lin g to th e

p h o to m u lt ip l ie r t&hm* The p a r t i c u l a r g a te i s n o t as s e n s i ­

t i v e as p rev io u s in p u t e f f rc u l ts , b u t t i l l s can be r e a d i ly

c o r re c te d by th e u se o f a pen tode as th e lo ad on th e 9001.

This c o r r e c t io n has been d is c u s s e d in th e t e s t . T h e re fo re ,

th e f ig u re o f m e r i t , i f ex p ressed in te rn s o f g^- th e m u tua l

conductance, i s 300,000 m io ro eh o s, and does n o t r e p re s e n t

th e u l t im a te perform ance o f t h i s g a te .

B e tte r v o lta g e r e g u la t io n i s needed , and s e r i e s r e g u la ­

to r tubes shou ld be in c lu d ed w ith th e gas type r e g u la to r used

I t i s f u r th e r in d ic a te d t h a t s im i la r g a te s sh ou ld be u sed to

a id in e l im in a tin g th e n o n l in e a r i ty t h a t e x i s t s a t th e equiva

l e n t o f low l i g h t i n t e n s i t i e s .

The c i r c u i t s d ev e lo p ed , and th e in fo rm a tio n g a in ed ,

in d ic a te t h a t th i s in s tru m e n t i s w e ll s u i t e d f o r a s tro n o m ica l

work

Page 50: The development of the time bridge astronomical photometer · The following block diagram (See Fig. 2^2) "wi1!! illu s tra te ' the relationship of each circu it with reference to

BIBLIOGRAPHY

1 . ’’Development o f an E le c tro n ic P ho tom eter", W.H. P a rk e r , Ohegle p rep ared in th e D epartm ent o f P h y s ic s , U n iv e rs ity of A rizona, (1948) *

2 . ”Photometric Method”, 8 . Becker, T hesis prepared In th e Physics Department, U n iv ers ity o f A rizona, 0-949).

3 . " P h o to e le c tr ic Phenomena” , A.L, Hughes and L .E . D uBridge, M cGraw-Hill Book Company, I n c . , New Y ork, (1932), p . 35.

4 . Kron. G .E .: E le c tro n ic s In Astronomy. E le c t r o n ic s , 2 :1 0 1 ,(1 9 4 8 ) .

5 . Sm ith , J . , Hie L im itin g M agnitude O bservab le w ith a P h o to e le c tr ic S t e l l a r P hotom eter, A s tro p h y s ic a l J o u rn a l, 176:296, (1932).

6 . ’E le c tro n ic C irc u its and Tubes", C ru f t E le c tro n ic s S t a f f , M cGraw-Hill Book Company, I n c . , New York and London, (1947), p . 147.

7 . "Waveforms", B. Chance, M .I .T . R a d ia tio n L ab o ra to ry s e r i e s , M cGraw-Hill Book Company, I n c . , New Y o rk ,(1949), 19:179 .

8 . C lo se , K.N. and Lebenbaum, M . I . , D esign o f P h an ta s tro n Time Delay C irc u its , E le c t r o n ic s . ' 19:100, (1948).