the continuity equation and minority carrier diffusion

18
The continuity equation and ECOM 111 The continuity equation and minority carrier diffusion equation Dr. Abdallah Hammad Assistant professor Faculty of Engineering at Shoubra Benha University

Upload: others

Post on 23-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The continuity equation and minority carrier diffusion

The continuity equation and

ECOM 111

The continuity equation and minority carrier diffusion equation

Dr. Abdallah HammadAssistant professor

Faculty of Engineering at ShoubraBenha Universityy

Page 2: The continuity equation and minority carrier diffusion

Generation and Recombination

G RG R

Dr. Abdallah Hammad (2012‐2013)

Page 3: The continuity equation and minority carrier diffusion

Recombination Mechanisms

Band‐to‐band: R‐G centers Auger

e‐ and h+ annihilate band to band recombination 2‐step process involving a  e and h+ annihilate 

each other and produce a photon

band‐to‐band  recombination simultaneous with collision between like carriers 

energy gained during collision

lattice defect or impurity (the RG center) 

carrier is “trapped” by R‐G energy gained during collision 

by surviving carrier lost in small steps through collisions with the lattice

center; another carrier is attracted by trapped one

also called “indirect bi i ”

Dr. Abdallah Hammad (2012‐2013)

with the latticerecombination”

Page 4: The continuity equation and minority carrier diffusion

Generation Mechanisms

Band‐to‐band R‐G centers Impact ionization

e‐ and h+ produced by  thermally assisted process thermal energy or by a photon “photogeneration”

involving an R‐G center acting as an intermediary

band‐to‐band generation caused by collision between carrier and lattice 

occurs at high E‐fields

Dr. Abdallah Hammad (2012‐2013)

Page 5: The continuity equation and minority carrier diffusion

Introduction

For thermal equilibrium , the carrier concentration doesn’t change

is the thermal generation rate

Dr. Abdallah Hammad (2012‐2013)

Electrons and holes thermal equilibrium  concentration

Page 6: The continuity equation and minority carrier diffusion

(dn/dt) RecombinationConsider a semiconductor that is exposed to the light for a long time and suddenly the light source is removed

Dr. Abdallah Hammad (2012‐2013)

Page 7: The continuity equation and minority carrier diffusion

Consider we are studying a p‐typematerial

Dr. Abdallah Hammad (2012‐2013)

Page 8: The continuity equation and minority carrier diffusion

Dr. Abdallah Hammad (2012‐2013)

Page 9: The continuity equation and minority carrier diffusion

(dn/dt) Currentt h h hNow, consider a current passes through the semi conductor

Je(x)n(x)

Je(x+x)

n(x+x)

x

Dr. Abdallah Hammad (2012‐2013)

Page 10: The continuity equation and minority carrier diffusion

1dn d dnE D

1n n

dn d dnq nE qDdt q dx dx

Dr. Abdallah Hammad (2012‐2013)

Page 11: The continuity equation and minority carrier diffusion

Continuity equationsGi

Dr. Abdallah Hammad (2012‐2013)

Page 12: The continuity equation and minority carrier diffusion

Simplification on Continuity equations

One dimensional case We will consider minority carries We will consider minority carries No applied electric field ( E=0) (i.e. no drift current) Low Level Injection

The continuity equation becomes the minority carriers diffusion equationdiffusion equation

Si il l

Dr. Abdallah Hammad (2012‐2013)

Similarly 

Page 13: The continuity equation and minority carrier diffusion

Special cases and Solutions

Dr. Abdallah Hammad (2012‐2013)

Page 14: The continuity equation and minority carrier diffusion

Dr. Abdallah Hammad (2012‐2013)

Page 15: The continuity equation and minority carrier diffusion

Dr. Abdallah Hammad (2012‐2013)

Page 16: The continuity equation and minority carrier diffusion

Dr. Abdallah Hammad (2012‐2013)

Page 17: The continuity equation and minority carrier diffusion

Dr. Abdallah Hammad (2012‐2013)

Page 18: The continuity equation and minority carrier diffusion

i Wh h li h ill i h i d l f l i

Dr. Abdallah Hammad (2012‐2013)

i.e. When the light illuminates the semiconductor sample for a very large time  reaches its steady state value