the compact earth system model oscar v2.2: description and ......2 gasser et al.: description of...

53
Supplement of Geosci. Model Dev., 10, 271–319, 2017 http://www.geosci-model-dev.net/10/271/2017/ doi:10.5194/gmd-10-271-2017-supplement © Author(s) 2017. CC Attribution 3.0 License. Supplement of The compact Earth system model OSCAR v2.2: description and first results Thomas Gasser et al. Correspondence to: Thomas Gasser ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Upload: others

Post on 27-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Supplement of Geosci. Model Dev., 10, 271–319, 2017http://www.geosci-model-dev.net/10/271/2017/doi:10.5194/gmd-10-271-2017-supplement© Author(s) 2017. CC Attribution 3.0 License.

    Supplement of

    The compact Earth system model OSCAR v2.2:description and first resultsThomas Gasser et al.

    Correspondence to: Thomas Gasser ([email protected])

    The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

  • 2 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0

    5

    10

    15

    20

    (kt

    yr−

    1)

    HFC-23

    0.00.51.01.52.02.53.03.54.0

    HFC-32

    05

    1015202530354045

    HFC-125

    0

    50

    100

    150

    200HFC-134a

    05

    1015202530354045

    HFC-143a

    05

    101520253035

    (kt

    yr−

    1)

    HFC-152a

    0

    2

    4

    6

    8

    10HFC-227ea

    0.000.020.040.060.080.100.120.140.160.18

    HFC-236fa

    0123456

    HFC-245fa

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5HFC-365mfc

    0.000.050.100.150.200.250.300.35

    (kt

    yr−

    1)

    HFC-43-10mee

    01234567

    SF6

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25NF3

    02468

    10121416

    CF4

    0.00.51.01.52.02.53.0

    C2F6

    0.000.050.100.150.200.250.300.350.400.45

    (kt

    yr−

    1)

    C3F8

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025c-C4F8

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025C4F10

    0E-610E-620E-630E-640E-650E-660E-6

    C5F12

    0.00.20.40.60.81.01.2

    C6F14

    0.000.050.100.150.200.250.300.350.40

    (kt

    yr−

    1)

    C7F16

    050

    100150200250300350400

    CFC-11

    0100200300400500600

    CFC-12

    050

    100150200250300

    CFC-113

    02468

    1012141618

    CFC-114

    02468

    101214

    (kt

    yr−

    1)

    CFC-115

    020406080

    100120140160

    CCl4

    0100200300400500600700

    CH3CCl3

    050

    100150200250300350

    HCFC-22

    0102030405060

    HCFC-141b

    05

    10152025303540

    (kt

    yr−

    1)

    HCFC-142b

    02468

    1012

    Halon-1211

    1890 1930 1970 20100.00.10.20.30.40.50.60.70.8

    Halon-1202

    1890 1930 1970 20100123456

    Halon-1301

    1890 1930 1970 20100.00.20.40.60.81.01.21.41.61.8

    Halon-2402

    1890 1930 1970 20100

    102030405060

    (kt

    yr−

    1)

    CH3Br

    1890 1930 1970 20100

    50100150200250300350400450

    CH3Cl

    Figure S1. Time-series of the anthropogenic emissions of halogenated compounds used as inputs of OSCAR (section 2.2.1).

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 3

    1210

    8642024

    δAi,b (

    Mha y

    r−1)

    i= 1, b= 4

    2101234567 i= 1, b= 5

    0

    50

    100

    150

    200

    250

    300

    δHi,b (

    MtC

    yr−

    1)

    i= 1, b= 1

    0

    δSi,b (

    Mha y

    r−1)

    i= 1, b= 4

    0

    i= 1, b= 5

    202468

    10121416

    δAi,b (

    Mha y

    r−1)

    i= 2, b= 4

    4202468

    1012 i= 2, b= 5

    020406080

    100120140160180

    δHi,b (

    MtC

    yr−

    1)

    i= 2, b= 1

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    δSi,b (

    Mha y

    r−1)

    i= 2, b= 4

    0123456789 i= 2, b= 5

    2.52.01.51.00.50.00.51.0

    δAi,b (

    Mha y

    r−1)

    i= 3, b= 4

    1.0

    0.5

    0.0

    0.5i= 3, b= 5

    020406080

    100120140

    δHi,b (

    MtC

    yr−

    1)

    i= 3, b= 1

    0

    δSi,b (

    Mha y

    r−1)

    i= 3, b= 4

    0

    i= 3, b= 5

    1.0

    0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    δAi,b (

    Mha y

    r−1)

    i= 4, b= 4

    20

    15

    10

    5

    0

    5 i= 4, b= 5

    02468

    101214

    δHi,b (

    MtC

    yr−

    1)

    i= 4, b= 1

    0

    δSi,b (

    Mha y

    r−1)

    i= 4, b= 4

    0

    i= 4, b= 5

    0

    1

    2

    3

    4

    5

    6

    δAi,b (

    Mha y

    r−1)

    i= 5, b= 4

    202468

    1012 i= 5, b= 5

    020406080

    100120140160180

    δHi,b (

    MtC

    yr−

    1)

    i= 5, b= 1

    0

    2

    4

    6

    8

    10

    δSi,b (

    Mha y

    r−1)

    i= 5, b= 4

    0

    5

    10

    15

    20

    25

    30 i= 5, b= 5

    5432101234

    δAi,b (

    Mha y

    r−1)

    i= 6, b= 4

    15

    10

    5

    0

    5

    10 i= 6, b= 5

    020406080

    100120140

    δHi,b (

    MtC

    yr−

    1)

    i= 6, b= 1

    0

    δSi,b (

    Mha y

    r−1)

    i= 6, b= 4

    0

    i= 6, b= 5

    1086420246

    δAi,b (

    Mha y

    r−1)

    i= 7, b= 4

    20

    15

    10

    5

    0

    5

    10 i= 7, b= 5

    020406080

    100120140

    δHi,b (

    MtC

    yr−

    1)

    i= 7, b= 1

    0.000.020.040.060.080.100.120.14

    δSi,b (

    Mha y

    r−1)

    i= 7, b= 4

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6 i= 7, b= 5

    2

    1

    0

    1

    2

    3

    4

    δAi,b (

    Mha y

    r−1)

    i= 8, b= 4

    0.20.10.00.10.20.30.40.50.60.7 i= 8, b= 5

    0

    50

    100

    150

    200

    250

    300

    δHi,b (

    MtC

    yr−

    1)

    i= 8, b= 1

    0.00.51.01.52.02.53.03.54.0

    δSi,b (

    Mha y

    r−1)

    i= 8, b= 4

    0.00.10.20.30.40.50.60.70.8 i= 8, b= 5

    1890 1930 1970 20105432101234

    δAi,b (

    Mha y

    r−1)

    i= 9, b= 4

    1890 1930 1970 201010

    5

    0

    5

    10 i= 9, b= 5

    1890 1930 1970 201005

    101520253035

    δHi,b (

    MtC

    yr−

    1)

    i= 9, b= 1

    1890 1930 1970 20100.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    δSi,b (

    Mha y

    r−1)

    i= 9, b= 4

    1890 1930 1970 20100.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012 i= 9, b= 5

    Figure S2. Time-series of the LULCC drivers used as inputs of OSCAR (section 2.2.2). The first column shows the change in cropland area;the second that in pasture area; the third shows harvest in forest; the fourth shifting cultivation for cropland; the fifth shifting cultivation forpastures. The rows correspond to the nine regions of figure S4.

  • 4 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 6 7 8

    ∆TS (K)

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1+

    ∆M

    LD/M

    LD

    0 (−

    )

    CESM1-BGC

    R2 = 0.98

    2 0 2 4 6 8 10 12

    ∆TS (K)

    0.7

    0.8

    0.9

    1.0

    1.1IPSL-CM5A-LR

    R2 = 0.98

    1 0 1 2 3 4 5 6 7 8

    ∆TS (K)

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2MPI-ESM-LR

    R2 = 0.99

    Figure S3. Fits of the parameters of the mixed layer depth of the surface ocean (section 2.3.1).

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 5

    North AmericaSouth & Central AmericaWestern Europe

    North Africa & Middle-EastTropical AfricaFormer Soviet Union

    China regionSouth & South-East AsiaPacific Developed region

    Figure S4. Biospheric regions (i.e. the i-axis defined in section 2.3.2) used in this paper: (i= 1) North America; (i= 2) South & CentralAmerica; (i= 3) Western Europe; (i= 4) North Africa & Middle-East; (i= 5) Tropical Africa; (i= 6) Former Soviet Union; (i= 7) Chinaregion; (i= 8) South & South-East Asia; (i= 9) Pacific Developed region.

  • 6 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )BCC-CSM1.1 | i= 1

    R2(log) = 0.98 / 0.98 / 0.96 / 0.97R2(hyp) = 0.98 / 0.96 / 0.92 / 0.96

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2BCC-CSM1.1 | i= 2

    R2(log) = 0.99 / 0.99 / 0.99 / 0.99R2(hyp) = 0.99 / 0.98 / 0.99 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    BCC-CSM1.1 | i= 3

    R2(log) = 0.97 / 0.97 / 0.98 / 0.97R2(hyp) = 0.98 / 0.98 / 0.98 / 0.98

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5BCC-CSM1.1 | i= 4

    R2(log) = 0.99 / 0.99 / 0.99 / 0.99R2(hyp) = 0.99 / 0.96 / 0.99 / 0.98

    1.0

    1.5

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    BCC-CSM1.1 | i= 5

    R2(log) = 0.99 / 0.99 / 0.98 / 0.99R2(hyp) = 0.99 / 0.98 / 0.96 / 0.99

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0BCC-CSM1.1 | i= 6

    R2(log) = 0.99 / 1.0 / 0.99 / 1.0R2(hyp) = 0.99 / 1.0 / 0.99 / 0.99

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    BCC-CSM1.1 | i= 7

    R2(log) = 0.98 / 0.99 / 0.97 / 0.99R2(hyp) = 0.98 / 0.99 / 0.97 / 0.98

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5BCC-CSM1.1 | i= 8

    R2(log) = 0.98 / 0.98 / 0.99 / 0.97R2(hyp) = 0.98 / 0.98 / 0.97 / 0.97

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    BCC-CSM1.1 | i= 9

    R2(log) = 0.98 / 0.97 / 0.99 / 0.99R2(hyp) = 0.98 / 0.92 / 0.98 / 0.97

    Figure S5. Fits of the parameters of the NPP response based on the "BCC-CSM1.1" model (section 2.3.2). Each panel is one of the nineregions (see figure S4), and the different colors are for the biomes: forest (green), mixed shrubland and grassland (blue), cropland (yellow),and pasture (cyan). The R2 are given in this exact order, for the logarithmic (log) and hyperbolic (hyp) fits. Decadal running means areshown; and the fits are the dotted and plain black lines, for the logarithmic and hyperbolic formulations respectively.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 7

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CESM1-BGC | i= 1

    R2(log) = 0.97 / 0.88 / 0.92 / 0.86R2(hyp) = 0.97 / 0.88 / 0.89 / 0.85

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25CESM1-BGC | i= 2

    R2(log) = 0.95 / 0.97 / 0.95 / 0.98R2(hyp) = 0.94 / 0.93 / 0.93 / 0.94

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CESM1-BGC | i= 3

    R2(log) = 0.96 / 0.94 / 0.93 / 0.94R2(hyp) = 0.94 / 0.92 / 0.89 / 0.92

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4CESM1-BGC | i= 4

    R2(log) = 0.95 / 0.93 / 0.9 / 0.93R2(hyp) = 0.93 / 0.91 / 0.88 / 0.91

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CESM1-BGC | i= 5

    R2(log) = 0.97 / 0.94 / 0.88 / 0.93R2(hyp) = 0.96 / 0.94 / 0.85 / 0.93

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6CESM1-BGC | i= 6

    R2(log) = 0.98 / 0.98 / 0.92 / 0.95R2(hyp) = 0.98 / 0.98 / 0.89 / 0.94

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CESM1-BGC | i= 7

    R2(log) = 0.96 / 0.97 / 0.84 / 0.97R2(hyp) = 0.97 / 0.96 / 0.82 / 0.97

    1pctCO2 esmFixClim1 esmFdbk0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5CESM1-BGC | i= 8

    R2(log) = 0.95 / 0.86 / 0.82 / 0.87R2(hyp) = 0.94 / 0.84 / 0.82 / 0.86

    1pctCO2 esmFixClim1 esmFdbk

    1.0

    1.1

    1.2

    1.3

    1.4

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CESM1-BGC | i= 9

    R2(log) = 0.96 / 0.68 / 0.96 / 0.73R2(hyp) = 0.96 / 0.65 / 0.97 / 0.7

    Figure S6. Same as figure S5 but for the "CESM1-BGC" model.

  • 8 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CanESM2 | i= 1

    R2(log) = 0.98 / 0.82 / 0.97 / 0.84R2(hyp) = 0.98 / 0.81 / 0.98 / 0.82

    0.5

    1.0

    1.5

    2.0CanESM2 | i= 2

    R2(log) = 0.96 / 0.97 / 0.99 / 0.97R2(hyp) = 0.96 / 0.97 / 0.99 / 0.97

    0.8

    1.0

    1.2

    1.4

    1.6

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CanESM2 | i= 3

    R2(log) = 0.93 / 0.96 / 0.96 / 0.96R2(hyp) = 0.94 / 0.96 / 0.96 / 0.96

    0.5

    1.0

    1.5

    2.0

    CanESM2 | i= 4

    R2(log) = 0.99 / 0.98 / 0.97 / 0.99R2(hyp) = 0.98 / 0.99 / 0.97 / 0.99

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CanESM2 | i= 5

    R2(log) = 0.99 / 0.99 / 1.0 / 0.99R2(hyp) = 0.99 / 0.98 / 0.99 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6CanESM2 | i= 6

    R2(log) = 0.98 / 0.94 / 0.95 / 0.94R2(hyp) = 0.97 / 0.92 / 0.96 / 0.92

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CanESM2 | i= 7

    R2(log) = 0.99 / 0.96 / 0.97 / 0.96R2(hyp) = 0.99 / 0.95 / 0.98 / 0.95

    1pctCO2 esmFixClim1 esmFdbk0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0CanESM2 | i= 8

    R2(log) = 0.99 / 0.98 / 0.97 / 0.98R2(hyp) = 0.99 / 0.98 / 0.97 / 0.98

    1pctCO2 esmFixClim1 esmFdbk

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    CanESM2 | i= 9

    R2(log) = 0.98 / 0.98 / 0.97 / 0.97R2(hyp) = 0.98 / 0.97 / 0.98 / 0.97

    Figure S7. Same as figure S5 but for the "CanESM2" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 9

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    HadGEM2-ES | i= 1

    R2(log) = 0.98 / 0.96 / 0.39 / 0.47R2(hyp) = 0.98 / 0.96 / 0.39 / 0.47

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5HadGEM2-ES | i= 2

    R2(log) = 1.0 / 0.75 / -0.08 / -0.07R2(hyp) = 0.99 / 0.75 / -0.13 / -0.12

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    HadGEM2-ES | i= 3

    R2(log) = 0.98 / 0.86 / 0.2 / 0.24R2(hyp) = 0.98 / 0.86 / 0.19 / 0.23

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5HadGEM2-ES | i= 4

    R2(log) = 0.98 / 0.56 / 0.05 / 0.05R2(hyp) = 0.97 / 0.55 / 0.07 / 0.07

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    HadGEM2-ES | i= 5

    R2(log) = 0.99 / 0.92 / 0.3 / 0.29R2(hyp) = 1.0 / 0.91 / 0.32 / 0.32

    0

    1

    2

    3

    4

    5

    6HadGEM2-ES | i= 6

    R2(log) = 0.97 / 0.98 / 0.67 / 0.7R2(hyp) = 0.97 / 0.98 / 0.67 / 0.7

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    HadGEM2-ES | i= 7

    R2(log) = 0.98 / 0.84 / -0.06 / -0.05R2(hyp) = 0.98 / 0.83 / -0.08 / -0.07

    1pctCO2 esmFixClim1 esmFdbk0.0

    0.5

    1.0

    1.5

    2.0

    2.5HadGEM2-ES | i= 8

    R2(log) = 1.0 / 0.6 / -0.11 / -0.12R2(hyp) = 0.99 / 0.57 / -0.11 / -0.12

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    HadGEM2-ES | i= 9

    R2(log) = 0.99 / 0.6 / 0.27 / 0.32R2(hyp) = 0.99 / 0.6 / 0.29 / 0.35

    Figure S8. Same as figure S5 but for the "HadGEM2-ES" model.

  • 10 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    IPSL-CM5A-LR | i= 1

    R2(log) = 0.98 / 0.97 / 0.97 / 0.98R2(hyp) = 0.98 / 0.98 / 0.97 / 0.98

    0.5

    1.0

    1.5

    2.0

    2.5IPSL-CM5A-LR | i= 2

    R2(log) = 0.97 / 0.99 / 0.98 / 0.99R2(hyp) = 0.95 / 0.99 / 0.98 / 0.99

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    IPSL-CM5A-LR | i= 3

    R2(log) = 0.98 / 0.98 / 0.97 / 0.98R2(hyp) = 0.99 / 0.99 / 0.97 / 0.99 0.5

    1.0

    1.5

    2.0

    IPSL-CM5A-LR | i= 4

    R2(log) = 0.97 / 0.97 / 0.97 / 0.97R2(hyp) = 0.97 / 0.97 / 0.97 / 0.97

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    IPSL-CM5A-LR | i= 5

    R2(log) = 0.98 / 0.96 / 0.95 / 0.96R2(hyp) = 0.98 / 0.96 / 0.97 / 0.96

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2IPSL-CM5A-LR | i= 6

    R2(log) = 0.98 / 0.98 / 0.96 / 0.98R2(hyp) = 0.99 / 0.98 / 0.96 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    IPSL-CM5A-LR | i= 7

    R2(log) = 0.98 / 0.98 / 0.97 / 0.98R2(hyp) = 0.98 / 0.98 / 0.97 / 0.98

    1pctCO2 esmFixClim1 esmFdbk0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2IPSL-CM5A-LR | i= 8

    R2(log) = 0.97 / 0.97 / 0.79 / 0.97R2(hyp) = 0.96 / 0.97 / 0.82 / 0.96

    1pctCO2 esmFixClim1 esmFdbk

    0.5

    1.0

    1.5

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    IPSL-CM5A-LR | i= 9

    R2(log) = 0.98 / 0.94 / 0.98 / 0.92R2(hyp) = 0.97 / 0.94 / 0.98 / 0.92

    Figure S9. Same as figure S5 but for the "IPSL-CM5A-LR" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 11

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    MPI-ESM-LR | i= 1

    R2(log) = 0.91 / 0.99 / 0.97 / 0.97R2(hyp) = 0.94 / 0.98 / 0.97 / 0.97

    1.0

    1.5

    2.0

    MPI-ESM-LR | i= 2

    R2(log) = 0.98 / 1.0 / 0.98 / 0.99R2(hyp) = 0.97 / 0.99 / 0.98 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    MPI-ESM-LR | i= 3

    R2(log) = 0.97 / 0.97 / 0.97 / 0.98R2(hyp) = 0.97 / 0.98 / 0.97 / 0.98

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5MPI-ESM-LR | i= 4

    R2(log) = 0.98 / 0.93 / 0.98 / 0.96R2(hyp) = 0.98 / 0.92 / 0.98 / 0.96

    1.0

    1.5

    2.0

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    MPI-ESM-LR | i= 5

    R2(log) = 0.99 / 0.98 / 0.99 / 0.99R2(hyp) = 0.98 / 0.98 / 0.99 / 0.99

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0MPI-ESM-LR | i= 6

    R2(log) = 0.98 / 0.99 / 0.98 / 0.98R2(hyp) = 0.98 / 0.99 / 0.98 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    MPI-ESM-LR | i= 7

    R2(log) = 0.97 / 0.97 / 0.97 / 0.99R2(hyp) = 0.97 / 0.97 / 0.97 / 0.99

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5MPI-ESM-LR | i= 8

    R2(log) = 0.98 / 0.97 / 0.98 / 0.92R2(hyp) = 0.97 / 0.97 / 0.97 / 0.93

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    MPI-ESM-LR | i= 9

    R2(log) = 0.99 / 0.96 / 0.97 / 0.96R2(hyp) = 0.98 / 0.97 / 0.98 / 0.96

    Figure S10. Same as figure S5 but for the "MPI-ESM-LR" model.

  • 12 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    NorESM1-ME | i= 1

    R2(log) = 0.96 / 0.87 / 0.95 / 0.82R2(hyp) = 0.96 / 0.86 / 0.95 / 0.8

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4NorESM1-ME | i= 2

    R2(log) = 0.95 / 0.95 / 0.92 / 0.96R2(hyp) = 0.95 / 0.93 / 0.9 / 0.94

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    NorESM1-ME | i= 3

    R2(log) = 0.96 / 0.95 / 0.91 / 0.95R2(hyp) = 0.94 / 0.92 / 0.86 / 0.92

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4NorESM1-ME | i= 4

    R2(log) = 0.96 / 0.91 / 0.87 / 0.91R2(hyp) = 0.95 / 0.9 / 0.86 / 0.89

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    NorESM1-ME | i= 5

    R2(log) = 0.98 / 0.98 / 0.97 / 0.98R2(hyp) = 0.98 / 0.96 / 0.94 / 0.96

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7NorESM1-ME | i= 6

    R2(log) = 0.98 / 0.98 / 0.85 / 0.95R2(hyp) = 0.98 / 0.98 / 0.87 / 0.95

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    NorESM1-ME | i= 7

    R2(log) = 0.97 / 0.98 / 0.9 / 0.99R2(hyp) = 0.97 / 0.98 / 0.9 / 0.99

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5NorESM1-ME | i= 8

    R2(log) = 0.97 / 0.94 / 0.89 / 0.94R2(hyp) = 0.96 / 0.93 / 0.9 / 0.94

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆nppi,b/n

    pp

    0 (−

    )

    NorESM1-ME | i= 9

    R2(log) = 0.96 / 0.87 / 0.95 / 0.88R2(hyp) = 0.96 / 0.86 / 0.96 / 0.87

    Figure S11. Same as figure S5 but for the "NorESM1-ME" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 13

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1+

    ∆rh

    i,b/r

    h0 (−

    )BCC-CSM1.1 | i= 1

    R2(exp) = 0.98 / 0.97 / 0.9 / 0.97R2(gauss) = 0.99 / 0.98 / 0.94 / 0.98

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1.35BCC-CSM1.1 | i= 2

    R2(exp) = 0.95 / 0.94 / 0.9 / 0.9R2(gauss) = 0.96 / 0.95 / 0.91 / 0.92

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    BCC-CSM1.1 | i= 3

    R2(exp) = 0.99 / 0.98 / 0.98 / 0.98R2(gauss) = 0.99 / 0.99 / 0.98 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6BCC-CSM1.1 | i= 4

    R2(exp) = 0.95 / 0.94 / 0.93 / 0.9R2(gauss) = 0.95 / 0.95 / 0.94 / 0.91

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    BCC-CSM1.1 | i= 5

    R2(exp) = 0.96 / 0.85 / 0.88 / 0.86R2(gauss) = 0.96 / 0.87 / 0.89 / 0.87

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8BCC-CSM1.1 | i= 6

    R2(exp) = 0.98 / 0.98 / 0.96 / 0.98R2(gauss) = 0.99 / 0.99 / 0.97 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    BCC-CSM1.1 | i= 7

    R2(exp) = 0.97 / 0.97 / 0.96 / 0.97R2(gauss) = 0.98 / 0.98 / 0.97 / 0.98

    1pctCO2 esmFixClim1 esmFdbk0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25BCC-CSM1.1 | i= 8

    R2(exp) = 0.96 / 0.9 / 0.8 / 0.9R2(gauss) = 0.96 / 0.9 / 0.83 / 0.9

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    BCC-CSM1.1 | i= 9

    R2(exp) = 0.98 / 0.85 / 0.95 / 0.76R2(gauss) = 0.98 / 0.87 / 0.95 / 0.79

    Figure S12. Fits of the parameters of the heterotrophic respiration response based on the "BCC-CSM1.1" model (section 2.3.2). Each panelis one of the nine regions (see figure S4), and the different colors are for the biomes: forest (green), mixed shrubland and grassland (blue),cropland (yellow), and pasture (cyan). The R2 are given in this exact order, for the exponential (exp) and Gaussian (gauss) fits. Decadalrunning means are shown; and the fits are the dotted and plain black lines, for the exponential and Gaussian formulations respectively.

  • 14 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CESM1-BGC | i= 1

    R2(exp) = 0.99 / 0.98 / 0.98 / 0.97R2(gauss) = 0.99 / 0.98 / 0.98 / 0.97

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25CESM1-BGC | i= 2

    R2(exp) = 0.99 / 0.99 / 0.98 / 0.99R2(gauss) = 0.99 / 0.99 / 0.98 / 0.99

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CESM1-BGC | i= 3

    R2(exp) = 0.98 / 0.98 / 0.96 / 0.98R2(gauss) = 0.98 / 0.98 / 0.96 / 0.98

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20CESM1-BGC | i= 4

    R2(exp) = 0.99 / 0.96 / 0.97 / 0.96R2(gauss) = 0.99 / 0.96 / 0.97 / 0.96

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CESM1-BGC | i= 5

    R2(exp) = 0.99 / 0.98 / 0.95 / 0.98R2(gauss) = 0.99 / 0.98 / 0.95 / 0.98

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6CESM1-BGC | i= 6

    R2(exp) = 1.0 / 1.0 / 0.97 / 0.99R2(gauss) = 1.0 / 1.0 / 0.97 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CESM1-BGC | i= 7

    R2(exp) = 0.99 / 0.99 / 0.96 / 0.99R2(gauss) = 0.99 / 0.99 / 0.96 / 0.99

    1pctCO2 esmFixClim1 esmFdbk0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30CESM1-BGC | i= 8

    R2(exp) = 0.96 / 0.96 / 0.95 / 0.95R2(gauss) = 0.96 / 0.96 / 0.95 / 0.95

    1pctCO2 esmFixClim1 esmFdbk

    1.0

    1.1

    1.2

    1.3

    1.4

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CESM1-BGC | i= 9

    R2(exp) = 0.97 / 0.72 / 0.98 / 0.75R2(gauss) = 0.97 / 0.73 / 0.98 / 0.75

    Figure S13. Same as figure S12 but for the "CESM1-BGC" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 15

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CanESM2 | i= 1

    R2(exp) = 0.98 / 0.85 / 0.91 / 0.98R2(gauss) = 0.99 / 0.91 / 0.93 / 0.99

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4CanESM2 | i= 2

    R2(exp) = 0.89 / 0.95 / 0.95 / 0.94R2(gauss) = 0.89 / 0.95 / 0.95 / 0.95

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CanESM2 | i= 3

    R2(exp) = 0.98 / 0.99 / 0.98 / 0.99R2(gauss) = 0.98 / 0.99 / 0.98 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7CanESM2 | i= 4

    R2(exp) = 0.93 / 0.87 / 0.92 / 0.88R2(gauss) = 0.94 / 0.9 / 0.92 / 0.91

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CanESM2 | i= 5

    R2(exp) = 0.96 / 0.97 / 0.98 / 0.97R2(gauss) = 0.96 / 0.97 / 0.98 / 0.97

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0CanESM2 | i= 6

    R2(exp) = 0.99 / 0.99 / 0.97 / 0.99R2(gauss) = 0.99 / 0.99 / 0.97 / 0.99

    1.0

    1.2

    1.4

    1.6

    1.8

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CanESM2 | i= 7

    R2(exp) = 0.99 / 0.98 / 0.95 / 0.97R2(gauss) = 0.99 / 0.99 / 0.96 / 0.98

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6CanESM2 | i= 8

    R2(exp) = 0.93 / 0.98 / 0.79 / 0.98R2(gauss) = 0.94 / 0.99 / 0.82 / 0.99

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    CanESM2 | i= 9

    R2(exp) = 0.97 / 0.96 / 0.98 / 0.96R2(gauss) = 0.97 / 0.96 / 0.98 / 0.96

    Figure S14. Same as figure S12 but for the "CanESM2" model.

  • 16 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    HadGEM2-ES | i= 1

    R2(exp) = 0.96 / 0.98 / 0.66 / 0.63R2(gauss) = 0.98 / 0.98 / 0.76 / 0.71

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4HadGEM2-ES | i= 2

    R2(exp) = 0.93 / 0.61 / 0.2 / 0.15R2(gauss) = 0.93 / 0.61 / 0.21 / 0.16

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    HadGEM2-ES | i= 3

    R2(exp) = 0.96 / 0.81 / -0.07 / -0.13R2(gauss) = 0.97 / 0.87 / -0.02 / -0.11

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5HadGEM2-ES | i= 4

    R2(exp) = 0.96 / 0.71 / 0.43 / 0.44R2(gauss) = 0.96 / 0.71 / 0.43 / 0.44

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    HadGEM2-ES | i= 5

    R2(exp) = 0.94 / 0.93 / 0.25 / 0.24R2(gauss) = 0.94 / 0.93 / 0.25 / 0.24

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5HadGEM2-ES | i= 6

    R2(exp) = 0.96 / 0.98 / -0.42 / -0.32R2(gauss) = 0.98 / 0.99 / -0.29 / 0.23

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    HadGEM2-ES | i= 7

    R2(exp) = 0.91 / 0.74 / -0.06 / -0.04R2(gauss) = 0.95 / 0.87 / 0.11 / 0.1

    1pctCO2 esmFixClim1 esmFdbk0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2HadGEM2-ES | i= 8

    R2(exp) = 0.91 / 0.86 / 0.34 / 0.35R2(gauss) = 0.91 / 0.87 / 0.34 / 0.35

    1pctCO2 esmFixClim1 esmFdbk0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    HadGEM2-ES | i= 9

    R2(exp) = 0.95 / 0.5 / 0.08 / 0.11R2(gauss) = 0.95 / 0.5 / 0.07 / 0.1

    Figure S15. Same as figure S12 but for the "HadGEM2-ES" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 17

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    IPSL-CM5A-LR | i= 1

    R2(exp) = 0.99 / 1.0 / 0.99 / 1.0R2(gauss) = 1.0 / 1.0 / 0.99 / 1.0

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5IPSL-CM5A-LR | i= 2

    R2(exp) = 0.98 / 0.99 / 0.97 / 0.99R2(gauss) = 0.98 / 0.99 / 0.97 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    IPSL-CM5A-LR | i= 3

    R2(exp) = 1.0 / 0.99 / 0.99 / 0.99R2(gauss) = 1.0 / 1.0 / 0.99 / 1.0

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5IPSL-CM5A-LR | i= 4

    R2(exp) = 0.98 / 0.97 / 0.96 / 0.97R2(gauss) = 0.98 / 0.97 / 0.97 / 0.97

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    IPSL-CM5A-LR | i= 5

    R2(exp) = 0.99 / 0.99 / 0.99 / 0.99R2(gauss) = 0.99 / 0.99 / 0.99 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7IPSL-CM5A-LR | i= 6

    R2(exp) = 1.0 / 1.0 / 0.99 / 1.0R2(gauss) = 1.0 / 1.0 / 0.99 / 1.0

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    IPSL-CM5A-LR | i= 7

    R2(exp) = 1.0 / 0.99 / 0.98 / 0.99R2(gauss) = 1.0 / 0.99 / 0.99 / 0.99

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7IPSL-CM5A-LR | i= 8

    R2(exp) = 0.99 / 0.99 / 0.97 / 0.99R2(gauss) = 0.99 / 0.99 / 0.97 / 0.99

    1pctCO2 esmFixClim1 esmFdbk

    0.8

    1.0

    1.2

    1.4

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    IPSL-CM5A-LR | i= 9

    R2(exp) = 0.99 / 0.93 / 0.99 / 0.93R2(gauss) = 0.99 / 0.93 / 0.99 / 0.93

    Figure S16. Same as figure S12 but for the "IPSL-CM5A-LR" model.

  • 18 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.8

    1.0

    1.2

    1.4

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    MPI-ESM-LR | i= 1

    R2(exp) = 0.68 / 0.78 / 0.89 / 0.56R2(gauss) = 0.69 / 0.78 / 0.91 / 0.62

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8MPI-ESM-LR | i= 2

    R2(exp) = 0.94 / 0.84 / 0.92 / 0.92R2(gauss) = 0.94 / 0.91 / 0.92 / 0.94

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    MPI-ESM-LR | i= 3

    R2(exp) = 0.84 / 0.21 / 0.97 / 0.88R2(gauss) = 0.84 / 0.61 / 0.97 / 0.9

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8MPI-ESM-LR | i= 4

    R2(exp) = 0.82 / 0.94 / 0.91 / 0.92R2(gauss) = 0.83 / 0.94 / 0.91 / 0.92

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    MPI-ESM-LR | i= 5

    R2(exp) = 0.94 / 0.85 / 0.89 / 0.98R2(gauss) = 0.95 / 0.81 / 0.89 / 0.98

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0MPI-ESM-LR | i= 6

    R2(exp) = 0.98 / 0.83 / 0.88 / 0.93R2(gauss) = 0.98 / 0.92 / 0.89 / 0.93

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    MPI-ESM-LR | i= 7

    R2(exp) = 0.89 / 0.48 / 0.93 / 0.87R2(gauss) = 0.89 / 0.83 / 0.94 / 0.87

    1pctCO2 esmFixClim1 esmFdbk0.8

    1.0

    1.2

    1.4

    1.6

    1.8MPI-ESM-LR | i= 8

    R2(exp) = 0.87 / 0.8 / 0.83 / 0.87R2(gauss) = 0.88 / 0.83 / 0.83 / 0.87

    1pctCO2 esmFixClim1 esmFdbk0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    MPI-ESM-LR | i= 9

    R2(exp) = 0.84 / 0.85 / 0.95 / 0.85R2(gauss) = 0.86 / 0.85 / 0.95 / 0.87

    Figure S17. Same as figure S12 but for the "MPI-ESM-LR" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 19

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    NorESM1-ME | i= 1

    R2(exp) = 0.99 / 0.97 / 0.98 / 0.94R2(gauss) = 0.99 / 0.97 / 0.98 / 0.94

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25NorESM1-ME | i= 2

    R2(exp) = 0.98 / 0.98 / 0.96 / 0.98R2(gauss) = 0.98 / 0.98 / 0.96 / 0.98

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    NorESM1-ME | i= 3

    R2(exp) = 0.98 / 0.97 / 0.94 / 0.97R2(gauss) = 0.98 / 0.97 / 0.94 / 0.97

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15NorESM1-ME | i= 4

    R2(exp) = 0.99 / 0.97 / 0.98 / 0.96R2(gauss) = 0.99 / 0.97 / 0.98 / 0.97

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    NorESM1-ME | i= 5

    R2(exp) = 0.99 / 0.99 / 0.98 / 0.99R2(gauss) = 0.99 / 0.99 / 0.98 / 0.99

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6NorESM1-ME | i= 6

    R2(exp) = 1.0 / 0.99 / 0.96 / 0.98R2(gauss) = 1.0 / 0.99 / 0.96 / 0.98

    1.0

    1.1

    1.2

    1.3

    1.4

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    NorESM1-ME | i= 7

    R2(exp) = 0.99 / 0.99 / 0.97 / 0.99R2(gauss) = 0.99 / 0.99 / 0.97 / 1.0

    1pctCO2 esmFixClim1 esmFdbk0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30NorESM1-ME | i= 8

    R2(exp) = 0.98 / 0.98 / 0.97 / 0.98R2(gauss) = 0.98 / 0.98 / 0.97 / 0.98

    1pctCO2 esmFixClim1 esmFdbk0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1+

    ∆rh

    i,b/r

    h0 (−

    )

    NorESM1-ME | i= 9

    R2(exp) = 0.97 / 0.87 / 0.98 / 0.87R2(gauss) = 0.97 / 0.87 / 0.98 / 0.87

    Figure S18. Same as figure S12 but for the "NorESM1-ME" model.

  • 20 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    CESM1-BGC | i= 1

    R2 = 0.9 / 0.57 / 0.8 / 0.47

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0CESM1-BGC | i= 2

    R2 = 0.94 / 0.52 / 0.94 / 0.46

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    CESM1-BGC | i= 3

    R2 = 0.88 / 0.62 / 0.83 / 0.49

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0CESM1-BGC | i= 4

    R2 = 0.61 / 0.63 / 0.38 / 0.59

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    CESM1-BGC | i= 5

    R2 = 0.73 / 0.85 / 0.55 / 0.13

    0.8

    1.0

    1.2

    1.4

    1.6

    CESM1-BGC | i= 6

    R2 = 0.84 / 0.83 / 0.38 / 0.72

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    CESM1-BGC | i= 7

    R2 = 0.87 / 0.86 / 0.76 / 0.86

    1pctCO2 esmFixClim1 esmFdbk0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8CESM1-BGC | i= 8

    R2 = 0.9 / 0.87 / 0.3 / 0.72

    1pctCO2 esmFixClim1 esmFdbk0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    CESM1-BGC | i= 9

    R2 = 0.71 / 0.54 / 0.78 / 0.54

    Figure S19. Fits of the parameters of the wildfire intensity response based on the "CESM1-BGC" model (section 2.3.2). Each panel is oneof the nine regions (see figure S4), and the different colors are for the biomes: forest (green), mixed shrubland and grassland (blue), cropland(yellow), and pasture (cyan). The R2 are given in this exact order. Decadal running means are shown; and the fits are the plain black lines.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 21

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    IPSL-CM5A-LR | i= 1

    R2 = 0.74 / 0.87 / 0.68 / 0.79

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0IPSL-CM5A-LR | i= 2

    R2 = 0.84 / 0.79 / 0.62 / 0.82

    0

    1

    2

    3

    4

    5

    6

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    IPSL-CM5A-LR | i= 3

    R2 = 0.84 / 0.82 / 0.75 / 0.8

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0IPSL-CM5A-LR | i= 4

    R2 = 0.75 / 0.81 / 0.8 / 0.75

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    IPSL-CM5A-LR | i= 5

    R2 = 0.64 / 0.08 / 0.19 / 0.33

    0

    2

    4

    6

    8

    10

    12IPSL-CM5A-LR | i= 6

    R2 = 0.83 / 0.9 / 0.66 / 0.84

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    IPSL-CM5A-LR | i= 7

    R2 = 0.73 / 0.78 / 0.75 / 0.75

    1pctCO2 esmFixClim1 esmFdbk0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0IPSL-CM5A-LR | i= 8

    R2 = 0.65 / 0.64 / 0.32 / 0.26

    1pctCO2 esmFixClim1 esmFdbk0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    IPSL-CM5A-LR | i= 9

    R2 = 0.22 / 0.21 / 0.52 / 0.13

    Figure S20. Same as figure S19 but for the "IPSL-CM5A-LR" model.

  • 22 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    MPI-ESM-LR | i= 1

    R2 = 0.86 / 0.8 / 0.83 / 0.85

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4MPI-ESM-LR | i= 2

    R2 = 0.94 / 0.92 / 0.75 / 0.95

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    MPI-ESM-LR | i= 3

    R2 = 0.85 / 0.87 / 0.91 / 0.93

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0MPI-ESM-LR | i= 4

    R2 = 0.68 / 0.55 / 0.95 / 0.94

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    MPI-ESM-LR | i= 5

    R2 = 0.93 / 0.94 / 0.94 / 0.880.5

    1.0

    1.5

    2.0

    2.5

    3.0MPI-ESM-LR | i= 6

    R2 = 0.63 / 0.97 / 0.86 / 0.96

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    MPI-ESM-LR | i= 7

    R2 = 0.88 / 0.97 / 0.51 / 0.86

    1pctCO2 esmFixClim1 esmFdbk0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8MPI-ESM-LR | i= 8

    R2 = 0.68 / 0.88 / 0.13 / 0.82

    1pctCO2 esmFixClim1 esmFdbk0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    MPI-ESM-LR | i= 9

    R2 = 0.77 / 0.57 / 0.04 / 0.7

    Figure S21. Same as figure S19 but for the "MPI-ESM-LR" model.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 23

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    NorESM1-ME | i= 1

    R2 = 0.91 / 0.42 / 0.81 / 0.63

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0NorESM1-ME | i= 2

    R2 = 0.83 / 0.03 / 0.85 / 0.19

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    NorESM1-ME | i= 3

    R2 = 0.92 / 0.78 / 0.92 / 0.62

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0NorESM1-ME | i= 4

    R2 = 0.45 / 0.58 / 0.22 / 0.61

    0.5

    1.0

    1.5

    2.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    NorESM1-ME | i= 5

    R2 = 0.62 / 0.55 / 0.66 / 0.09

    1.0

    1.5

    2.0

    NorESM1-ME | i= 6

    R2 = 0.9 / 0.68 / 0.62 / 0.35

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    NorESM1-ME | i= 7

    R2 = 0.83 / 0.74 / 0.6 / 0.76

    1pctCO2 esmFixClim1 esmFdbk0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0NorESM1-ME | i= 8

    R2 = 0.82 / 0.59 / 0.38 / 0.52

    1pctCO2 esmFixClim1 esmFdbk0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    1+

    ∆ei,b

    fire/e

    fire,0

    (−

    )

    NorESM1-ME | i= 9

    R2 = 0.69 / 0.51 / 0.69 / 0.5

    Figure S22. Same as figure S19 but for the "NorESM1-ME" model.

  • 24 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.7

    0.8

    0.9

    1.0

    1.1

    1+

    ∆ag

    e/ag

    e 0 (−

    )

    AMTRAC3

    R2 = 0.9

    0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05CAM3.5

    R2 = 0.93

    1 0 1 2 3 4 50.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05CMAM

    R2 = 0.99

    0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.00.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1+

    ∆ag

    e/ag

    e 0 (−

    )

    Niwa-SOCOL

    R2 = 0.78

    0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    ∆TG (K)

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2SOCOL

    R2 = 0.78

    1 0 1 2 3 4 5

    ∆TG (K)

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1ULAQ

    R2 = 0.76

    0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    ∆TG (K)

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1+

    ∆ag

    e/ag

    e 0 (−

    )

    UMUKCA-UCAM

    R2 = 0.92

    Figure S23. Fits of the parameter of the age of stratospheric air dependency on climate change (section 2.6.1).

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 25

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.51.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.2

    ∆O

    3t (

    DU

    )

    CESM-CAM-superfast

    R2 = 0.46

    0 1 2 3 4 5 60.8

    0.6

    0.4

    0.2

    0.0

    0.2

    0.4

    0.6

    0.8GFDL-AM3

    R2 = 0.27

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.52.5

    2.0

    1.5

    1.0

    0.5

    0.0GISS-E2-R

    R2 = -0.77

    0 1 2 3 4 5 6 72.0

    1.5

    1.0

    0.5

    0.0

    0.5

    ∆O

    3t (

    DU

    )

    MIROC-CHEM

    R2 = 0.69

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.52.5

    2.0

    1.5

    1.0

    0.5

    0.0MOCAGE

    R2 = 1.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    ∆TG (K)

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0NCAR-CAM3.5

    R2 = 0.98

    0 1 2 3 4 5 6

    ∆TG (K)

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    ∆O

    3t (

    DU

    )

    STOC-HadAM3

    R2 = 0.87

    0 1 2 3 4 5 6

    ∆TG (K)

    0.20.10.00.10.20.30.40.50.60.7

    UM-CAM

    R2 = 0.68

    Figure S24. Fits of the parameter of the tropospheric ozone response to climate change (section 2.8.1).

  • 26 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    ∆SO

    4 (T

    g)

    CSIRO-Mk3.6.0

    R2 = 0.99

    0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4GFDL-AM3

    R2 = 0.93

    1850 1900 1950 2000 2050 21000.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    ∆SO

    4 (T

    g)

    GISS-E2-R

    R2 = 0.98

    1850 1900 1950 2000 2050 21000.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0MIROC-CHEM

    R2 = 0.9

    Figure S25. Fits of the parameters for the atmospheric burden of sulphated aerosols (section 2.9.1). The historical simulation from CMIP5is in grey, while the RCP2.6 is in green, RCP4.5 in blue, RCP6.0 in magenta, and RCP8.5 in red.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 27

    0.4

    0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    ∆P

    OA

    (Tg)

    CSIRO-Mk3.6.0

    R2 = 0.94

    0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8GFDL-AM3

    R2 = 0.88

    1850 1900 1950 2000 2050 21000.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    ∆P

    OA

    (Tg)

    GISS-E2-R

    R2 = 0.96

    1850 1900 1950 2000 2050 21000.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8MIROC-CHEM

    R2 = 0.97

    Figure S26. Same as figure S25 but for primary organic aerosols.

  • 28 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    ∆B

    C (

    Tg)

    CSIRO-Mk3.6.0

    R2 = 0.99

    0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10GFDL-AM3

    R2 = 0.98

    1850 1900 1950 2000 2050 21000.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    ∆B

    C (

    Tg)

    GISS-E2-R

    R2 = 0.98

    1850 1900 1950 2000 2050 21000.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10MIROC-CHEM

    R2 = 0.97

    Figure S27. Same as figure S25 but for black carbon aerosols.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 29

    a b c d e f g h i j0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    ∆N

    O3

    (Tg)

    Bellouin et al. (2011)

    R2 = 0.87

    a b c d e f g h i j k l m n o p0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16Hauglustaine et al. (2014)

    R2 = 0.8

    1850 1900 1950 2000 2050 21000.01

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    ∆SO

    A (

    Tg)

    GFDL-AM3

    R2 = 0.97

    1850 1900 1950 2000 2050 21000.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30GISS-E2-R

    R2 = 0.89

    Figure S28. Same as figure S25 but for nitrated aerosols (top panels) and secondary organic aerosols (bottom panels). In the case nitratedaerosols, each letter on the x-axis corresponds to a simulation from the given reference.

  • 30 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    0 40 80 120 1600

    1

    2

    3

    4

    5

    6

    ∆TG (

    K)

    ACCESS1.0

    R2 = 0.97

    0 40 80 120 1600

    1

    2

    3

    4

    5

    6ACCESS1.3

    R2 = 0.97

    0 40 80 120 1600

    1

    2

    3

    4

    5

    6BCC-CSM1.1

    R2 = 0.96

    0 40 80 120 1600

    1

    2

    3

    4

    5

    6BCC-CSM1.1m

    R2 = 0.94

    0 40 80 120 16001234567

    CanESM2

    R2 = 0.96

    0 40 80 120 1600

    1

    2

    3

    4

    5

    ∆TG (

    K)

    CCSM4

    R2 = 0.94

    0 40 80 120 1600

    1

    2

    3

    4

    5

    6CNRM-CM5

    R2 = 0.93

    0 40 80 1200

    1

    2

    3

    4

    5

    6CNRM-CM5.2

    R2 = 0.94

    0 40 80 120 16001234567

    CSIRO-Mk3.6.0

    R2 = 0.97

    0 40 80 120 16001234567

    GFDL-CM3

    R2 = 0.98

    0 100 200 3000.00.51.01.52.02.53.03.54.04.5

    ∆TG (

    K)

    GFDL-ESM2G

    R2 = 0.93

    0 100 200 3000

    1

    2

    3

    4

    5GFDL-ESM2M

    R2 = 0.96

    0 40 80 120 1600.00.51.01.52.02.53.03.54.04.5

    GISS-E2-H

    R2 = 0.94

    0 40 80 120 1600.00.51.01.52.02.53.03.54.0

    GISS-E2-R

    R2 = 0.88

    0 40 80 120 16001234567

    HadGEM2-ES

    R2 = 0.96

    0 100 200 30001234567

    ∆TG (

    K)

    IPSL-CM5A-LR

    R2 = 0.93

    0 40 80 12001234567

    IPSL-CM5A-MR

    R2 = 0.95

    0 40 80 120 1600

    1

    2

    3

    4

    5IPSL-CM5B-LR

    R2 = 0.94

    0 40 80 120 1600

    1

    2

    3

    4

    5MIROC5

    R2 = 0.84

    0 40 80 120 16001234567

    MIROC-ESM

    R2 = 0.95

    0 40 80 120 160

    (yr)

    01234567

    ∆TG (

    K)

    MPI-ESM-LR

    R2 = 0.94

    0 40 80 120 160

    (yr)

    0

    1

    2

    3

    4

    5

    6MPI-ESM-MR

    R2 = 0.93

    0 40 80 120 160

    (yr)

    01234567

    MPI-ESM-P

    R2 = 0.92

    0 40 80 120 160

    (yr)

    0

    1

    2

    3

    4

    5MRI-CGCM3

    R2 = 0.93

    0 40 80 120 160

    (yr)

    0.00.51.01.52.02.53.03.54.04.5

    NorESM1-M

    R2 = 0.94

    Figure S29. Fits of the parameters of the global surface temperature response (section 2.11.2).

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 31

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    ∆TS (

    K)

    ACCESS1.0

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    ACCESS1.3

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    BCC-CSM1.1

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    BCC-CSM1.1m

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5CanESM2

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.03.5

    ∆TS (

    K)

    CCSM4

    R2(4x) = 0.97R2(H) = 1.0

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    CNRM-CM5

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 60.50.00.51.01.52.02.53.03.54.0

    CNRM-CM5.2

    R2(4x) = 0.98R2(H) = 0.95

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5CSIRO-Mk3.6.0

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5GFDL-CM3

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.03.5

    ∆TS (

    K)

    GFDL-ESM2G

    R2(4x) = 0.97R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.03.5

    GFDL-ESM2M

    R2(4x) = 0.97R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.0

    GISS-E2-H

    R2(4x) = 0.98R2(H) = 1.0

    0 1 2 3 40.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5GISS-E2-R

    R2(4x) = 0.95R2(H) = 1.0

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5HadGEM2-ES

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5

    ∆TS (

    K)

    IPSL-CM5A-LR

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 6 71

    0

    1

    2

    3

    4

    5IPSL-CM5A-MR

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.03.5

    IPSL-CM5B-LR

    R2(4x) = 0.97R2(H) = 1.0

    1 0 1 2 3 4 50.50.00.51.01.52.02.53.03.5

    MIROC5

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 6 710123456

    MIROC-ESM

    R2(4x) = 0.99R2(H) = 0.97

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    1

    0

    1

    2

    3

    4

    5

    ∆TS (

    K)

    MPI-ESM-LR

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 6

    ∆TG (K)

    1

    0

    1

    2

    3

    4

    5MPI-ESM-MR

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    1

    0

    1

    2

    3

    4

    5MPI-ESM-P

    R2(4x) = 0.98R2(H) = 0.97

    1 0 1 2 3 4 5

    ∆TG (K)

    0.50.00.51.01.52.02.53.03.5

    MRI-CGCM3

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5

    ∆TG (K)

    0.50.00.51.01.52.02.53.0

    NorESM1-M

    R2(4x) = 0.98R2(H) = 1.0

    Figure S30. Fits of the parameter of the pattern scaling for sea surface temperature (section 2.11.2). The grey, green, blue, magenta and redpoints are from the historical, RCP2.6, RCP4.5, RCP6.0 and RCP8.5 simulations, respecitvely; the yellow ones are from the "abrupt4xCO2"simulation. The R2 are given for fits made over the quadrupled CO2 experiment (4x) or the combined historical and RCPs (H) – if these RCPsimulations were conducted. The fits are the dotted and plain black lines, for the quadrupled CO2 experiment and combined historical andRCPs respectively.

  • 32 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    ACCESS1.0 | i= 1

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    ACCESS1.3 | i= 1

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    BCC-CSM1.1 | i= 1

    R2(4x) = 0.9R2(H) = 0.98

    0 1 2 3 4 5

    0

    2

    4

    6

    8

    BCC-CSM1.1m | i= 1

    R2(4x) = 0.79R2(H) = 0.96

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10CanESM2 | i= 1

    R2(4x) = 0.95R2(H) = 0.97

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    ∆TL (

    K)

    CCSM4 | i= 1

    R2(4x) = 0.88R2(H) = 0.99

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10CNRM-CM5 | i= 1

    R2(4x) = 0.75R2(H) = 0.96

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CNRM-CM5.2 | i= 1

    R2(4x) = 0.76R2(H) = 0.53

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10CSIRO-Mk3.6.0 | i= 1

    R2(4x) = 0.92R2(H) = 0.98

    1 0 1 2 3 4 5 6202468

    1012

    GFDL-CM3 | i= 1

    R2(4x) = 0.95R2(H) = 0.99

    1 0 1 2 3 4 51012345678

    ∆TL (

    K)

    GFDL-ESM2G | i= 1

    R2(4x) = 0.85R2(H) = 0.96

    1 0 1 2 3 4 51012345678

    GFDL-ESM2M | i= 1

    R2(4x) = 0.87R2(H) = 0.97

    1 0 1 2 3 4 51012345678

    GISS-E2-H | i= 1

    R2(4x) = 0.93R2(H) = 0.97

    0 1 2 3101234567

    GISS-E2-R | i= 1

    R2(4x) = 0.54R2(H) = 0.98

    1 0 1 2 3 4 5 6 7202468

    1012

    HadGEM2-ES | i= 1

    R2(4x) = 0.99R2(H) = 0.97

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 1

    R2(4x) = 0.93R2(H) = 0.99

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10IPSL-CM5A-MR | i= 1

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    IPSL-CM5B-LR | i= 1

    R2(4x) = 0.78R2(H) = 0.99

    1 0 1 2 3 4 52

    0

    2

    4

    6

    8

    10MIROC5 | i= 1

    R2(4x) = 0.95R2(H) = 0.97

    1 0 1 2 3 4 5 6 7202468

    1012

    MIROC-ESM | i= 1

    R2(4x) = 0.89R2(H) = 0.27

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 1

    R2(4x) = 0.94R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10MPI-ESM-MR | i= 1

    R2(4x) = 0.9R2(H) = 0.98

    1 0 1 2 3 4 5 6

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10MPI-ESM-P | i= 1

    R2(4x) = 0.95R2(H) = 0.89

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    MRI-CGCM3 | i= 1

    R2(4x) = 0.96R2(H) = 0.96

    1 0 1 2 3 4 5

    ∆TG (K)

    0

    2

    4

    6

    8

    10NorESM1-M | i= 1

    R2(4x) = 0.97R2(H) = 0.97

    Figure S31. Same as figure S30 but for local surface temperature in region i= 1, and except that decadal running means are shown.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 33

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    ∆TL (

    K)

    ACCESS1.0 | i= 2

    R2(4x) = 0.95R2(H) = 1.0

    1 0 1 2 3 4 5 6101234567

    ACCESS1.3 | i= 2

    R2(4x) = 0.98R2(H) = 1.0

    1 0 1 2 3 4 5 6101234567

    BCC-CSM1.1 | i= 2

    R2(4x) = 0.95R2(H) = 0.99

    0 1 2 3 4 501234567

    BCC-CSM1.1m | i= 2

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    10CanESM2 | i= 2

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    CCSM4 | i= 2

    R2(4x) = 0.92R2(H) = 1.0

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 2

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 2

    R2(4x) = 0.99R2(H) = 0.89

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CSIRO-Mk3.6.0 | i= 2

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    GFDL-CM3 | i= 2

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 2

    R2(4x) = 0.84R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    GFDL-ESM2M | i= 2

    R2(4x) = 0.9R2(H) = 0.99

    1 0 1 2 3 4 510123456

    GISS-E2-H | i= 2

    R2(4x) = 0.74R2(H) = 0.99

    0 1 2 310123456

    GISS-E2-R | i= 2

    R2(4x) = 0.5R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    10HadGEM2-ES | i= 2

    R2(4x) = 0.93R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 2

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    IPSL-CM5A-MR | i= 2

    R2(4x) = 1.0R2(H) = 0.99

    1 0 1 2 3 4 510123456

    IPSL-CM5B-LR | i= 2

    R2(4x) = 0.96R2(H) = 0.99

    1 0 1 2 3 4 510123456

    MIROC5 | i= 2

    R2(4x) = 0.88R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    MIROC-ESM | i= 2

    R2(4x) = 0.99R2(H) = 0.92

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 2

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-MR | i= 2

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-P | i= 2

    R2(4x) = 0.96R2(H) = 0.97

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    MRI-CGCM3 | i= 2

    R2(4x) = 0.96R2(H) = 0.99

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    NorESM1-M | i= 2

    R2(4x) = 0.87R2(H) = 0.99

    Figure S32. Same as figure S30 but for local surface temperature in region i= 2, and except that decadal running means are shown.

  • 34 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    ∆TL (

    K)

    ACCESS1.0 | i= 3

    R2(4x) = 0.88R2(H) = 0.95

    1 0 1 2 3 4 5 61012345678

    ACCESS1.3 | i= 3

    R2(4x) = 0.96R2(H) = 0.91

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8BCC-CSM1.1 | i= 3

    R2(4x) = 0.82R2(H) = 0.95

    0 1 2 3 4 5101234567

    BCC-CSM1.1m | i= 3

    R2(4x) = 0.93R2(H) = 0.93

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    CanESM2 | i= 3

    R2(4x) = 0.9R2(H) = 0.97

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    CCSM4 | i= 3

    R2(4x) = 0.44R2(H) = 0.95

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 3

    R2(4x) = 0.64R2(H) = 0.84

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 3

    R2(4x) = 0.19R2(H) = 0.01

    1 0 1 2 3 4 5 61012345678

    CSIRO-Mk3.6.0 | i= 3

    R2(4x) = 0.94R2(H) = 0.92

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    GFDL-CM3 | i= 3

    R2(4x) = 0.95R2(H) = 0.96

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 3

    R2(4x) = 0.89R2(H) = 0.93

    1 0 1 2 3 4 5101234567

    GFDL-ESM2M | i= 3

    R2(4x) = 0.87R2(H) = 0.94

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    GISS-E2-H | i= 3

    R2(4x) = 0.93R2(H) = 0.91

    0 1 2 310123456

    GISS-E2-R | i= 3

    R2(4x) = 0.39R2(H) = 0.96

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10HadGEM2-ES | i= 3

    R2(4x) = 0.87R2(H) = 0.96

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 3

    R2(4x) = 0.84R2(H) = 0.98

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    IPSL-CM5A-MR | i= 3

    R2(4x) = 0.85R2(H) = 0.96

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    IPSL-CM5B-LR | i= 3

    R2(4x) = 0.82R2(H) = 0.96

    1 0 1 2 3 4 5101234567

    MIROC5 | i= 3

    R2(4x) = 0.02R2(H) = 0.78

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    MIROC-ESM | i= 3

    R2(4x) = 0.73R2(H) = -1.61

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    ∆TL (

    K)

    MPI-ESM-LR | i= 3

    R2(4x) = 0.69R2(H) = 0.96

    1 0 1 2 3 4 5 6

    ∆TG (K)

    1012345678

    MPI-ESM-MR | i= 3

    R2(4x) = 0.1R2(H) = 0.95

    1 0 1 2 3 4 5 6

    ∆TG (K)

    1012345678

    MPI-ESM-P | i= 3

    R2(4x) = 0.65R2(H) = 0.73

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    MRI-CGCM3 | i= 3

    R2(4x) = 0.9R2(H) = 0.94

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    NorESM1-M | i= 3

    R2(4x) = 0.93R2(H) = 0.95

    Figure S33. Same as figure S30 but for local surface temperature in region i= 3, and except that decadal running means are shown.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 35

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    ∆TL (

    K)

    ACCESS1.0 | i= 4

    R2(4x) = 0.88R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    ACCESS1.3 | i= 4

    R2(4x) = 0.95R2(H) = 0.97

    1 0 1 2 3 4 5 61012345678

    BCC-CSM1.1 | i= 4

    R2(4x) = 0.85R2(H) = 0.98

    0 1 2 3 4 5012345678

    BCC-CSM1.1m | i= 4

    R2(4x) = 0.9R2(H) = 0.97

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    CanESM2 | i= 4

    R2(4x) = 0.92R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    CCSM4 | i= 4

    R2(4x) = 0.71R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    CNRM-CM5 | i= 4

    R2(4x) = 0.81R2(H) = 0.95

    1 0 1 2 3 4 5 61012345678

    CNRM-CM5.2 | i= 4

    R2(4x) = 0.85R2(H) = 0.56

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CSIRO-Mk3.6.0 | i= 4

    R2(4x) = 0.8R2(H) = 0.99

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    GFDL-CM3 | i= 4

    R2(4x) = 0.89R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 4

    R2(4x) = 0.9R2(H) = 0.96

    1 0 1 2 3 4 51012345678

    GFDL-ESM2M | i= 4

    R2(4x) = 0.86R2(H) = 0.96

    1 0 1 2 3 4 5101234567

    GISS-E2-H | i= 4

    R2(4x) = 0.88R2(H) = 0.97

    0 1 2 3101234567

    GISS-E2-R | i= 4

    R2(4x) = -1.44R2(H) = 0.97

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    10HadGEM2-ES | i= 4

    R2(4x) = 0.93R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 4

    R2(4x) = 0.96R2(H) = 1.0

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    IPSL-CM5A-MR | i= 4

    R2(4x) = 0.97R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    IPSL-CM5B-LR | i= 4

    R2(4x) = 0.31R2(H) = 0.97

    1 0 1 2 3 4 51012345678

    MIROC5 | i= 4

    R2(4x) = 0.83R2(H) = 0.94

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    10MIROC-ESM | i= 4

    R2(4x) = 0.93R2(H) = 0.62

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 4

    R2(4x) = 0.89R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-MR | i= 4

    R2(4x) = 0.77R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-P | i= 4

    R2(4x) = 0.82R2(H) = 0.95

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    MRI-CGCM3 | i= 4

    R2(4x) = 0.79R2(H) = 0.97

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    NorESM1-M | i= 4

    R2(4x) = 0.93R2(H) = 0.99

    Figure S34. Same as figure S30 but for local surface temperature in region i= 4, and except that decadal running means are shown.

  • 36 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    ∆TL (

    K)

    ACCESS1.0 | i= 5

    R2(4x) = 0.94R2(H) = 1.0

    1 0 1 2 3 4 5 61012345678

    ACCESS1.3 | i= 5

    R2(4x) = 0.95R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    BCC-CSM1.1 | i= 5

    R2(4x) = 0.94R2(H) = 0.99

    0 1 2 3 4 5012345678

    BCC-CSM1.1m | i= 5

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    CanESM2 | i= 5

    R2(4x) = 0.96R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    CCSM4 | i= 5

    R2(4x) = 0.92R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 5

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 5

    R2(4x) = 0.98R2(H) = 0.84

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CSIRO-Mk3.6.0 | i= 5

    R2(4x) = 0.97R2(H) = 1.0

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    GFDL-CM3 | i= 5

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 5

    R2(4x) = 0.92R2(H) = 0.98

    1 0 1 2 3 4 51012345678

    GFDL-ESM2M | i= 5

    R2(4x) = 0.86R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    GISS-E2-H | i= 5

    R2(4x) = 0.72R2(H) = 0.99

    0 1 2 3101234567

    GISS-E2-R | i= 5

    R2(4x) = 0.4R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    HadGEM2-ES | i= 5

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 5

    R2(4x) = 0.99R2(H) = 1.0

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    IPSL-CM5A-MR | i= 5

    R2(4x) = 1.0R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    IPSL-CM5B-LR | i= 5

    R2(4x) = 0.89R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    MIROC5 | i= 5

    R2(4x) = 0.95R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    MIROC-ESM | i= 5

    R2(4x) = 0.98R2(H) = 0.94

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 5

    R2(4x) = 0.96R2(H) = 0.97

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-MR | i= 5

    R2(4x) = 0.98R2(H) = 0.98

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    10MPI-ESM-P | i= 5

    R2(4x) = 0.94R2(H) = 0.96

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    MRI-CGCM3 | i= 5

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    NorESM1-M | i= 5

    R2(4x) = 0.85R2(H) = 0.99

    Figure S35. Same as figure S30 but for local surface temperature in region i= 5, and except that decadal running means are shown.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 37

    1 0 1 2 3 4 5 6202468

    1012

    ∆TL (

    K)

    ACCESS1.0 | i= 6

    R2(4x) = 0.94R2(H) = 0.98

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    10ACCESS1.3 | i= 6

    R2(4x) = 0.94R2(H) = 0.97

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10BCC-CSM1.1 | i= 6

    R2(4x) = 0.69R2(H) = 0.99

    0 1 2 3 4 5

    0

    2

    4

    6

    8

    10BCC-CSM1.1m | i= 6

    R2(4x) = 0.81R2(H) = 0.95

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10CanESM2 | i= 6

    R2(4x) = 0.93R2(H) = 0.92

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    CCSM4 | i= 6

    R2(4x) = 0.4R2(H) = 0.98

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10CNRM-CM5 | i= 6

    R2(4x) = 0.45R2(H) = 0.9

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    10CNRM-CM5.2 | i= 6

    R2(4x) = 0.57R2(H) = 0.37

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CSIRO-Mk3.6.0 | i= 6

    R2(4x) = 0.96R2(H) = 0.96

    1 0 1 2 3 4 5 6202468

    1012

    GFDL-CM3 | i= 6

    R2(4x) = 0.87R2(H) = 0.97

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    ∆TL (

    K)

    GFDL-ESM2G | i= 6

    R2(4x) = 0.65R2(H) = 0.97

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    GFDL-ESM2M | i= 6

    R2(4x) = 0.76R2(H) = 0.96

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    GISS-E2-H | i= 6

    R2(4x) = 0.92R2(H) = 0.94

    0 1 2 3101234567

    GISS-E2-R | i= 6

    R2(4x) = 0.71R2(H) = 0.95

    1 0 1 2 3 4 5 6 7202468

    101214

    HadGEM2-ES | i= 6

    R2(4x) = 0.93R2(H) = 0.97

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 6

    R2(4x) = 0.83R2(H) = 0.99

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    10IPSL-CM5A-MR | i= 6

    R2(4x) = 0.79R2(H) = 0.95

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    10IPSL-CM5B-LR | i= 6

    R2(4x) = 0.82R2(H) = 0.98

    1 0 1 2 3 4 5

    0

    2

    4

    6

    8

    10MIROC5 | i= 6

    R2(4x) = 0.59R2(H) = 0.91

    1 0 1 2 3 4 5 6 7202468

    1012

    MIROC-ESM | i= 6

    R2(4x) = 0.59R2(H) = -0.16

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 6

    R2(4x) = 0.91R2(H) = 0.97

    1 0 1 2 3 4 5 6

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10MPI-ESM-MR | i= 6

    R2(4x) = 0.77R2(H) = 0.97

    1 0 1 2 3 4 5 6

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10MPI-ESM-P | i= 6

    R2(4x) = 0.68R2(H) = 0.86

    1 0 1 2 3 4 5

    ∆TG (K)

    0

    2

    4

    6

    8

    MRI-CGCM3 | i= 6

    R2(4x) = 0.85R2(H) = 0.96

    1 0 1 2 3 4 5

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10NorESM1-M | i= 6

    R2(4x) = 0.91R2(H) = 0.96

    Figure S36. Same as figure S30 but for local surface temperature in region i= 6, and except that decadal running means are shown.

  • 38 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    ACCESS1.0 | i= 7

    R2(4x) = 0.76R2(H) = 0.98

    1 0 1 2 3 4 5 61012345678

    ACCESS1.3 | i= 7

    R2(4x) = 0.85R2(H) = 0.95

    1 0 1 2 3 4 5 61012345678

    BCC-CSM1.1 | i= 7

    R2(4x) = 0.66R2(H) = 0.98

    0 1 2 3 4 51012345678

    BCC-CSM1.1m | i= 7

    R2(4x) = 0.87R2(H) = 0.95

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    CanESM2 | i= 7

    R2(4x) = 0.91R2(H) = 0.98

    1 0 1 2 3 4 51012345678

    ∆TL (

    K)

    CCSM4 | i= 7

    R2(4x) = 0.57R2(H) = 0.97

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 7

    R2(4x) = 0.6R2(H) = 0.92

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 7

    R2(4x) = 0.81R2(H) = 0.32

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    CSIRO-Mk3.6.0 | i= 7

    R2(4x) = 0.74R2(H) = 0.97

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    GFDL-CM3 | i= 7

    R2(4x) = 0.89R2(H) = 0.95

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 7

    R2(4x) = 0.84R2(H) = 0.96

    1 0 1 2 3 4 5101234567

    GFDL-ESM2M | i= 7

    R2(4x) = 0.82R2(H) = 0.96

    1 0 1 2 3 4 51012345678

    GISS-E2-H | i= 7

    R2(4x) = 0.86R2(H) = 0.95

    0 1 2 3101234567

    GISS-E2-R | i= 7

    R2(4x) = -0.71R2(H) = 0.95

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10HadGEM2-ES | i= 7

    R2(4x) = 0.91R2(H) = 0.94

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 7

    R2(4x) = 0.91R2(H) = 0.99

    1 0 1 2 3 4 5 62

    0

    2

    4

    6

    8

    10IPSL-CM5A-MR | i= 7

    R2(4x) = 0.92R2(H) = 0.98

    1 0 1 2 3 4 51012345678

    IPSL-CM5B-LR | i= 7

    R2(4x) = 0.28R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    MIROC5 | i= 7

    R2(4x) = 0.35R2(H) = 0.88

    1 0 1 2 3 4 5 6 72

    0

    2

    4

    6

    8

    10MIROC-ESM | i= 7

    R2(4x) = 0.9R2(H) = 0.34

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    2

    0

    2

    4

    6

    8

    10

    ∆TL (

    K)

    MPI-ESM-LR | i= 7

    R2(4x) = 0.85R2(H) = 0.98

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-MR | i= 7

    R2(4x) = 0.58R2(H) = 0.98

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    10MPI-ESM-P | i= 7

    R2(4x) = 0.77R2(H) = 0.91

    1 0 1 2 3 4 5

    ∆TG (K)

    101234567

    MRI-CGCM3 | i= 7

    R2(4x) = 0.74R2(H) = 0.97

    1 0 1 2 3 4 5

    ∆TG (K)

    1012345678

    NorESM1-M | i= 7

    R2(4x) = 0.7R2(H) = 0.97

    Figure S37. Same as figure S30 but for local surface temperature in region i= 7, and except that decadal running means are shown.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 39

    1 0 1 2 3 4 5 61012345678

    ∆TL (

    K)

    ACCESS1.0 | i= 8

    R2(4x) = 0.9R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    ACCESS1.3 | i= 8

    R2(4x) = 0.94R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    BCC-CSM1.1 | i= 8

    R2(4x) = 0.91R2(H) = 0.98

    0 1 2 3 4 501234567

    BCC-CSM1.1m | i= 8

    R2(4x) = 0.96R2(H) = 0.98

    1 0 1 2 3 4 5 6 71012345678

    CanESM2 | i= 8

    R2(4x) = 0.93R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    CCSM4 | i= 8

    R2(4x) = 0.84R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 8

    R2(4x) = 0.98R2(H) = 0.98

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 8

    R2(4x) = 0.97R2(H) = 0.82

    1 0 1 2 3 4 5 61012345678

    CSIRO-Mk3.6.0 | i= 8

    R2(4x) = 0.94R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    GFDL-CM3 | i= 8

    R2(4x) = 0.96R2(H) = 0.99

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 8

    R2(4x) = 0.85R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    GFDL-ESM2M | i= 8

    R2(4x) = 0.75R2(H) = 0.98

    1 0 1 2 3 4 510123456

    GISS-E2-H | i= 8

    R2(4x) = 0.75R2(H) = 0.99

    0 1 2 310123456

    GISS-E2-R | i= 8

    R2(4x) = 0.12R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    HadGEM2-ES | i= 8

    R2(4x) = 0.94R2(H) = 0.99

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 8

    R2(4x) = 0.96R2(H) = 1.0

    1 0 1 2 3 4 5 6

    0

    2

    4

    6

    8

    IPSL-CM5A-MR | i= 8

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 510123456

    IPSL-CM5B-LR | i= 8

    R2(4x) = 0.78R2(H) = 0.99

    1 0 1 2 3 4 510123456

    MIROC5 | i= 8

    R2(4x) = 0.87R2(H) = 0.99

    1 0 1 2 3 4 5 6 71012345678

    MIROC-ESM | i= 8

    R2(4x) = 0.99R2(H) = 0.86

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    ∆TL (

    K)

    MPI-ESM-LR | i= 8

    R2(4x) = 0.96R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    1012345678

    MPI-ESM-MR | i= 8

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-P | i= 8

    R2(4x) = 0.95R2(H) = 0.95

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    MRI-CGCM3 | i= 8

    R2(4x) = 0.93R2(H) = 0.96

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    NorESM1-M | i= 8

    R2(4x) = 0.85R2(H) = 0.99

    Figure S38. Same as figure S30 but for local surface temperature in region i= 8, and except that decadal running means are shown.

  • 40 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    1 0 1 2 3 4 5 61012345678

    ∆TL (

    K)

    ACCESS1.0 | i= 9

    R2(4x) = 0.98R2(H) = 0.99

    1 0 1 2 3 4 5 6101234567

    ACCESS1.3 | i= 9

    R2(4x) = 0.98R2(H) = 0.98

    1 0 1 2 3 4 5 6101234567

    BCC-CSM1.1 | i= 9

    R2(4x) = 0.96R2(H) = 0.99

    0 1 2 3 4 5012345678

    BCC-CSM1.1m | i= 9

    R2(4x) = 0.96R2(H) = 0.99

    1 0 1 2 3 4 5 6 71012345678

    CanESM2 | i= 9

    R2(4x) = 0.98R2(H) = 0.97

    1 0 1 2 3 4 510123456

    ∆TL (

    K)

    CCSM4 | i= 9

    R2(4x) = 0.95R2(H) = 0.98

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5 | i= 9

    R2(4x) = 0.97R2(H) = 0.97

    1 0 1 2 3 4 5 6101234567

    CNRM-CM5.2 | i= 9

    R2(4x) = 0.97R2(H) = 0.78

    1 0 1 2 3 4 5 61012345678

    CSIRO-Mk3.6.0 | i= 9

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    GFDL-CM3 | i= 9

    R2(4x) = 0.97R2(H) = 0.98

    1 0 1 2 3 4 5101234567

    ∆TL (

    K)

    GFDL-ESM2G | i= 9

    R2(4x) = 0.87R2(H) = 0.96

    1 0 1 2 3 4 5101234567

    GFDL-ESM2M | i= 9

    R2(4x) = 0.89R2(H) = 0.91

    1 0 1 2 3 4 510123456

    GISS-E2-H | i= 9

    R2(4x) = 0.62R2(H) = 0.94

    0 1 2 3

    0

    1

    2

    3

    4

    5GISS-E2-R | i= 9

    R2(4x) = 0.69R2(H) = 0.92

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    HadGEM2-ES | i= 9

    R2(4x) = 0.98R2(H) = 0.98

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    ∆TL (

    K)

    IPSL-CM5A-LR | i= 9

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 5 61012345678

    IPSL-CM5A-MR | i= 9

    R2(4x) = 0.99R2(H) = 0.99

    1 0 1 2 3 4 510123456

    IPSL-CM5B-LR | i= 9

    R2(4x) = 0.97R2(H) = 0.99

    1 0 1 2 3 4 510123456

    MIROC5 | i= 9

    R2(4x) = 0.85R2(H) = 0.97

    1 0 1 2 3 4 5 6 7

    0

    2

    4

    6

    8

    MIROC-ESM | i= 9

    R2(4x) = 0.95R2(H) = 0.31

    1 0 1 2 3 4 5 6 7

    ∆TG (K)

    0

    2

    4

    6

    8

    ∆TL (

    K)

    MPI-ESM-LR | i= 9

    R2(4x) = 0.98R2(H) = 0.96

    1 0 1 2 3 4 5 6

    ∆TG (K)

    1012345678

    MPI-ESM-MR | i= 9

    R2(4x) = 0.97R2(H) = 0.98

    1 0 1 2 3 4 5 6

    ∆TG (K)

    0

    2

    4

    6

    8

    MPI-ESM-P | i= 9

    R2(4x) = 0.97R2(H) = 0.93

    1 0 1 2 3 4 5

    ∆TG (K)

    10123456

    MRI-CGCM3 | i= 9

    R2(4x) = 0.93R2(H) = 0.97

    1 0 1 2 3 4 5

    ∆TG (K)

    0

    1

    2

    3

    4

    5NorESM1-M | i= 9

    R2(4x) = 0.93R2(H) = 0.97

    Figure S39. Same as figure S30 but for local surface temperature in region i= 9, and except that decadal running means are shown.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 41

    0 1 2 3 4 5 6604020

    020406080

    ∆PG (

    mm

    yr−

    1)

    ACCESS1.0

    R2 = 0.98

    0 1 2 3 4 5 64020

    020406080

    100120

    ACCESS1.3

    R2 = 0.98

    0 1 2 3 4 5 620

    0

    20

    40

    60

    80

    100BCC-CSM1.1

    R2 = 0.98

    1 2 3 4 520

    020406080

    100120

    BCC-CSM1.1m

    R2 = 0.98

    1 2 3 4 5 6 74020

    020406080

    100CanESM2

    R2 = 0.97

    1 2 3 4 54020

    020406080

    100

    ∆PG (

    mm

    yr−

    1)

    CCSM4

    R2 = 0.98

    1 2 3 4 54020

    020406080

    100CNRM-CM5

    R2 = 0.98

    1 2 3 4 54020

    020406080

    100CNRM-CM5.2

    R2 = 0.97

    0 1 2 3 4 5 6 720

    020406080

    100120140

    CSIRO-Mk3.6.0

    R2 = 0.98

    0 1 2 3 4 5 6 74020

    020406080

    100120140

    GFDL-CM3

    R2 = 0.98

    0.5 1.5 2.5 3.5 4.540

    20

    0

    20

    40

    60

    80

    ∆PG (

    mm

    yr−

    1)

    GFDL-ESM2G

    R2 = 0.93

    0.5 1.5 2.5 3.5 4.540

    20

    0

    20

    40

    60

    80GFDL-ESM2M

    R2 = 0.94

    1 2 3 460

    40

    20

    0

    20

    40

    60GISS-E2-H

    R2 = 0.98

    1 2 3 4

    40

    20

    0

    20

    40

    GISS-E2-R

    R2 = 0.94

    1 2 3 4 5 6 7604020

    020406080

    100HadGEM2-ES

    R2 = 0.99

    1 2 3 4 5 6 74020

    020406080

    100120140

    ∆PG (

    mm

    yr−

    1)

    IPSL-CM5A-LR

    R2 = 0.98

    1 2 3 4 5 6 74020

    020406080

    100120140

    IPSL-CM5A-MR

    R2 = 0.99

    0.5 1.5 2.5 3.5 4.540

    20

    0

    20

    40

    60

    80IPSL-CM5B-LR

    R2 = 0.96

    1 2 3 4 54020

    020406080

    100MIROC5

    R2 = 0.93

    1 2 3 4 5 6 74020

    020406080

    100120140

    MIROC-ESM

    R2 = 0.98

    1 2 3 4 5 6 7

    ∆TG (K)

    4020

    020406080

    100120

    ∆PG (

    mm

    yr−

    1)

    MPI-ESM-LR

    R2 = 0.97

    1 2 3 4 5 6

    ∆TG (K)

    4020

    020406080

    100120

    MPI-ESM-MR

    R2 = 0.97

    1 2 3 4 5 6 7

    ∆TG (K)

    4020

    020406080

    100120

    MPI-ESM-P

    R2 = 0.97

    0.5 1.5 2.5 3.5 4.5

    ∆TG (K)

    200

    20406080

    100120140

    MRI-CGCM3

    R2 = 0.96

    0.5 1.5 2.5 3.5 4.5

    ∆TG (K)

    40

    20

    0

    20

    40

    60

    80NorESM1-M

    R2 = 0.98

    Figure S40. Fits of the parameters of the global yearly precipitations response (section 2.11.3).

  • 42 Gasser et al.: Description of OSCAR v2.2 (Supplement)

    20 0 20 40 604020

    020406080

    100120

    ∆PL (

    mm

    yr−

    1)

    ACCESS1.0 | i= 1

    R2(4x) = 0.7R2(H) = 0.56

    0 40 8050

    0

    50

    100

    150

    200

    250ACCESS1.3 | i= 1

    R2(4x) = 0.84R2(H) = 0.91

    0 40 80

    0

    50

    100

    150

    BCC-CSM1.1 | i= 1

    R2(4x) = 0.56R2(H) = 0.86

    0 40 80 12050

    0

    50

    100

    150

    200

    250BCC-CSM1.1m | i= 1

    R2(4x) = 0.84R2(H) = 0.88

    0 40 8050

    050

    100150200250300

    CanESM2 | i= 1

    R2(4x) = 0.81R2(H) = 0.9

    0 40 80

    0

    50

    100

    150

    ∆PL (

    mm

    yr−

    1)

    CCSM4 | i= 1

    R2(4x) = 0.91R2(H) = 0.85

    0 40 8050

    0

    50

    100

    150

    200

    250CNRM-CM5 | i= 1

    R2(4x) = 0.44R2(H) = 0.79

    0 40 8050

    0

    50

    100

    150

    200

    250CNRM-CM5.2 | i= 1

    R2(4x) = 0.71R2(H) = 0.17

    0 40 80 120

    0

    50

    100

    150CSIRO-Mk3.6.0 | i= 1

    R2(4x) = 0.8R2(H) = 0.86

    40 0 40 80 120100

    500

    50100150200250300

    GFDL-CM3 | i= 1

    R2(4x) = 0.81R2(H) = 0.81

    20 0 20 40 60

    0

    50

    100

    150

    ∆PL (

    mm

    yr−

    1)

    GFDL-ESM2G | i= 1

    R2(4x) = 0.14R2(H) = 0.75

    0 20 40 60

    0

    50

    100

    150GFDL-ESM2M | i= 1

    R2(4x) = 0.34R2(H) = 0.84

    0 20 40 604020

    020406080

    100120140

    GISS-E2-H | i= 1

    R2(4x) = 0.74R2(H) = 0.5

    10 0 10 20 30 4020

    0

    20

    40

    60

    80

    100GISS-E2-R | i= 1

    R2(4x) = 0.51R2(H) = 0.72

    0 40 8050

    0

    50

    100

    150

    200HadGEM2-ES | i= 1

    R2(4x) = 0.74R2(H) = 0.84

    0 40 80 120604020

    020406080

    100120

    ∆PL (

    mm

    yr−

    1)

    IPSL-CM5A-LR | i= 1

    R2(4x) = 0.55R2(H) = 0.75

    0 40 80 120604020

    020406080

    IPSL-CM5A-MR | i= 1

    R2(4x) = 0.2R2(H) = 0.36

    0 20 40 6020

    020406080

    100120

    IPSL-CM5B-LR | i= 1

    R2(4x) = 0.86R2(H) = 0.94

    0 20 40 60 8020

    020406080

    100120140

    MIROC5 | i= 1

    R2(4x) = 0.76R2(H) = 0.68

    0 40 80 12050

    0

    50

    100

    150

    200

    250MIROC-ESM | i= 1

    R2(4x) = 0.73R2(H) = 0.02

    0 40 80 120

    ∆PG (mm yr−1)

    500

    50100150200250300

    ∆PL (

    mm

    yr−

    1)

    MPI-ESM-LR | i= 1

    R2(4x) = 0.85R2(H) = 0.83

    0 40 80 120

    ∆PG (mm yr−1)

    500

    50100150200250300

    MPI-ESM-MR | i= 1

    R2(4x) = 0.89R2(H) = 0.88

    0 40 80 120

    ∆PG (mm yr−1)

    50

    0

    50

    100

    150

    200

    250MPI-ESM-P | i= 1

    R2(4x) = 0.4R2(H) = 0.25

    0 40 80 120

    ∆PG (mm yr−1)

    50

    0

    50

    100

    150

    200

    250MRI-CGCM3 | i= 1

    R2(4x) = 0.69R2(H) = 0.18

    0 20 40 60

    ∆PG (mm yr−1)

    200

    20406080

    100120

    NorESM1-M | i= 1

    R2(4x) = 0.85R2(H) = 0.84

    Figure S41. Fits of the parameter of the pattern scaling for local yearly precipitations (section 2.11.3). The grey, green, blue, magenta and redpoints are from the historical, RCP2.6, RCP4.5, RCP6.0 and RCP8.5 simulations, respecitvely; the yellow ones are from the "abrupt4xCO2"simulation. The R2 are given for fits made over the quadrupled CO2 experiment (4x) or the combined historical and RCPs (H) – if these RCPsimulations were conducted. Decadal running means are shown; and the fits are the dotted and plain black lines, for the quadrupled CO2experiment and combined historical and RCPs respectively.

  • Gasser et al.: Description of OSCAR v2.2 (Supplement) 43

    20 0 20 40 60200150