the birth of the first tiny objects outline · biffi & maio (2013) introduction method...

33
Introduction Method Simulations The End The birth of the first tiny objects Umberto Maio (OATS) Marie Curie Fellow . .................................................... in collaboration with: M. Petkova, K. Dolag, B. Ciardi, L. Tornatore, S. Khochfar, J. Johnson, F. Iannuzzi, M. A. Campisi, R. Salvaterra, N. Yoshida, P. Creasey, L. Koopmans, V. Müller, V. Biffi, F. Pace, P. Dayal .................................................... Outline 1 Introduction Motivations General overview 2 Method Molecules and metals Chemistry and cooling 3 Simulations PopIII and II, SFR, Z LF, GRBs, DLAs, Non-G 4 The End

Upload: others

Post on 10-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • IntroductionMethod

    SimulationsThe End

    The birth of the first tinyobjects

    Umberto Maio (OATS)Marie Curie Fellow

    .

    ....................................................in collaboration with: M. Petkova, K. Dolag, B. Ciardi,

    L. Tornatore, S. Khochfar, J. Johnson, F. Iannuzzi,

    M. A. Campisi, R. Salvaterra, N. Yoshida, P. Creasey,

    L. Koopmans, V. Müller, V. Biffi, F. Pace, P. Dayal

    ....................................................

    Outline

    1 IntroductionMotivationsGeneral overview

    2 MethodMolecules and metalsChemistry and cooling

    3 SimulationsPopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    4 The End

  • IntroductionMethod

    SimulationsThe End

    MotivationsGeneral overview

    Motivations

    Goal: Primordial structure formation and transition fromthe first metal-free ’PopIII’ star formation regime(high-mass or low-mass stars?) to the common,metal-enriched ’PopII-I’ one (low-mass ’solar’ stars):→ What is the formation epoch of first objects?→ What is the role of molecules and metals in the early ISM?→ How relevant is PopIII for star formation and metal spreading?→ What are the effects of different IMFs on SFR?→ What are the implications for early observables (LF, GRB)?→ What are the effects of the underlying matter distribution?→ What are the effects on cosmic re-ionization?...Requirements: Study the chemical properties of cosmic

    medium during cosmological evolution.Techniques: N-body/Sph simulations (with Gadget).

  • IntroductionMethod

    SimulationsThe End

    MotivationsGeneral overview

    Overview of structure formationThe Universe is supposed

    to expand at a rate H0 ≃ 68 km/s/Mpc;

    to have flat geometry (zero spatialcurvature);

    to consist of dark matter, baryonicmatter and cosmologicalconstant/dark energy.

    Cosmological parameters (Planck, 2013):Ω0,DM = 0.26, Ω0,b = 0.04, Ω0,Λ = 0.7⇒ Ω0,tot = 1;σ8 = 0.83, n = 0.96

    Standard: H0 = 70 km/s/Mpc, Ω0,Λ = 0.7, Ω0,DM = 0.26,Ω0,b = 0.04, σ8 = 0.9, n = 1.

  • IntroductionMethod

    SimulationsThe End

    MotivationsGeneral overview

    Theoretical scenario:

    Cosmic structures originate from the growth of matterperturbations at early times (inflation), in an expandingUniverse.Baryonic structures form from in-fall and cooling of gas intoDM potential well.Eventually, a cloud can form if the radiative losses aresufficient to make the gas condense and fragment:

    tcool =32

    nkTL(n, T )

    ≪ tff =

    3π32Gρ

    At early times, the cooling function is dominated bymolecules ! After pollution from formed (baryonic)structures (→ chemical feedback) metals dominate.

  • IntroductionMethod

    SimulationsThe End

    MotivationsGeneral overview

    primordial environments...

    Small dark-matter haloes

    Barkana& Loeb, 2001

    H-cooling haloes: Tvir ≥ 104 K H2-cooling haloes: Tvir < 104 K

  • IntroductionMethod

    SimulationsThe End

    Molecules and metalsChemistry and cooling

    ...hosting molecular and metal evolution in their ISM

    For a complete picture −→ necessity to follow gravity andhydrodynamics coupled to molecular evolution and metalproduction during cosmic time (e.g. Galli& Palla, 1998; Abel et al., 1997)

    molecules determine first structure formation

    metals determine subsequent structure formation

    stellar evolution determines timescales and yields

    Following and implementing metal and molecule evolution innumerical codes (N-body/SPH Gadget) required(Yoshida et al., 2003; Tornatore et al., 2007; Maio et al., 2007, 2010; Biffi & Maio, 2013)

  • IntroductionMethod

    SimulationsThe End

    Molecules and metalsChemistry and cooling

    H + e− → H+ + 2e−

    H+ + e− → H + γH + γ → H+ + e−

    H− + e− → H + 2e−

    H− + γ → H + e−

    He + e− → He+ + 2e−

    He+ + e− → He + γHe+ + e− → He++ + 2e−

    He++ + e− → He+ + γHe+ + γ → He++ + e−

    He + γ → He+ + e−

    H + e− → H− + γH− + H → H2 + e−

    H + H+ → H2+ + γH2+ + H → H2 + H+

    H2 + H → 3HH2 + H+ → H2+ + HH2 + e− → 2H + e−

    H− + H → 2H + e−

    H2 + γ → H+2 + e−

    H+2 + γ → 2H+ + e−

    H2 + γ → 2HH+2 + γ → H + H

    +

    H− + H+ → 2HH− + H+ → H2+ + e−

    H2+ + e− → 2HH2+ + H− → H + H2D + γ → D+ + e−

    D+ + e− → D + γD + H2 → HD + HD+ + H2 → HD + H+

    HD + H → D + H2HD + H+ → D+ + H2H+ + D → H + D+

    H + D+ → H+ + DHe + H+ → HeH+ + γHeH+ + H → He + H+2HeH+ + γ → He + H+

  • IntroductionMethod

    SimulationsThe End

    Molecules and metalsChemistry and cooling

    Abundance determination

    Given the molecular network, abundance determination for eachspecies, i , is carried out by accounting for creation and destruction ofni via:

    dnidt

    =∑

    p

    q

    kpq,inpnq −∑

    l

    klinlni ,

    kpq,i = kpq,i (T )[cm3 s−1]: creation rate from species p and q

    kli = kli (T )[cm3 s−1]: destruction rate from interactions with the species l

    dt can be discretized as a fraction (e.g. ≃ 1/10) of the hydro-timestep

    Similar O.D.E. can be written for all the species considered!(i.e., e−, H, H+, He, He+, He++, H2, H+2 , H

    −, D, D+, HD, HeH+)

  • IntroductionMethod

    SimulationsThe End

    Molecules and metalsChemistry and cooling

    Gas cooling function andthe role of metals −→

    In primordial regimes, themain coolants are H, He andmolecules (H2 and HD).

    In metal enriched ones,metal fine-structuretransitions from C, O, Fe, Si(dominant over molecules atlow temperatures).

    Cooling leads the gas in-fall into DM potential wells.

    (Maio et. al, 2007)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Zcrit : transition from popIII to popII-I star formationWe study the effects connected to the existence of a criticalmetallicity Zcrit (e.g. Bromm & Loeb, 2003; Schneider et al., 2003) and the transitionfrom popIII SF (Z < Zcrit ) to popII-I SF (Z ≥ Zcrit ).

    In order to address such issues, we perform several numericalsimulations of early structure formation adopting differentvalues for Zcrit and exploring different scenarios.

    Simulation set-up(Maio et al., 2010, 2011b, Maio & Iannuzzi, 2011; Maio, 2011; Maio & Khochfar, 2012)

    standard-ΛCDM cosmology (1,7,14,43,143Mpc a side);molecular and metal chemistry;assume Zcrit = (10−6, 10−5, 10−4, 10−3) Z⊙assume different popIII IMFs (→ top-heavy/Salpeter)assume different matter distributions (→ G vs non-G)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (1/20): effects for different Zcrit

    Zcrit :10−3 Z⊙ 10−6 Z⊙

    z=11

    z=13

    box: 1Mpc3 ; popIII IMF: top-heavy with slope=-1.35, range=[100M⊙ ,500M⊙ ]

    Gas resolution: 116 M⊙/h (Maio et al., 2010)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (2/20): polluting the surrounding medium

    Phase diagrams with color contours for enriched gas(Zcrit = 10

    −4 Z⊙ , box side = 1 Mpc)

    z=16 z=14 z=11

    Metals produced by stellar evolution pollute the surrounding,pristine gas with an “inside-out” mode. (Maio et al, 2011b)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (3/20): effects on the surrounding

    Radial fractions of PopII and PopIII gas in the most massive halo onscales ∼ 10 − 1000 pc (physical) (Maio et al., 2011b)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (4/20): changing the popIII IMF

    PopIII range (Salpeter IMF – top-heavy IMF) SN range (Salpeter IMF)

    Mass ranges for popIII IMF and/or massive SN have significant impacts:

    Larger masses → Shorter stellar lifetimes → Earlier enrichment →Shorter “popIII epoch”

    (Maio et al., 2010)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (5/20): halo properties

    105 106

    Mgas [Msunh-1]

    10-7

    10-6

    10-5

    10-4

    SF

    R [M

    sun/

    yr]

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    102 103 104 105

    M* [Msunh-1]

    10-7

    10-6

    10-5

    10-4

    SF

    R [M

    sun/

    yr]

    z=9.00z=9.12z=9.50

    z=10.00z=11.00z=12.00z=13.01z=14.00z=15.00z=16.00z=17.02z=18.01z=19.00

    105 106

    Mgas [Msunh-1]

    103

    104

    105

    Tm [K

    ]

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    102 103 104 105

    M* [Msunh-1]

    1

    10

    100

    sSF

    R [G

    yr-1]

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00

    z=9.50z=9.12z=9.00

    Biffi & Maio (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (6/20): halo populations

    105 106

    Mgas [Msunh-1]

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Z

    Zcrit=10-4 Zsun

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    8 10 12 14 16 18 20redshift

    0.00

    0.05

    0.10

    0.15

    0.20

    f hal

    oes(

    Z>

    10-4Z

    sun)

    105 106

    Mgas [Msunh-1]

    10-5

    10-4

    10-3

    10-2

    10-1

    Xm

    ol

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    8 10 12 14 16 18 20z

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    SF

    R h

    alo

    cont

    ribut

    ion

    popII-IpopIII

    Biffi & Maio (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (7/20): halo relations

    10-9 10-8 10-7 10-6 10-5 10-4

    Z

    10-5

    10-4

    10-3

    10-2

    10-1

    Xm

    ol

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    10-7 10-6 10-5 10-4 10-3

    M*/MDM

    10-5

    10-4

    10-3

    10-2

    10-1

    x mol

    z=19.00z=18.01z=17.02z=16.00z=15.00z=14.00z=13.01z=12.00z=11.00z=10.00z=9.50z=9.12z=9.00

    Mannucci et al. (2010)

    3.0 3.5 4.0 4.5 5.0 5.5Log(M*[Msun]) - 0.32 Log(SFR[Msun/yr])

    -10

    -9

    -8

    -7

    -6

    -5

    -4

    Log(

    Z)

    z=9.00z=9.12z=9.50

    z=10.00z=11.00z=12.00z=13.01z=14.00z=15.00z=16.00z=17.02z=18.01z=19.00

    Unaccounted outliers...???Hetheroscedasticity...???

    ←− f⋆ − xmol correlation: f⋆ ∝ xmol

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (8/20): sSFR – early bursty Universe

    0 5 10 15z

    0.1

    1.0

    10.0

    100.0

    sSF

    R [G

    yr-1]

    Coe (2013)Stark (2013)

    Zheng (2012)Gonzalez (2012)Bouwens (2012)

    Reddy (2012)Schiminovich (2010)Michalowski (2010)

    Yabe (2009)Stark (2009)

    Pannella (2009)Dunne (2009)Daddi (2007)

    Noeske (2007)

    DATA| |

    Dave’ vzw (2011)Dave’ sw (2011)Dayal (2013)Salvaterra (2013)Tescari Ch24-sA-sW (2014)Biffi & Maio (2013)

    THEORY

    Biffi & Maio (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (9/20): disc formation and alignment

    Haloes hosting rotating gas Alignment gas-DM

    8 10 12 14 16 18 20redshift

    0.00

    0.05

    0.10

    0.15

    0.20

    f co-

    rota

    ting

    halo

    es

    fcosϑ > 0.8 > 20%fcosϑ > 0.8 > 50%

    xmol > 5e-4Z > 1e-3 ZsunZ > 1e-4 Zsun

    105 106 107

    Mgas [Msunh-1]

    -1.0

    -0.5

    0.0

    0.5

    1.0

    cosϑ

    gas-

    DM

    aligned

    contra-aligned

    All z: corr= -0.0320.00 > z > 16.50, corr= 0.1316.50 > z > 14.50, corr= 0.1214.50 > z > 10.50, corr= -0.0910.50 > z > 8.50, corr= -0.02

    cos ϑ =j · jmeanj jmean

    cos ϑ =jgas,in · jDMjgas,in jDM

    Biffi & Maio (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (10/20): UV luminosity functions

    For each galaxy: Lλ = LIIλ + LIIIλ

    in L5, L10, L30

    PopII-I SEDs from Starbust99(Vazquez & Leitherer, 2005).PopIII SEDs from Schaerer (2002).No dust assumed

    Observational data points from:

    Bouwens et al., 2007 (circles); z=6Bouwens et al., 2011 (circles); z=7-8McLure et al., 2010 (triangles); z=7-8Oesch et al., 2012 (squares); z=8

    Fit: Su et al., 2012 (solid line); z=6.

    Resulting slope: ∼ −2consistent with HUDF data(Dunlop et al., 2013, Dayal, Dunlop, Maio, Ciardi, 2013)

    Salvaterra, Maio, Ciardi, Campisi, 2013

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (11/20): Implications for high-z GRB hosts

    Tracing LGRBs from the SFR of their host galaxies

    Differential GRB hosting probability → dP =dNGRB(Log10(SFR[M⊙/yr ]))

    NGRB dLog10(SFR[M⊙/yr])

    Large objects (high SFR) are rarer than small objects (low SFR):high-z GRBs are more likely found in intermediate-, low-size objects!

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (12/20): UV luminosities of GRB hosts

    Data points from:Tanvir et al., 2012

    νion −→

    Most high-z GRB hosts are primordial faint galaxies Most ionizing photons are produced in faint galaxies(they lie below current HST, VLT detection limits) (at z = 6 and z = 8)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (13/20): Statistical properties of GRB hosts

    SFR ∼ 0.01 − 0.1M⊙/yr M⋆ ∼ 107M⊙

    sSFR ∼ 5 − 10 Gyr−1 Z ∼ 5 × 10−2Z⊙

    Data from: Tanvir et al., 2012 (SFRs), Kawai et al., 2006 (Z)

    See Salvaterra, Maio, Ciardi, Campisi (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (14/20): Physical relations for GRB hosts

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (15/20): PopIII-GRB rates and hostsLGRB rate:

    different progenitorsi.e. stars with

    1: Z > Zcrit→any popII-I

    2: Zcrit < Z ≤ 0.5Z⊙→low-Z popII

    3: Z ≤ Zcrit→ fGRBup = 0.006→ fGRBup2 = 0.022(upper limits fromSwift sample, 2011)

    RGRB =γbζBH fGRB

    Z

    zρ̇⋆

    dz′

    (1 + z′)

    dV

    dz′

    Z

    Lth(z′)

    Ψ(L′)dL′

    RGRB : gamma-ray burst rate, γb : beaming factor, ζBH : fractionof expected BH (IMF), fGRB : fraction of expected GRB fromcollapse onto a BH (Swift), ρ̇⋆ : star formation rate density(simulation), Ψ(L): Schechter luminosity fct. (assumption), Lth :instrumental sensitivity (Swift)PopIII IMF: top-heavy over [100, 500]M⊙PopII IMF: Salpeter over [0.1, 100]M⊙Zcrit = 10

    −4 Z⊙

    Detectable fraction (by BAT/Swift) of PopIII GRBs:∼ 10% at z > 6& 40% at z > 10of the whole population

    PopIII-GRB-hosts:the highest probability of finding PopIII GRBs isin hosts with M⋆ < 10

    7 M⊙ and Z & Zcrit(efficient pollution)

    (from Campisi, Maio, Salvaterra, Ciardi, 2011)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (16/20): observed DLAs at z ≃ 7?

    10-8 10-7 10-6 10-5 10-4 10-3

    Z

    108

    109M

    [MS

    un]

    NHI,20

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (17/20): primordial matter distributions andNon-Gaussianities

    Basic assumption: Gaussianperturbations → evidences fornon-Gaussianities (CMB).Primordial non-Gaussianities areintroduced via (Salopek & Bond, 1990)

    Φ = ΦL + fNL(

    Φ2L− < Φ2L >

    )

    Φ is the Bardeen potential(Newton potential at sub-Hubblescales), ΦL is thelinear (Gaussian)part, and fNL the non-Gaussianparameter.

    credit: Planck

    fNL = 0, 10, 50, 100, 1000box sides: 0.5 and 100 Mpc/hnumber of particles: 2 × 3203

    gas mass resolution: 42 M⊙/hand 3 × 108 M⊙/h

    See: Maio & Iannuzzi (2011), Maio (2011), Pace & Maio (2013)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (18/20): Non-G and the cosmic web

    fNL=0

    fNL=1000

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (19/20): Non-G and the GRB rate

    From Swift dataMaio, Salvaterra, Moscardini, Ciardi (2012)

  • IntroductionMethod

    SimulationsThe End

    PopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    Results (20/20): Non-G and the SZ effect

    Power spectrum andbi-spectrum for they parameter:

    y =kBσT

    mec2

    Z

    neTe dl

    over sets of 100random light-cones

    Pace & Maio (2013)

    fNL=0 fNL=100 fNL=1000

    1e-13

    1e-12

    1e-11

    1000 10000 100000

    l(l+

    1)P

    y(l)

    l

    fNL=0fNL=100

    fNL=1000 1e-36

    1e-35

    1e-34

    1e-33

    1e-32

    1e-31

    1e-30

    1e-29

    1e-28

    1e-27

    1e-26

    1000 10000 100000

    By(

    l)

    l

    fNL=0fNL=100

    fNL=1000

  • IntroductionMethod

    SimulationsThe End

    Summary...

    We have presented results from cosmological N-Body,hydrodynamical, chemistry and radiative simulations

    We studied the birth of first galaxies, their interplay with thesurroundings and observational expectations (LF, GRB, DLA).

    Conclusions...

    Early (z ∼ 15 − 20) metal enrichment from the first stars is verystrong with a rapid popIII/popII-I transition (z ∼ 10). A correlationbetween f⋆ and gas xmol is expected. No correlations betweenearly discs and hosting DM halo are found.

    Observationally, LFs agree with data and DLAs/GRBs aresuitable probes of the primordial Universe.

    Results are not very sensitive to the assumed Zcrit , popIII metalyields, IMF slope, primordial non-Gaussianities, etc.

  • IntroductionMethod

    SimulationsThe End

    The End

    Grazie! Thank you!Umberto Maio

    [email protected]

    Marie Curie FellowEuropean Union FP7/2007-2013,

    Actions, Grant Agreement n. 267251,Marie Curie Incoming Mobility Fellowships,

    Astronomy Fellowships in Italy (AstroFIt)

  • IntroductionMethod

    SimulationsThe End

    IntroductionMotivationsGeneral overview

    MethodMolecules and metalsChemistry and cooling

    SimulationsPopIII and II, SFR, ZLF, GRBs, DLAs, Non-G

    The End