the basic approach in project facts: action – a...

18
Elaboración de un atlas fotográfico para el autoaprendizaje de la anatomía del ratón Jesús Ruberte Ana Carretero, Marc Navarro, Víctor Nacher, David Ramos, Mariana López-Luppo 1 , Verònica Melgarejo, Luisa Mendes 2 , Ivonne Espada 3 Unidad de Anatomía y Embriología Departamento de Sanidad y Anatomía Animales Facultad de Veterinaria 1. Unidad de Análisis Morfológico. Centro de Biotecnología Animal y Terapia Génica (CBATEG) 2. Departamento de Anatomía, Facultad de Ciencias Médicas, UNL, Lisboa, Portugal 3. Departamento de Medicina y Cirugía Animales. Facultad de Veterinaria. Universitat Autònoma de Barcelona Resumen La verosimilitud del genoma del ratón y del hombre, como también el desarrollo de las técnicas de mutagénesis, han convertido el ratón en la herramienta básica de inves- tigación preclínica destinada a la comprensión de la fisiopatología y el tratamiento de las enfermedades humanas. El objetivo principal de este proyecto consiste en la produc- ción de un atlas fotográfico de gran calidad sobre la anatomía del ratón, dado que no hay un libro de estas características en el mercado mundial. La herramienta docente que estamos haciendo tiene que permitir el autoaprendizaje de los estudiantes de grado y de postgrado dedicados a las ciencias de la salud y la biomedicina y mejorar la formación y el rendimiento. Este atlas también tiene que permitir comprender las modificaciones anatómicas existentes en los ratones modificados genéticamente. Ámbito general de interés de la innovación El atlas fotográfico de la anatomía del ratón será interesante para los estudiantes de grado y de postgrado de las ciencias biomédicas (Bioquímica, Genética, Medicina, Biología, Veterinaria, Farmacia, etc.). Además, será muy útil para los investigadores que utili- cen el ratón como modelo, que, por otra parte, está presente en la mayoría de los labo- ratorios de investigación dedicados a la biomedicina. EXPERIENCIAS DOCENTES INNOVADORAS DE LA UAB EN CIENCIAS EXPERIMENTALES Y TECNOLÓGICAS Y EN CIENCIAS DE LA SALUD 141

Upload: duongkhanh

Post on 08-Apr-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: THE BASIC APPROACH IN PROJECT FACTS: ACTION – A …zh-cn.goltens.com/download/AnthonyVeder_BasicApproach... · point!clouddata.!!! GREEN TECHNOLOGY SERVICES What would you recommend

 

GREEN TECHNOLOGY SERVICES

PROJECT FACTS: Name: Coral Methane Ship type: LNG tanker Year of build: 2008 Ballast pump capacity: 2 x 410 m³/hr Modeled System 1: Optimarin 835 m3/hr Modeled System 2: BIO-UV 400 and 800 m3/hr

THE BASIC APPROACH IN ACTION – A CUSTOMER’S PERSPECTIVE DUTCH SHIPOWNER ANTHONY VEDER

Dutch shipowner Anthony Veder is preparing for the ballast water treatment system installation with Goltens’ “basic approach” – shipboard survey combined with the 3-D laser scanning and modeling. Repair and maintenance manager René van Dierendonck explains the reasons behind company’s strategy.

What prompted Anthony Veder to start planning for a ballast water treatment system installation before the ratification of the Ballast Water Management Convention? “For a large number of vessels in our fleet (mainly our LNG/LPG/LEG carriers of up to 7,500 cubic meters), the size of BWT systems available today is an immense problem in regard to the pipe routing and the space in the engine room.

Goltens’ 3-D laser scanning and shipboard survey and modeling provides the ultimate approach for us to find out which system – or systems – can be shortlisted. Following that, we will be able to make a decision about which system (or systems) would be the best solution for our fleet. In addition, the 3-D scan will be available later on for the detailed engineering stage.”

Why did Anthony Veder choose to opt for the preliminary design option? “Like many shipowners, we are not confident that the presently available BWT systems will get the USCG type approval. Choosing an available, suitable and IMO approved system right now could, in the worst case scenario, possibly imply that the investment was worthless – in case the USCG approval does not get through. However, the regulations are not going anyway. Our choice is to start planning smartly in order to be prepared at the time when things get clearer.”

What have you learned from this experience? “We started with organizing the 3-D laser scanning and modeling and the shipboard survey with Goltens onboard one of our most problematic vessels with respect to available space. The result was that although the space was very tight, it would still be possible to install an available BWT system on board this vessel. We are quite sure that we would not have reached this outcome without having carried out the 3-D scanning and system modeling. This gives us confidence for the rest of the fleet. We will continue with the 3-D scans and the shipboard surveys during the months to come.”

Optimarin  system  modeled  over  point  cloud  data.  Collisions  are  highlighted  in  red  circles    

Overhead  view  of  Optimarin  system  modeled  over  point  cloud  data.    

Page 2: THE BASIC APPROACH IN PROJECT FACTS: ACTION – A …zh-cn.goltens.com/download/AnthonyVeder_BasicApproach... · point!clouddata.!!! GREEN TECHNOLOGY SERVICES What would you recommend

 

GREEN TECHNOLOGY SERVICES

What would you recommend to other shipowners when it comes to planning and executing a BWT system installation?

“I would say, be prepared. There is a lot that can be done in preparation for the BWT system installation without having to make a final decision about which system is finally going to be installed.”

GOLTENS GREEN’S WORK ON CORAL METHANE:

For this ship space was one of the main issues. The ballast pumps are located on the bottom level below the engines leaving no space for a ballast water treatment system. Goltens looked at two of the smallest UV systems on the market and utilized 3D scanning and modeling to determine where the systems could be placed and which system would fit best with the least amount of disruption. The two systems modeled were BIO-UV (a French system) and Optimarin (a Norwegian system).

SCANNING AND MODELING RESULTS

A variety of different locations were tried for both systems identifying piping and structural changes that would be required for both systems.

Goltens determined that both 800 m3/hr systems would not fit without modifying parts of the existing piping. A BIO-UV 400 m3/hr system could be installed with only minor modifications to the vessel if it could function with only one ballast pump operating at a time. As this was not feasible the best 800 m3/hr solution was pursued.

It was determined that the BIO-UV system was simply too large to fit in the available space. As such, the 835 m3/hr Optimarin system using a Filtrex filter was fully modeled. Even with the Optimarin system, numerous piping and equipment modification requirements were identified. These modifications will need to be fully resolved in the detailed design phase.

Side  view  of  modeled  BIO-­‐UV  400  m3/hr  system  –  showing  lower  level  where  the  ballast  pumps  are  located  and  the  tween  deck  pipe  routing  

BIO-­‐UV  400  m3/hr  system  modeled,  looking  forward  

Page 3: THE BASIC APPROACH IN PROJECT FACTS: ACTION – A …zh-cn.goltens.com/download/AnthonyVeder_BasicApproach... · point!clouddata.!!! GREEN TECHNOLOGY SERVICES What would you recommend

 

GREEN TECHNOLOGY SERVICES

 

Possible  location  of  treatment  system,  looking  forward    

Point  cloud  with  Optimarin  system,  looking  forward    

Model  of  Optimarin  system,  looking  forward