the architecture of complexity: the structure and dynamics

44
���������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������

Upload: others

Post on 26-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The architecture of complexity: the structure and dynamics

�������� � ��

������ ��� �������� ����������� ��� �������� �� ������� ��������

�� � �� ��� ����

������������������������������������������������������������������������������������������������������������������������

��� ������������ �� �������������� ��������� ��� �������� �� ������� ��������

������� ��������

������������� ������������������ �� ����� �������������� �� ��������� ����� ����� ����

������

����������������������������������������������������������������������������������������������������������������������������� ��� ����������� ������� ������ �������� ���� ��� ������������ �� ������������

Page 2: The architecture of complexity: the structure and dynamics

The architecture of complexity: the structure and

dynamics of complex networks

The architecture of complexity: the structure and

dynamics of complex networks

www.nd.edu/~networks

Page 3: The architecture of complexity: the structure and dynamics

Business ties in US biotech-industry

Nodes: companies: investmentpharmaresearch labspublicbiotechnology

Links: financialR&D collaborations

http://ecclectic.ss.uci.edu/~drwhite/Movie

Page 4: The architecture of complexity: the structure and dynamics

Red, blue, or green: departments

Yellow: consultants

Grey: external experts

Structure of an organization

www.orgnet.com

Page 5: The architecture of complexity: the structure and dynamics

Internet

Page 6: The architecture of complexity: the structure and dynamics

protein-gene interactions

protein-protein interactions

PROTEOME

GENOME

Citrate Cycle

METABOLISM

Bio-chemical reactions

Page 7: The architecture of complexity: the structure and dynamics

Erdös-Rényi model(1960)

- Democratic

- Random

PPááll ErdErdööss(1913-1996)

Connect with probability p

p=1/6N=10 ⟨k⟩

~ 1.5 Poisson distribution

Page 8: The architecture of complexity: the structure and dynamics

World Wide Web

Over 3 billion documentsROBOT: collects all URL’s found in a document and follows them recursively

Nodes: WWW documentsLinks: URL links

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

Expected

P(k) ~ k-γ

Fo undSc

ale-

free

Net

wor

kEx

pone

ntia

l Net

wor

k

Page 9: The architecture of complexity: the structure and dynamics
Page 10: The architecture of complexity: the structure and dynamics

protein-gene interactions

protein-protein interactions

PROTEOME

GENOME

Citrate Cycle

METABOLISM

Bio-chemical reactions

Page 11: The architecture of complexity: the structure and dynamics

Citrate Cycle

METABOLISM

Bio-chemical reactions

Page 12: The architecture of complexity: the structure and dynamics
Page 13: The architecture of complexity: the structure and dynamics

Metabolic NetworkNodes: chemicals (substrates)

Links: bio-chemical reactions

Page 14: The architecture of complexity: the structure and dynamics

Metabolic network

Organisms from all three domains of life have a scale-free topology!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes

Page 15: The architecture of complexity: the structure and dynamics

protein-gene interactions

protein-protein interactions

PROTEOME

GENOME

Citrate Cycle

METABOLISM

Bio-chemical reactions

Bio-Map

Page 16: The architecture of complexity: the structure and dynamics

protein-protein interactions

PROTEOME

Page 17: The architecture of complexity: the structure and dynamics

Topology of the protein network

)exp()(~)( 00

τ

γ

kkkkkkP +

−+ −

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

Nodes: proteins Links: physical interactions-binding

Page 18: The architecture of complexity: the structure and dynamics

Origin of SF networks: Growth and preferential attachment

Barabási & Albert, Science 286, 509 (1999)

jj

ii k

kkΣ

=Π )(

P(k) ~k-3

(1) Networks continuously expand by the addition of new nodesWWW : addition of new documents

GROWTH:add a new node with m links

PREFERENTIAL ATTACHMENT: the probability that a node connects to a node with k links is proportional to k.

(2) New nodes prefer to link to highly connected nodes.WWW : linking to well known sites

Page 19: The architecture of complexity: the structure and dynamics

Can Latecomers Make It? Fitness Model

SF model: k(t)~t ½ (first mover advantage)Real systems: nodes compete for links -- fitness

Fitness Model: fitness (η )

k(η,t)~tβ(η)

where

β(η) =η/C 11/

1)( =−∫ η

ηρηC

d

∑≅Π

j jj

iii k

kkη

η)(

Page 20: The architecture of complexity: the structure and dynamics

Bose-Einstein Condensation in Evolving Networks

G. Bianconi and A.-L. Barabási, Physical Review Letters 2001; Europhys. Lett. 2001.

jjj

iii k

kηη

Σ=ΠNetwork

η)(ηink)(ηρ

Bose gas

βε−e

11)(−

= − βεεe

n

)(εg

Fit-gets-rich Bose-Einstein condensation

Page 21: The architecture of complexity: the structure and dynamics

Origin of the scale-free topology in the cell: Gene Duplication

Proteins with more interactions are more likely to obtain new links:Π(k)~k (preferential attachment)

Wagner 2001; Vazquez et al. 2003; Sole et al. 2001; Rzhetsky & Gomez 2001; Qian et al. 2001; Bhan et al. 2002.

Page 22: The architecture of complexity: the structure and dynamics

RobustnessComplex systems maintain their basic functions

even under errors and failures (cell → mutations; Internet → router breakdowns)

node failure

fc

0 1Fraction of removed nodes, f

1

S

Page 23: The architecture of complexity: the structure and dynamics

Robustness of scale-free networks

1

S

0 1ffc

Attacks Failures

Albert, Jeong, Barabasi, Nature 406 378 (2000); H

γ ≤ 3 : fc=1(R. Cohen et al PRL, 2000)

Page 24: The architecture of complexity: the structure and dynamics

Yeast protein network- lethality and topological position -

Highly connected proteins are more essential (lethal)...

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

Page 25: The architecture of complexity: the structure and dynamics

Hypothesis: Biological function are carried by discrete functional modules.

Hartwell, L.-H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999).

Question: Is modularity a myth, or a structural property of biological networks?(are biological networks fundamentally modular?)

Modularity in Cellular Networks

Traditional view of modularity:

Page 26: The architecture of complexity: the structure and dynamics

Modular vs. Scale-free Topology

Scale-free(a)

Modular(b)

Page 27: The architecture of complexity: the structure and dynamics

Hierarchical Networks3. Clustering

coefficient scales

C(k)= # links between k neighborsk(k-1)/2

Page 28: The architecture of complexity: the structure and dynamics

Scaling of the clustering coefficient C(k)

The metabolism forms a hierachical network.

Ravasz, Somera, Mongru, Oltvai, A-L. B, Science 297, 1551 (2002).

Page 29: The architecture of complexity: the structure and dynamics

Characterizing the links

Metabolism:Flux Balance Analysis (Palsson)Metabolic flux for each reaction

Edwards, J. S. & Palsson, B. O, PNAS 97, 5528 (2000).Edwards, J. S., Ibarra, R. U. & Palsson, B. O. Nat Biotechnol 19, 125 (2001). Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Nature 420, 186 (2002).

Page 30: The architecture of complexity: the structure and dynamics

Global flux organization in the E. coli metabolic network

E. Almaas, B. Kovács, T. Vicsek, Z. N. Oltvai, A.-L. B. Nature, 2004.

Page 31: The architecture of complexity: the structure and dynamics

SUCC: Succinate uptakeGLU : Glutamate uptake

Central Metabolism,Emmerling et. al, J Bacteriol 184, 152 (2002)

Page 32: The architecture of complexity: the structure and dynamics

How does the metabolic network adapt to environmental changes?

Network Plasticity

Flux plasticity(changes in flux rates)

Structural plasticity(reaction [de-] activation)

Page 33: The architecture of complexity: the structure and dynamics

The Metabolic Core

E. Almaas, Z. N. Oltvai, A.-L. Barabási, submitted 2005

Co n

diti o

n 1

Co n

diti o

n 2

Co n

diti o

n 3

Page 34: The architecture of complexity: the structure and dynamics

The Metabolic Core

E. Almaas, Z. N. Oltvai, A.-L. Barabási, submitted 2005

• A connected set of reactions that are ALWAYS active

• The larger the network, the smaller the corea collective network effect

Page 35: The architecture of complexity: the structure and dynamics

The core is highly essential:•E. coli: 74% lethal (18% in non-core) •Yeast: 66% lethal (16% non-core)

•The core is evolutionary conserved• E. coli : 72% of core enzymes (47% of non-core)

E. Almaas, Z. N. Oltvai, A.-L. Barabási, submitted 2005

Characterizing the core

Page 36: The architecture of complexity: the structure and dynamics

Blue: folate biosynthesis pathwayBrown: peptidoglycan biosynthesis pathway

Core:Antibiotic targets?

Page 37: The architecture of complexity: the structure and dynamics

Life’s Complexity Pyramid

Z.N. Oltvai and A.-L. B. (2002).

Page 38: The architecture of complexity: the structure and dynamics

Albert-László BarabásiEmil T. Hofman Professor of Physics

DEPARTMENT OF PHYSICS

Page 39: The architecture of complexity: the structure and dynamics

Albert-László BarabásiEmil T. Hofman Professor of Physics

DEPARTMENT OF PHYSICS

Science Fiction and Visual Arts:

Over 20 Books:

Page 40: The architecture of complexity: the structure and dynamics

Albert-László BarabásiEmil T. Hofman Professor of Physics

DEPARTMENT OF PHYSICS

NRC Panel on “Network Science”

Museum Exhibit

Page 41: The architecture of complexity: the structure and dynamics

Albert-László BarabásiEmil T. Hofman Professor of Physics

DEPARTMENT OF PHYSICS

NRC Panel on “Network Science”

What is “network science”?

An attempt to understand networks emerging in nature, technology and society using a unified set of

tools and principles.

What is new here?A recognition that despite their individual differences,

a wide range of networks emerge and evolve driven by a fundamental set of laws and mechanism.

Page 42: The architecture of complexity: the structure and dynamics

Albert-László BarabásiEmil T. Hofman Professor of Physics

DEPARTMENT OF PHYSICS

NRC Panel on “Network Science”

What is next?

Network Topology:quite advanced—much to be learned still

Dynamics on networks:Is there such a degree of universality as we see in the topology?

I hope so--- but still looking for the (…’s) laws here….

Page 43: The architecture of complexity: the structure and dynamics

http://www.nd.edu/~networks

ZoltZoltáánn N. N. OltvaiOltvai, U of Pittsburgh Med. School, U of Pittsburgh Med. School

HawoongHawoong JeongJeong, KAIST, , KAIST, CoreaCoreaRRéékaka Albert, Penn StateAlbert, Penn StateGinestraGinestra BianconiBianconi, Trieste, TriesteErzsErzséébetbet RavaszRavasz, Los Alamos, Los AlamosStefan Stefan WuchtyWuchty, Northwestern U, Northwestern UEivindEivind AlmaasAlmaas, Notre Dame , Notre Dame LivermoreLivermoreBaldvinBaldvin KovKováácscs, Budapest, BudapestTamTamááss VicsekVicsek, Budapest, Budapest

Page 44: The architecture of complexity: the structure and dynamics

http://www.nd.edu/~networks