the adme of sirna galnac conjugates · 2021. 1. 4. · carito et al. acvp meeting 2016....

26
© 2020 Alnylam Pharmaceuticals, Inc. September 27, 2020 The ADME of siRNA GalNAc Conjugates Chris MacLauchlin, PhD

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1 © 2020 Alnylam Pharmaceuticals, Inc.

    September 27, 2020

    The ADME of siRNA GalNAc Conjugates Chris MacLauchlin, PhD

  • 2

    • GalNAc Absorption/PK• GalNAc Distribution• GalNAc Metabolism• GalNAc Excretion• GalNAc DDI profiles• GalNAc PK/PD insights

    Presentation Outline

  • 3

    Innovation in siRNA to Target Tissues

    Large MW ~16KNegatively charged (Na+ salt)Highly polarAqueous sol >200mg/ml

  • 4

    GalNAc-siRNA for Targeted Delivery to Liver

    Asialoglycoprotein Receptor (ASGPR)• Highly expressed on hepatocytes• High capacity receptor• Conserved across species

    Hepatocyte specific ligand• Trivalent GalNAc conjugated to sense strand• High affinity and specificity to ASGPR

    HN

    O

    O

    O

    O

    O

    O

    HN

    HN

    HN

    HN

    NH

    NH

    O

    OHOH

    HOAcNH

    O

    O

    O

    OHOH

    HOAcNH

    O

    O

    O

    OHOH

    HOAcNH

    O

    O

    N

    OH

    OO

    O

    P

    O

    OO

    Carito et alACVP Meeting 2016

    RISC=RNA-Induced Silencing Complex

  • 5

    In Vivo Fate of GalNAc-siRNA after SC Administration

    SC injection site

    Systemic Circulation Liver

    KidneyMetabolism

    Excretion

    BiliaryExcretion

    Metabolism

    ASGPR

  • 6

    Plasma PK parameter

    Rat Monkey Human

    Cmax1[(µg/mL)/(mg/kg)]) 0.130 0.286 0.284

    AUClast1 [(hr*µg/mL)/(mg/kg)]) 0.373 1.31 2.95

    Tmax (hr) 1.0 1.8 4.1

    T1/2 (hr) 0.9 1.9 4.8

    • Low plasma exposure with short half-life due to targeted rapid liver uptake• Similar plasma PK conserved across species, scaled by allometry

    Pharmacokinetics: Transient Plasma Exposure Due to Rapid Liver Uptake

    Plasma Exposure Considerably Greater in the Absence of Liver-Targeted Delivery

    1 Dose Normalized. Data from vutrisiran

    Plasma PK Parameters Across Species

    0 1 2 3 4 5

    0

    2 0 0

    4 0 0

    6 0 0

    8 0 0

    1 0 0 0

    P la s m a C o n c e n tra t io n (n g /m L )

    T im e p o s t-d o s e (h o u rs )

    siR

    NA

    Pla

    sm

    a C

    on

    c (

    ng

    /mL

    ) T ri-G a lN A c

    N o G a lN A c

    No liver uptake

    With liver uptake

    SC dosing of 2 mg/kg tool compounds (siRNA with and without GalNAc) to rats

  • 7

    Rat and Monkey PK after IV infusion and SC

    Rat Monkey

    SC administration results in a slow absorption from the SC injection site and facilitates efficient hepatic drug uptake without saturation of the ASGPR

    LLQ in plasma: 0.01 µg/ml LLQ in plasma: 0.01 µg/ml

  • 8

    Liver PK in Rat and Monkey Shows Preferential Distribution

    Dramatic difference in plasma PK vs. liver PK

    0 5 0 0 1 0 0 0 1 5 0 0

    0 . 0 0 1

    0 . 0 1

    0 . 1

    1

    1 0

    1 0 0

    1 0 0 0

    T i m e ( h )

    Co

    nc

    en

    tra

    tio

    n (µ

    g/m

    L o

    r g

    )

    L i v e r

    P l a s m a

    R a t

    0 5 0 0 1 0 0 0 1 5 0 0

    0 . 0 1

    0 . 1

    1

    1 0

    1 0 0

    1 0 0 0

    T i m e ( h )

    Co

    nc

    en

    tra

    tio

    n (µ

    g/m

    L o

    r g

    )

    L i v e r

    P l a s m a

    M o n k e y

    t1/2~3-8h

    t1/2~120h

    t1/2~5h

    t1/2~150h

    Rat Monkey

  • 9

    Rat Radiolabeled ADME Study Conducted withThree GalNAc-siRNA Conjugates

    F

    3H

    2’F-3H-adenosine

    H

    Conjugate-A

    Conjugate-B

    Conjugate-C

  • 10

    Rat Radiolabeled ADME Study Design

    N (sex) Sample Collection Purpose

    IntactRat

    4 (M) Blood, Urine, Feces, Carcasses

    Urinary/Fecal Excretion, Mass-Balance, Met ID

    IntactRat

    12 (M) Blood, Carcasses for QWBA

    Tissue-Distribution, PK, Met ID

    BDCRat

    6 (M) Blood, Urine, Bile, Feces, Carcasses

    Biliary Excretion, Met ID

    QWBA=Quantitative whole-body autoradiographyBDC=Bile-duct cannulated (7 days only)

  • 11

    Radiolabeled ADME Study Conducted withThree Conjugates in Intact Rats

    Conjugate-A Conjugate-B Conjugate-C

    % of Dose Excreted 81 76 82

    % of Dose in Carcass 3 3 1

    Total % of dose Recovered 84 79 83

    Conjugate-A Conjugate-B Conjugate-C

  • 12

    Biodistribution Studies Confirm On-Target DeliveryConjugate-A (40µm thick)

    4hr0.5hr 2hr 96hr 336hr 1344hr

    • Rapid distribution to the liver with tmax 4-6hr• Few other organs show significant levels of radioactivity.

  • 13

    How Do GalNAc-siRNAs Get Metabolized?

    3' & 5'-Exonuclease• End products are mononucleotidesEndonuclease• Cleaves internally

    Localization• Exo- and endonucleases are ubiquitously distributed in both plasma and tissuesSpecies difference• Much higher cross species similarity compared to conventional drug metabolizing

    enzymes

    5’ 3’

    5’ Exo- 3’ Exo-

    Endo-

    14

    5′

    5′

    Metabolites from 3ʹ -end antisense strand are typically active with comparable potency

    Sense Strand

    Anti-sense strand

  • 14

    M15: AS(N-1)3’ (pl, urine, bile)M11 (bile)M14 (urine, bile)M13 (bile)

    M10 (bile)

    M8 (bile)

    5’ 3’Antisense Strand

    • M15: AS(N-1)3’ metabolite is the major metabolite in all matrices

    Metabolite ProfilesMetabolism of 3H-labeled ( ) siRNA in rats

  • 15

    GalNAc moieties are quickly cleaved after uptake into hepatocytes The linkers are metabolized by hydrolysis of the amide bonds

    Metabolism: Linker and Ligand

    HN

    O

    O

    O

    O

    O

    O

    HN

    HN

    HN

    HN

    NH

    NH

    O

    OHOH

    HOAcNH

    O

    O

    O

    OHOH

    HOAcNH

    O

    O

    O

    OHOH

    HOAcNH

    O

    O

    N

    OH

    OO

    O

    P

    O

    OO

    15

    Sense Strand Metabolism

  • 16

    Species Conjugate-A Conjugate-B Conjugate-A

    Rat 15-22%(58% total radioactivity)11%

    (53% total radioactivity)9%

    (68% total radioactivity)

    Monkey 1% 19% 11-24%

    Human 6 – 32% 3 – 17% 10 - 25%

    • Renal elimination across compounds is low (

  • 17

    Biliary Excretion

    Conjugate-A Conjugate-B Conjugate-C% of Radioactivity Dose Recovered

    Bile Feces Bile Feces Bile FecesIntact Rat 14 15 7BDC Rat 27 24 17

    • Total radioactivity recovered in feces (intact rat) was lower than the total radioactivity excreted in bile (BDC rat), suggesting reabsorption of radioactivity via enterohepatic recycling

    • Mostly full length and AS(N-1)3’ metabolite found in the bile

  • 18

    Biliary Excretion (Conjugate-A)

    • Classical double peak observed (enterohepatic recycling)• No Conjugate-A or AS(N-1)3’ metabolite detected in plasma• Full length and AS(N-1)3’ metabolite are further cleaved in the GI tract to

    shortmers, and get reabsorbed

    AS(N-1)3’Conjugate-A

    Retention Time (min)

    Rad

    ioac

    tivity

    (CPM

    ) Shortmers

    0 2 0 0 4 0 0 6 0 0 8 0 0

    1

    1 0

    1 0 0

    1 0 0 0

    1 0 0 0 0

    ng/m

    l equ

    ivin

    Pla

    sma

    Double Peak

    Time (hr)

  • 19

    siRNA

    Lysopaint

    Merge

    GalNAc-siRNAs Co-localize With Lysosomes

    • Free uptake (image taken 4 hours post-dose)• Lysosomes (Lysopaint)• siRNA(AD-326763, 10 nM)• Knockdown not seen until 6 hours

    Mouse Hepatocytes (Live cells)

    Brown, Nucleic Acids Research, 2020: 1-18.

  • 20

    DDI Unlikely

    DDI Possible

    DDI Strategy at Alnylam

    • Mechanistically siRNA DDIs seem unlikely

    • Given the limited amount of data and unknown regulatory expectations a traditional approach to DDI evaluation was taken

    • Retrospective analysis of the data has allowed a shift in amount of DDI data needed (data has been published: Ramsden D et al., DMD 2019 )

  • 21

    Drug-Drug Interaction Potential: Summary

    Major CYP isoforms (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4/5) Major transporters (P-gp, BCRP, BSEP, MATE1, MATE2-K, OATP1B1, OATP1B3, OAT1, OAT3, OCT1 and OCT2)

    Ramsden D et al., DMD 2019

    GalNAc-siRNAs are not:• Substrates of major CYPs or

    transporters• Inducers of drug metabolizing

    enzymes• Likely to cause clinically meaningful

    inhibition of CYPs or transporters

  • 22

    0 7 1 4 2 1 2 8 3 5 4 2

    0 .1

    1

    1 0

    1 0 0

    1 0 0 0

    1 0 0 0 0

    1 0 0 0 0 0

    0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    1 2 0

    Fit

    us

    iran

    Co

    nce

    ntr

    atio

    n(n

    g/m

    L o

    r n

    g/g

    )P

    lasma A

    T P

    rotein

    (% o

    f Ba

    se

    line)

    T im e p o s t-d o s e (D a y )

    F itu s ira n in P la s m a (n g /m L )

    F itu s ira n in L iv e r (n g /g )

    F itu s ira n in R IS C (n g /g )

    A T P ro te in (% o f B a s e lin e )

    siR

    NA

    Con

    cent

    ratio

    n (n

    g/m

    L or

    ng/

    g)PD

    (biomarker in plasm

    a) (%

    of Baseline)

    Time post-dose (Day)

    Plasma PK

    Liver PK

    RISC PK

    PD

    Plasma PK, Liver PK, RISC PK and PD in Mice

  • 23

    Cross Platform PK/PD Insights

    0 3 6 9 1 2

    0

    2 0

    4 0

    6 0

    8 0

    D o s e ( m g / k g )

    AU

    Cla

    st

    (h*µ

    g/m

    L)

    R2

    = 0 . 9 0 1

    (8 Conjugates)

    0 2 4 6 8 1 0

    0

    5 0 0 0

    1 0 0 0 0

    1 5 0 0 0

    2 0 0 0 0

    2 5 0 0 0

    D o s e ( m g / k g )

    AU

    Cla

    st

    (h*µ

    g/g

    )

    R a t L i v e r

    R2

    = 0 . 8 2 7

    0 2 4 6 8 1 0

    0

    3 0 0 0 0

    6 0 0 0 0

    9 0 0 0 0

    1 2 0 0 0 0

    D o s e ( m g / k g )

    AU

    Cla

    st

    (h*µ

    g/g

    )

    M o n k e y L i v e r

    R2

    = 0 . 7 6 3

    Human Plasma Exposure

    Monkey and rat liver exposure is similar across platform Human plasma exposure is similar across platform

  • 24

    ADME Summary of GalNAc-siRNAs

    SC injection site

    Circulation

    Near completeabsorption

    Predominantly delivered to liver

    • ASGPR-mediated hepatocyte uptake

    • Ligand deglycosylation• Intracellular trafficking

    and release

    RISC loading

    Functional RISC

    Degraded mRNA

    mRNA cleavage

    Biliary Excretion

    Fecal Excretion

    Renal Excretion

    Metabolites only

    Metabolites only

    Intracellular: Trafficking and RISC LoadingHepatocyte UptakeSC Injection

    Catalytic

    Circulation

  • 25

    AcknowledgmentsJing-Tao WuSaeho ChongYuanxin XuDiane RamsdenJing LiJu LiuXiumin LiuRobin McDougallJeff KurzXuemei ZhangChris TranValerie ClausenKirk Brown

    Alnylam Early Development Group

    Alnylam RNAi Platform Team

    Chris BrownMartin MaierIvan ZlatevVarun GoelPete Smith

  • 26 © 2020 Alnylam Pharmaceuticals, Inc.

    To those who say “impossible, impractical, unrealistic,” we say:

    CHALLENGE ACCEPTED

    [email protected]

    The ADME of siRNA GalNAc Conjugates Presentation OutlineInnovation in siRNA to Target TissuesGalNAc-siRNA for Targeted Delivery to LiverIn Vivo Fate of GalNAc-siRNA after SC AdministrationSlide Number 6Rat and Monkey PK after IV infusion and SCLiver PK in Rat and Monkey Shows Preferential DistributionSlide Number 9Slide Number 10Slide Number 11Conjugate-A (40µm thick)How Do GalNAc-siRNAs Get Metabolized? Slide Number 14Slide Number 15Slide Number 16Biliary ExcretionBiliary Excretion (Conjugate-A)GalNAc-siRNAs Co-localize With LysosomesDDI Strategy at AlnylamSlide Number 21Slide Number 22Cross Platform PK/PD InsightsADME Summary of GalNAc-siRNAsSlide Number 25Slide Number 26