texas a&m agrilife wheat tour may 22, 2019breeders or seed company representatives discuss their...

59
Texas A&M AgriLife Wheat Tour May 22, 2019 “taking the show on the road”

Upload: others

Post on 03-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Texas A&M AgriLife Wheat Tour

May 22, 2019

“taking the show on the road”

Page 2: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

We would like to offer a special thanks to our

Sponso rs

Page 3: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

AGENDA  

Welcome from Dr. Dave Brauer, USDA‐ARS Bushland  Breakfast burritos and coffee on bus   

7:30‐9 a.m.  –  Bushland Irrigated Variety Trials – “Breakfast with the Breeder”   

Variety trial, TAM 115 and TAM 205 new variety announcements – Dr. Jackie Rudd, Texas A&M AgriLife Research, Amarillo 

Breeders or seed company representatives discuss their trial entries. 

Triticale variety development – Jason Baker, AgriLife Research senior research associate, Amarillo. 

Linking Texas A&M’s breeding programs to seed companies – Lileen Coulloudon, Texas A&M Foundation Seed, Vernon. 

Panhandle Milling business and operations at Dawn, Panhandle Milling representative. 

UAV demo (time and weather permitting) – Shannon Baker, AgriLife Research associate, Amarillo.   

Learning on the Bus – Bushland to Dalhart 

Homemade healthy snacks, AgriLife Extension Family and Community Health agents. 

Cereal chemistry, whole wheat products – Dr. Audrey Girard, AgriLife Research, College Station. 

Fun Facts and Q&A – Darby Campsey, Texas Wheat Producers director of communications and producer relations, Amarillo  

 

10:30‐noon – Dallam County – “Meeting the Needs of Dairies and Feedlots”   

Variety trial in high input, irrigated production systems – Dr. Clark Neely, Texas A&M AgriLife Extension Service small grains specialist, College Station. 

TAM 115 and TAM 205 new variety announcements – Dr. Jackie Rudd. 

Breeders or seed company representatives discuss their trial entries.  

Wheatlage trial, seeding rate trial – Dr. Jourdan Bell, AgriLife Extension agronomist, Amarillo.  

Fungicide considerations for irrigated wheat – Dr. Ken Obasa, AgriLife Extension plant pathologist, Amarillo. 

Linking Texas A&M’s breeding programs to seed companies – Lileen Coulloudon. 

UAV demo (time and weather permitting) – Shannon Baker.  

Boxed lunch on bus  

1‐1:30 p.m. – Triticale Stop near Conlen  

Triticale variety development – Jason Baker.   

Nutritional value of wheat and triticale silage – Dr. Juan Piñeiro, AgriLife Extension dairy specialist, Amarillo  

 

Learning on the Bus – Conlen to Groom 

Wheat genetic research – Dr. Shuyu Liu, AgriLife Research wheat geneticist, Amarillo. 

Q&A/Trivia – Darby Campsey. 

Wheat drought research – Dr. Qingwu Xue, AgriLife Research plant physiologist, Amarillo. 

Entomology concerns in wheat, Dr. Ed Bynum, AgriLife Extension entomologist, Amarillo.  

4‐5 p.m. – Carson County – “Dryland Yield Trials Happy Hour”   

Variety trial, TAM 115 and TAM 205 new variety announcements – Dr. Jackie Rudd. 

Breeders or seed company representatives discuss their trial entries  

IndigoAg wheat seed technology 

Seeding rate trial – Dr. Jourdan Bell. 

Fungicide trial – Dr. Ken Obasa.  

UAV demo (time and weather permitting) – Shannon Baker. 5‐6 p.m. ‐ Return to vehicles at Bushland 

Page 4: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

 APPENDIX 

 1. Wheat Tour Map 

 2. Wheat Improvement Program 

 3. Bushland Plot Maps 

 4. TAM 115 Introduction 

 5. TAM 205 Introduction 

 6. Triticale Breeding vs Wheat Breeding 

 7. Texas A&M Foundation Seed 

 8. Panhandle Milling 

 9. Integrating UAS into the Texas A&M Wheat Breeding Program 

 10. Texas Wheat Producers 

 11. Milling and Baking Qualities for Wheat Products 

 12. Path to the Plate – Going with the Grain 

 13. Dallam County Variety Trial Map 

 14. Fungicide considerations for irrigated wheat 

 15. Nutritional Value of Wheat and Triticale Silage for Dairy Cattle 

 16. Wheat Genetic Research at Amarillo‐Bushland 

 17. High Wheat Yield Under Drought is Related to More Water Extraction from Deeper Soil Profile 

 18. Cooler Canopy Contributes to Higher Grain Yield and Drought Tolerance in Winter Wheat 

 19. Physiological Mechanisms Are Important Indicators for Greater Drought Tolerance in Winter Wheat 

 20. Winter Wheat: Which insects are we concerned about 

 21. Groom Dryland Variety Trial Map  

 22. Wheat Variety Characteristics 

 23. Wheat Yield Summaries 

 

Page 5: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 6: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Adding Value to Wheat — from Genetics to Consumers

Since it began in 1958, the Texas A&M AgriLife Wheat Improvement Program has served the people of Texas and beyond. Through the land-grant university system, our program has the unique ability to

• Provide an integrated approach to developing broadly adapted/adopted hard redwinter wheat varieties

• Utilize classrooms, laboratories, and field plots to educate the next generation ofscientists who will move the wheat industry forward

• Share our knowledge with the producer and, as a result, benefit the consumer

Our improvements to wheat varieties and management practices have increased Texas yields from 11 to 40 bushels per acre, thus increasing the food value from about $330 per acre to $8,000 per acre. Our research has led to varieties with improved insect and disease resistance, excellence in milling and baking qualities, and improved adaptability and forage performance. We have made great progress, but we will need to adapt our program to a changing environment if we are to continue feeding a growing world population. Meeting this challenge will require ongoing funding.

Texas A&M AgriLife Wheat Improvement Program

THE STRUCTURE OF THE LAND-GRANT UNIVERSITY SYSTEM

MORRILL ACT - 1862, 1890

SMITH-LEVER ACT - 1914

HATCH ACT - 1887

TEACHING RESEARCH

EXTENSION

Land-Grant

UniversitySystem

Land-Grant

UniversitySystem

Key TAM Wheat Varieties

Tascosa, 1958*

Sturdy, 1965*

TAM W-101, 1972*

TAM 105, 1978*

TAM 107, 1984*

TAM 111, 2002*

TAM 112, 2005*

TAM 114, 2014

TAM 204, 2014

* Planted on over 1 million acres across the U.S. Great Plains in any single year

Breeding for the future - the latest TAM wheat releases

TAM 115, 2019

TAM 205, 2019

Page 7: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Dr. Amir Ibrahim Heep Center, Room 434370 Olsen Blvd.College Station, TX 77843Phone: 979.845.3041 Email: [email protected] AgriLife.org

Dr. Jackie Rudd6500 Amarillo Blvd W

Amarillo, TX 79106Phone: 806.677.5600

Email: [email protected]

FINDING THE BEST VARIETIESThe Texas A&M AgriLife Wheat Improvement Program is organized into two Centers of Excellence, each conducting variety development, basic genetic studies, and development of best management practices for wheat. The Amarillo Center targets rain-fed and irrigated production in the drier areas of the state, common to the High Plains and Rolling Plains of Texas. The College Station Center targets the more humid regions of the state, including South Texas and the Texas Blacklands. The two centers work together to develop some of the most widely grown varieties in Texas and across the Great Plains. In 2012, TAM wheat varieties were planted on 41% of Texas wheat acres, 20% in Kansas, 14% in Nebraska, and 11% in Colorado. Currently, the most popular wheat varieties released under this team are TAM 111, TAM 112, TAM 114, and TAM 204.

TRAINING THE NEXT GENERATIONThe Soil and Crop Sciences Department in Texas A&M University’s College of Agriculture and Life Sciences is one of the largest such departments in the nation. Students are trained by world-class faculty in the classroom and the field. In partnership with Texas A&M AgriLife Research and the Texas A&M AgriLife Extension Service, these students gain research experience and are able to help transfer that new knowledge to the public.

EDUCATING PRODUCERSField days are classrooms for producers. AgriLife Extension educational programs in wheat rely heavily on field demonstrations of new technologies, including seed treatments, weed control, forage and grazing management, pesticide and herbicide resistance, and agronomic management practices including planting dates, seeding rates, and nutrient management.

MANAGING FOR GRAIN AND GRAZING Helping producers manage yield and quality of wheat forage and grain are priorities of the wheat improvement team. Yield and quality can be damaged by weather stresses, overgrazing, nutrient deficiencies, and pests. Management in the High Plains includes winter grazing of wheat by stocker cattle. The dual-purpose aspect of wheat increases management flexibility and helps stabilize economic income in areas with fluctuating climate and yields. Proper management decisions are more important than ever with today’s low profit margins.

IMPROVING BREAD QUALITYWheat is the most popular human food crop in the world. This presents an ideal opportunity to improve the nutritional quality of bread and tortillas, the primary products made from Hard Winter Wheat. Research at the Texas A&M Cereal Quality Laboratory ensures that TAM wheat varieties have the milling and baking qualities that the food industry needs and the health benefits that consumers demand.

USING TECHNOLOGY FOR FASTER DEVELOPMENTAgriLife Wheat genetic scientists in collaboration with the AgriLife Genomics and Bioinformatics Service are reducing the time to develop improved wheat varieties through marker-assisted selection, doubled-haploids, gene editing, and genomic selection. On another front, Texas A&M’s Unmanned Aerial Systems Project is providing a new perspective to help wheat farmers manage diseases and water stress, predict yield in crop-breeding programs, and measure livestock forage production. These new tools can unlock solutions that help farmers become more sustainable and increase profitability.

High Plains• Breeding• Genetics• Physiology• Irrigation• Pathology• Entomology• Agronomy

South Central• Breeding• Genetics• Genomics• Cereal Chemistry• Agronomy• Graduate Students

Rolling Plains• Forage Physiology• Soil Fertility• Agronomy

Blacklands• Agronomy• Soft Wheat

Page 8: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 9: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 10: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

 

Texas A&M AgriLife Research Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106

Phone: (806) 677-5600; Fax: (806) 677-5644 https://amarillo.tamu.edu

 

TAM 115

Hard Red Winter Wheat

TAM 115, tested under the code TX12A001295, has been released by Texas A&M AgriLife Research. This hard red winter wheat was developed by the TAM Wheat Improvement Program from the cross TAM 112/TX02U2508. It has good grain and forage yield under dryland and irrigated conditions. TAM 115 can be used for grain only or for heavy grazing plus grain. It is resistant to leaf rust, stripe rust, stem rust, greenbug, and wheat curl mite. It is a few days later to flower than most TAM varieties but compensates by rapid grain-fill characteristics. With large seeds, high test weight, and strong dough properties, it received above average milling and baking scores in the 2018 Wheat Quality Council evaluations. TAM 115 has outstanding drought tolerance, greenbug resistance

and wheat curl mite resistance from the popular drought tolerant variety TAM 112 and leaf and stripe rust resistance from the Texas experimental line TX02U2508. Table 1 shows yield across the past 3 years in different regions of Texas. TAM 115 has performed exceedingly well across the High Plains, Rolling Plains, and the Blacklands in Texas as well as other southern Great Plains areas like Western Kansas and Eastern Colorado. Table 1. Summary of grain yield and agronomic performance of TAM 115 compared to popular hard red winter wheat varieties averaged over location-years from 2016 to 2018 within different environmental regions in Texas.

Cultivar Grain yield Test weight Heading date

Plant height HPI1 HPD RP BKLD

------------------------bu a-1------------------------- lb bu-1 day of year cm

TAM 115 81 32 40 57 62 121 74 TAM 114 85 29 34 52 60 118 72 TAM 113 84 30 33 47 59 118 73 TAM 112 79 29 24 39 59 114 71 TAM 111 81 29 119 75 TAM 304 81 28 35 58 57 117 69 TAM W-101 70 24 21 41 58 117 69 Mean 80 29 32 50 59 118 72 CV (%) 7.5 9.9 18.7 12.3 4.3 2.8 4.6 LSD (0.05) 3.3 2.1 3.2 3.7 0.9 1.9 1.8 Location-years 9 5 9 7 31 8

1HPI, High Plains irrigated HPD, High Plains dryland RP, Rolling Plains BKLD, Blacklands See https://varietytesting.tamu.edu/wheat/ for complete datasets of grain and forage performance trials.

Page 11: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

 

Texas A&M AgriLife Research Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106

Phone: (806) 677-5600; Fax: (806) 677-5644 https://amarillo.tamu.edu

TAM 205

Hard Red Winter Wheat

TAM 205, tested under the code TX12V7415, has been released by Texas A&M AgriLife Research. This hard red winter wheat was developed by the TAM Wheat Improvement Program from the cross X05A650/RonL. It is resistant to leaf rust, stripe rust, stem rust, Wheat streak mosaic virus, Soil-borne wheat mosaic virus and Spindle streak mosaic virus, and Fusarium head blight (scab). With large seeds, high test weight, and strong dough properties, it received very good milling and baking scores in the 2019 Wheat Quality Council evaluations. The bread-making

characteristics of TAM 205 make it an excellent choice for whole wheat products as well as traditional pan bread. TAM 205 has performed well across the southern High Plains and south-central Plains including the Texas High Plains, Rolling Plains, and the Blacklands. TAM 205 covers the ground quickly in the fall for good forage production. TAM 205 performs well in traditional and organic production systems for grain only or for heavy grazing plus grain.

Table 1. Summary of grain yield and agronomic performance of TAM 205 compared to popular hard red winter wheat varieties averaged over location-years from 2016 to 2018 within different environmental regions in Texas.

Cultivar Grain yield Test weight Heading date

Plant height HPI1 HPD RP BKLD

------------------------bu a-1------------------------- lb bu-1 day of year cm

TAM 205 79 29 35 58 61 117 73

TAM 114 85 29 34 52 60 118 72 TAM 113 84 30 33 47 59 118 73 TAM 112 79 29 24 39 59 114 71 TAM 111 81 29 119 75 TAM 304 81 28 35 58 57 117 69 TAM W-101 70 24 21 41 58 117 69 Mean 80 29 32 50 59 118 72 CV (%) 7.5 9.9 18.7 12.3 4.3 2.8 4.6 LSD (0.05) 3.3 2.1 3.2 3.7 0.9 1.9 1.8 Location-years 9 5 9 7 31 8

1 HPI, High Plains irrigated HPD, High Plains dryland RP, Rolling Plains BKLD, Blacklands See https://varietytesting.tamu.edu/wheat/ for complete datasets of grain and forage performance trials.

Page 12: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 13: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Triticale Breeding vs Wheat Breeding Jason Baker, Texas A&M AgriLife Research 

Mainly focused on forage production. 

 

  Harder to measure forage than grain yield. Timing? Method? 

  Grazing or  silage? 

Very few programs working on triticale as opposed to wheat. 

A fraction of the material to cross with compared to wheat.  

In US National Plant Germplasm System 2,000 triticale vs 50,000 

  wheat accessions (<5%). 

A lot of material available is spring type. 

Hard to make new primary triticale lines.  

Triticale can have more seed production problems.   

Sterile heads, outcrossing, shriveled seed. 

 

 

Triticale vs wheat production under irrigated conditions at Bushland, TX for 2017, 2018 and 2019. 

Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106 Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu 

0

2000

4000

6000

8000

10000

12000

14000

Dry M

atter (lb/ac)

2017

Wheat Triticale

0

2000

4000

6000

8000

10000

12000

14000

Dry M

atter (lb/ac)

2018

Wheat Triticale

0

2000

4000

6000

8000

10000

12000

14000

Fall February

Dry M

atter (lb/ac)

2019

Wheat Triticale

Page 14: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Texas Foundation Seed ServiceTexas Foundation Seed Service (TFSS) is a nonprofit, self-supporting arm of Texas A&M AgriLife Research that handles the agency’s statewide efforts in seed production and distribution and supports its work in plant material improvement.

TFSS was established near College Station in the 1950s and moved to its current location near Vernon in 1990. In making the move, TFSS acquired a seed-conditioning facility, a greenhouse, and five acres of land from Pioneer Seed. Funds from the Texas Wheat Producers Board, the E. Paul and Helen Buck Waggoner Foundation, and the Vernon Industrial Foundation made it possible to improve the site through the construction of a large warehouse and installation of conditioning equipment.

1. Produce foundation seed and support the development of new, high yielding, better-adapted crop varieties for the benefit of the producers and the agricultural industry.

2. Serve as an essential link between the public, the plant breeder, and the licensee.

Capabilities

Mission

• Produce foundation seed from AgriLife Research breeding programs and stand-alone projects.

• Produce and distribute vegetatively propagated plant materials from AgriLife breeding programs and TFSS independent projects.

• Partner with startups for seed production.

• Produce and/or provide seed conditioning services to public and private breeding programs.

• Audit other royalty collectors.

• Manage the business and marketing aspects of research commercialization to remove the burden from scientists.

o Act as a liaison between AgriLife and companies that want to license or sell plant materials.

o Partner with breeders and Texas A&M Technology Commercialization to develop pathways to commercialization.

o Collect royalties from licensees for all cultivars.

o Return royalties to AgriLife Research.

o Provide input on patent rights or plant variety protection.

Page 15: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

About Texas A&M AgriLife Research

Established in 1888, Texas A&M AgriLife Research, of which the Texas Foundation Seed Service is a part, is the state’s premier research and technology development agency in agriculture, natural resources, and the life sciences. Headquartered in College Station, AgriLife Research has a statewide presence, with scientists and research staff on other Texas A&M University System campuses and at the 13 regional Texas A&M AgriLife Research and Extension Centers. The agency conducts basic and applied research to improve the productivity, efficiency, and profitability of agriculture, with a parallel focus on conserving natural resources and protecting the environment. AgriLife Research has 550 doctoral-level scientists, many of whom are internationally recognized for their work. They conduct hundreds of projects spanning many scientific disciplines, from genetics and genomics to air and water quality. The annual economic gains from investments in Texas’s public agricultural research are estimated at more than $1 billion. Through collaborations with other institutions and agencies, commodity groups, and private industry, AgriLife Research is helping to strengthen the state’s position in the global marketplace by meeting modern challenges through innovative solutions.

Texas Foundation Seed ServiceDr. Richard Vierling, Manager11914 Highway 70 SouthVernon, TX 76384Phone: (940) 552-6226 | Cell: (314) 308-5404Fax: (940) 552-5524Email: [email protected]

Lileen Coulloudon, Marketing Coordinator11914 Highway 70 SouthVernon, TX 76384Phone: (940) 552-6226 | Cell: (972) 998-6095Fax: (940) 552-5524Email: [email protected]

TFSS adapts to agribusiness trends and drives technological improvements, and TFSS operations generate revenue through sales and services, much like a commercial business. AgriLife has been a change agent in the industry, with TFSS serving as a model for other academic institutions as they move from traditional funding mechanisms to securing funding through public/private partnerships and the licensing of plant material improvements.

Industry Relevance CooperationTFSS is actively involved as a resource for commodity board stakeholders as well as in Texas A&M AgriLife Research internal committees such as the Intellectual Property and Commercialization team, Small Grains Advisory Committee, and Plant Review Committee.

Memberships

Texas Foundation Seed Service is a member of the American Seed Trade Association, Association of Official Seed Certifying Agencies, Southern Seed Association, Seed Innovation & Protection Alliance, and Texas Seed Trade Association.

The TFSS works closely with the Texas A&M AgriLife Research and Extension Center at Vernon, which developed the first hybrid sorghum and operates a prolific wheat breeding program.

Page 16: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

(800) 897.6226 [email protected] w ww.panhandlemilling.com

brands:

Page 17: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

FLOURFor over 30 years we have been producing and toll milling top of the line conventional flours. Our facilities boast some of the best technologies the milling industry has to offer, not to mention we have access to the finest wheat grown in the United States and our flours are beloved by food manufacturers across the nation. See for yourself. Request a sample from [email protected].

ALL PURPOSE FLOUR tortilla flourwhole wheat flour

baker’s patent custom flourhigh gluten flour

available certifications

Page 18: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 19: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Integrating UAS into the Texas A&M AgriLife Research Amarillo Wheat Breeding Program 

Shannon Baker, Research Associate 

Texas A&M AgriLife Research 6500 W Amarillo Blvd, Amarillo, TX 79106 

 

The  Texas  A&M  AgriLife  Research Wheat  Improvement  Program  for  the  Texas  High Plains breeds high yielding, drought tolerant,  insect and disease resistant winter wheat varieties  with  high  end‐use  quality  for  rain‐fed  and  irrigated  production  systems. Unmanned Aircraft Systems  (UAS) equipped with advanced  sensors  can provide ultra‐high  spatial  and  temporal  resolution  remote  sensing data  for  screening many plots  in 

plant breeding programs.  In 2017 we began  flying our dryland and  irrigated nurseries with a DJI Phantom 4 Pro and a DJI M100 with a Slantrange 3P multispectral sensor.  We covered 1700 plots of interest 32 times throughout the 2017‐2018 growing season. We continued the same protocol  in the 2018‐2019 season and upgraded to a Mavic 2 Pro sensor in spring 2019. 

Data  is  sent  to  the UASHub  in Texas A&M Corpus Christi, where  raw  images are processed  a  single  orthomosaiced  image  for  each  field.   UASHub  software  then calculates  7  characteristics  for  75  points  within  each  plot:  Canopy  Cover  from RGB/NDVI, Canopy Height: maximum, mean, and 95% value  in each grid polygon and  standard  deviation,  Canopy  Volume,  and  Vegetation  indices  ExG  (excess greenness), NDVI  (normalized  difference  vegetative  index),  and MSAVI  (modified soil  vegetative  index)  with  standard  deviation.  Ground‐based  canopy  height measurements  corelated  very  well  with  UAS‐based  canopy  height  estimates  in 2018.  Canopy  cover  was  also  very  accurate,  and  when  combined  with  canopy height to generate canopy volume, can predict biomass (forage) production. 

Previous work  in our program  found  ground‐based NDVI measurement corelates well with  forage  production.   UAS‐based NDVI  has  the  same predictive  ability  and  corelates  well  with  ground‐based  NDVI measurement.  By analyzing the nurseries throughout the growing season we can consstruct growth curves  to characterize our best dual purpose varieties.   This  tool may also be useful  for poducers  to plan grazing.    In addition, NDVI  from April 15‐May 14 2018  (boot stage  through grainfill) corelated  well  with  irrigated  grain  yield.  Chaff  color,  lodging,  disease, rodent and insect damage are easily documented with UAS. UAS can also be a valueable tool for breeders by acting as a “digital twin” in the event that  a  nursery  is  lost  to  hail  damage  immediately  before  harvest.   

                             

 

 

 

 

 

 

 

 

 Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106 Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu

Page 20: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

A B O U T T H E B O A R D

5405 West I-40 Amarillo, TX 79106 (806) 352-2191 texaswheat.org [email protected]

The Texas Wheat Producers Board was established in 1971 to provide support and funding for wheat research,education and market development.

The board currently operates on a two cent per bushel checkoff fund. Fifteen wheat producers sit on the board,attend quarterly meetings, manage the collection and expenditure of funds and represent Texas wheat

producers at several local and national conferences, meetings and symposiums.

A B O U T T H E A S S O C I A T I O N

The Texas Wheat Producers Association is a voluntary membership organization of wheat producers in Texas. Established in 1950, the association provides growers a concentrated, organized voice in political matters

affecting the production and marketing of their crops.The association actively seeks smart policy solutions with legislators in Austin and Washington, D.C., to ensure

growers are protected on all fronts while operating their businesses. 

R E S E A R C HM A R K E T

D E V E L O P M E N T E D U C A T I O N

L E G I S L A T I V EA D V O C A C Y

Host international trade teams

Organize foreign buyersconferences

Participate in trade missions

overseas

Ensure favorable domesticpolicy for open trade

Fund breeding programs todevelop high-yielding, disease-and insect-resistant varieties

Study economical and efficient

production practices

Perform uniform variety trials

Encourage investments inwheat research

Fund producer educationevents

Promote nutritional value of

wheat

Defend the safety andreliability of the domestic

wheat supply

2018 Farm Bill - Communicate producers' needs aslegislation is implemented.

Environmental Regulations - Protect your ability to

operate without the burden of excessiveregulations.

Federal Budget - Maintain essential funding for

farm bill, export and research programs.

Other issues - Eminent Domain, Water Rights andRestrictions, Trade, Transportation

B E C O M I N G AM E M B E R

Producers can pay $50 per year/$135 for 3 years andreceive the following benefits:

Free annual subscription to the High Plains JournalMembership in the National Association of Wheat GrowersThe Texas Wheat Producers News newsletterThe annual Texas Wheat Seed BookWeekly Texas Wheat Market Report via emailThe Texas Wheat Annual Report

Industry partners can become Associate Members at eitherthe gold ($300) or silver ($150) level. Members are featured

on the following channels:Website - texaswheat.orgThe Texas Wheat Producers News newsletter Weekly Texas Wheat Market ReportThe Texas Wheat Annual Report

Page 21: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

M I L L I O N A C R E S

average number of wheatacres planted in Texas

T E X A S W H E A T F A C T S

M I L L I O N B U S H E L S

average number of bushels ofwheat produced in Texas

P E R C E N T O FA C R E S

amount of hard red winterwheat planted in Texas

P E R C E N T

average amount of Texas wheatacres that are grazed out

M I L L I O ND O L L A R S

value of Texas wheatproduction

Page 22: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 23: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Milling and baking qualities for wheat products Dr. Audrey L. Girard,

Texas A&M AgriLife Research associate research scientist, College Station

Wheat provides 20% of calories worldwide; this is largely because its proteins are uniquely functional and can create a wide range of products including loaf breads, flatbreads, tortillas, noodles/pastas, and a variety of pastries. In the U.S., breads are by far the most commonly consumed wheat product, and hard red winter, hard red spring, and hard white wheats are all used in this market.

End-use quality of wheat is important to millers and bakers, with ever increasing

demand for high performing wheat. The Cereal Quality Lab tests these parameters through kernel and flour characterization, milling yield, and dough mixing properties which are predictive of bread baking performance.

One of the key parameters

is gluten quality (i.e. refined flour mixing properties) as this strongly correlates to the end-product quality. Every year we test about 5000 samples as part of the Texas Small Grains Improvement Program. The resulting data inform wheat breeders’ decisions for selections in the breeding pipeline and provide quality evidence for a given line.

Whole wheat consumption reduces incidence of and risk factors for

cardiovascular disease, type 2 diabetes, and some cancers. However, whole wheat flour has generally negative effects in food processing including (1) short shelf life, (2) reduced product quality, and (3) alteration to product flavor. To circumvent these issues, bakers often use food additives to improve bread quality. Sales of whole wheat breads

have exceeded white bread in the U.S since 2010; as of 2018, there is ~1.5X more whole wheat bread consumed than white bread. But, consumers are increasingly looking for cleaner labels, artisan products, and locally-sourced goods. To maintain and grow this market segment, it is paramount that the supply chain provide consumers with the whole wheat products they desire. We are working to enhance Texas wheat marketability by developing processing methods that can reduce the need for additives. Another goal is to look for unique and desirable flavors in whole wheat products and to breed premium lines for those flavors.

Figure 1 - Mixograms of two flours with 14% protein content. Left: strong gluten flour that is good for bread. Right: weak gluten flour with specific protein deletions that is good for tortillas.

Figure 2 - Wheat kernel fractions.

Page 24: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Path to the Plate Path to the Plate  is a comprehensive, educational approach to providing relevant, current, and factual information to consumers. Our goal  is to educate consumers so they can make informed decisions when it comes to agriculture and their health. Path  to  the  Plate  is  an  unbiased  examination  of  agriculture,  the  food  we  eat,  and  the connection  to  our  health.  The  program  is  designed  to  deliver  correct,  research‐based information via a variety of methods. The overarching goal of the Path to the Plate program is for all Texans to make informed decisions based on truthful and accurate information.   

Growing a Healthy Texas Healthy Texas combines the expertise of the Texas A&M University Health Science Center with  Texas  A&M  AgriLife  Extension  Service‘s  one‐of‐a‐kind,  statewide  reach  to  provide families with knowledge and resources to take control of their health. Our  comprehensive, multidisciplinary  team promotes preventive health  at  the most  local level of  the community,  improving  the well‐being of Texans  for generations  to come. We engage  families,  enhance  education,  promote  behavior  change  and  improve  quality  of medical care and health outcomes.   

Page 25: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

What Foods Are In The Grain Group? Any  food made  from wheat,  rice,  oats,  cornmeal,  barley  or  another  cereal  grain  is  a  grain product.  Bread,  pasta,  oatmeal,  breakfast  cereals,  tortillas,  and  grits  are  examples  of  grain products.  Examples of whole grains  include whole‐wheat  flour, bulgur  (cracked wheat), oatmeal, whole cornmeal, and brown rice.  Refined grains have been milled, a process that removes the bran and germ. This is done to give grains a  finer  texture and  improve  their shelf  life, but  it also  removes dietary  fiber,  iron, and many  B  vitamins.  Some  examples  of  refined  grain  products  are white  flour,  degermed cornmeal, white bread and white rice. Most refined grains are enriched. This means certain B vitamins (thiamin, riboflavin, niacin, folic acid) and iron are added back after processing. Fiber is not added back to enriched grains.  

Health benefits Consuming whole grains as part of a healthy diet may reduce the risk of heart disease.  Consuming foods containing fiber, such as whole grains, as part of a healthy diet, may 

reduce constipation.  Eating whole grains may help with weight management.  Eating grain products  fortified with  folate before and during pregnancy helps prevent 

neural tube defects during fetal development. 

Nutrients Grains  are  important  sources  of many  nutrients,  including  dietary  fiber,  several  B  vitamins (thiamin, riboflavin, niacin, and folate), and minerals (iron, magnesium, and selenium). 

Dietary fiber from whole grains or other foods, may help reduce blood cholesterol levels and may lower risk of heart disease, obesity, and type 2 diabetes. 

The B vitamins thiamin, riboflavin, and niacin play a key role in metabolism.  Folate (folic acid), another B vitamin, helps the body form red blood cells.   Iron  is  used  to  carry  oxygen  in  the  blood. Many  teenage  girls  and  women  in  their 

childbearing years have iron‐deficiency anemia.   Whole grains are sources of magnesium and selenium. Magnesium is a mineral used in 

building bones and releasing energy from muscles.   

Tips to help you eat whole grains at meals: For  a  change,  try brown  rice or whole‐wheat pasta.  Try brown  rice  stuffing  in baked 

green peppers or tomatoes and whole‐wheat macaroni in macaroni and cheese.  Use whole grains in mixed dishes, such as barley in vegetable soup or stews and bulgur 

wheat in a casserole or stir‐fry.  Experiment  by  substituting  whole  wheat  or  oat  flour  for  up  to  half  of  the  flour  in 

pancake, waffle, muffin or other flour‐based recipes.   Use whole‐grain bread or cracker crumbs in meatloaf.  Try  rolled  oats  or  a  crushed,  unsweetened whole  grain  cereal  as  breading  for  baked 

chicken, fish, veal cutlets, or eggplant parmesan.  Try an unsweetened, whole grain ready‐to‐eat cereal as croutons in salad or in place of 

crackers with soup. 

Page 26: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

As snacks: Snack on ready‐to‐eat, whole grain cereals such as toasted oat cereal.  Add whole‐grain flour or oatmeal when making cookies or other baked treats.  Try 100% whole‐grain snack crackers.  Popcorn, a whole grain, can be a healthy snack if made with little or no added salt and 

butter. 

Whole grain tips for children Set a good example for children by eating whole grains with meals or as snacks.  Let children select and help prepare a whole grain side dish.  Teach older children to read the  ingredient  list on cereals or snack  food packages and 

choose those with whole grains at the top of the list 

Whole grain gallery Amaranth     Brown Rice     Buckwheat     Bulgur (Cracked Wheat) Kamut        Millet       Muesli      Popcorn 

Quinoa      Rolled Oats     Spelt Teff Whole Grain Barley Whole Grain Cornmeal Whole Rye Whole Wheat Bread 

Whole Wheat Cereal Whole Wheat Crackers Whole Wheat Pasta Whole Wheat Buns/Rolls Whole Wheat Tortillas Wild Rice 

 

My Plate

Vegetables Eat 2 ½ Cups a Day A 1 cup serving equals: • 1 cup chopped or cooked vegetable • 2 cups leafy greens (lettuce, spinach, kale) Choose lots of colors. Try seasonal produce you find at Farmer’s Market. Fruits Eat 2 Cups a Day A 1 cup serving equals: • 1 medium whole fruit (apple, pear, orange) • 1 cup diced or canned fruit • 1 cup 100% fruit juice Choose more whole fruits, less juice, more variety and a mix of colors. Grains Eat 6 Ounces a Day A 1 ounce serving equals: • 1 slice of bread • 1 6-inch corn or flour tortilla • ½ cup cooked rice, pasta, or cereal Make half of them whole grains.

Protein Eat 5 ½ Ounces a Day A 1 ounce serving equals: • ⅓ small hamburger, chicken breast or piece of fish (a whole burger, chicken breast, or piece of fish = 3 oz) • ¼ cup of cooked beans • 1 egg

Choose lean meat, poultry or fish. Try beans, peas and soy products.

Dairy Eat 3 Cups a Day A 1 cup serving equals:   • 1 cup of milk or yogurt • 1½ ounces cheese (cheddar, Swiss) • 3 slices American cheese Switch to fat-free or low-fat (1%) milk.

Page 27: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Recipes

Whole Wheat Snacking on the Go 1 cup whole wheat squares cereal 1 cup whole wheat biscuit cereal ⅓ cup sliced almonds  ½ cup dried apples 

¼ cup raisins ½ teaspoon cinnamon ½ teaspoon Chinese five spice 

In a large bowl mix cereal and fruit together and toss with spice mix and cinnamon. Store in an airtight container. (Chinese five spice mix contains cinnamon, anise, cloves, ginger and fennel) 

Whole Wheat Tra i l Mix 3 cups whole wheat cereal 1½ cups whole wheat pretzels ⅔ cup unsalted dry roasted peanuts 

½ cup dried cranberries ¼ cup dark chocolate chips or banana chips 

Mix all ingredients together in a bowl and enjoy. You can change the type of nuts and dried fruit if you like. Store extra trail mix in a plastic bag to keep it fresh.  

Whole Wheat Bread 2 packages active dry yeast 1 cup warm water (105‐115 degrees F) 1 cup warm 1% milk (105‐115 degrees F) ⅓ cup honey 

5¼‐5½ cups whole wheat flour, divided 2 large eggs 3 teaspoons salt ¼ cup vegetable shortening 

In a large mixing bowl, dissolve yeast in warm water. Beat in warm milk, honey, 3 cups flour and eggs. Beat 3 minutes on medium speed. Cover bowl and let mixture rest 20 minutes. Mix in salt and enough remaining flour to make a soft dough. Knead  in shortening until dough  is smooth and  elastic.  Place  dough  in  a  lightly  greased  bowl,  turning  to  grease  the  top.  Let  rise  until doubled. Punch down; divide  in half; place  in pans,  cover with damp  cloth and  let  rise until doubled. Bake in preheated 375˚ oven for 25‐30 minutes.  

Whole Wheat Jam Bars 1 cup whole wheat flour ½ cup packed brown sugar 1 cup rolled oats ¼ cup vegetable oil 2 Tablespoons butter, softened 

1 Tablespoon 1% milk ¼ teaspoon baking soda ⅛ teaspoon salt Scant  ⅔  cup  100%  fruit  spread  of  choice

Preheat oven 350˚ F and grease one 8‐inch square pan. Combine flour, brown sugar, rolled oats, vegetable oil, milk, baking soda, and salt. Add butter using your hands or a pastry blender to form  a  crumbly mixture.  Press  2  cups  of  the mixture  into  the  bottom  of  the  prepared  pan. Spread fruit spread over the mixture to within ¼  inch of the pan edge. Sprinkle the remaining crumb mixture over the top, and lightly press it into the spread. Bake for 35‐40 minutes or until lightly browned. Allow to cool before cutting into bars.   

Page 28: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Whole Wheat Waffles 2 eggs 2 cups whole wheat flour ½ cup real butter 1¾ cup milk 

1 T. sugar 4 tsp. baking powder ¼ tsp. salt 

Heat waffle iron. Beat the eggs with a hand‐beater in a medium bowl until light and fluffy. Beat in  remaining  ingredients,  just until  smooth  (try not  to over beat). Pour batter  from a  cup or pitcher onto the center of the greased iron. Bake about 5 minutes or until the steaming stops. 

Light-as-a-Feather Whole Wheat Pancakes 1⅓ cups whole wheat flour 1 large egg 1½ teaspoons baking powder 1⅓ cups bu ermilk 

¼ teaspoon salt 1 tablespoon brown sugar ¼ teaspoon baking soda 1 tablespoon oil 

 Preheat  griddle.  In medium  bowl,  stir  or  sift  dry  ingredients  together;  beat  egg,  buttermilk, brown sugar and oil together. Stir  into dry  ingredients  just until moistened. Pour ¼ cup batter for each cake onto hot griddle, flip when bubbles appear; turn only once. 

Soft Baked Wheat Pretzels 1 pkg. dry yeast 1½ cup warm water 1 t. sugar 2 cups unbleached flour 

2 cups wheat flour 1 beaten egg Coarse pretzel salt (optional) 

Preheat oven to 425° F. Measure 1½ cup warm water and pour into a bowl and microwave 15 seconds. Raise water temperature to 105‐115, checking with the thermometer. In a large bowl, dissolve yeast in warm water. Add sugar and 2 cups of the flour, and mix. Dough should be soft but not sticky. Add one more cup of flour and mix, add a little more flour ¼ cup at a  time …. do not use more  than a  total of  four cups of  flour. Knead dough by  folding and palming until smooth and elastic, adding enough flour to keep dough from sticking. Place dough in  greased  bowl  and  cover with  paper  towel  and  let  rise  for  up  to  30 min.  (we will  do  10 minutes with a rapid rise yeast) Cut dough into 12 pieces for large pretzels and 36 for small ones. Roll pieces of dough into 8 in. ropes. To make pretzels, curve ends of each rope to make a circle; cross ends at top. Twist ends once  and  lay  down  over  bottom  of  circle.  Spray  cookie  sheet  with  baking  spray.  Arrange pretzels on sheet. Brush on egg and sprinkle with coarse pretzel salt. Bake  for 12‐15 min., or until golden. Enjoy!!!  

Whole Wheat Banana Muffins ⅝ cup canola oil 1 cup brown sugar 1 cup whole wheat flour 1 tsp. cinnamon 1 tsp. baking powder 

½ tsp. baking soda ½ tsp. salt 2 eggs 2 to 3 very ripe mashed bananas 

Mix oil and sugar till blended, add eggs on at a time and mix well, mix all dry ingredients, add to oil and sugar mix, mix until blended, add mashed bananas and blend well. Bake  in muffin tins until golden brown at 350°.  Makes 1 loaf or 18 muffins. 

Page 29: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Educational programs of the Texas A&M AgriLife Extension Service are open to all people without regard to race, color, religion, sex, national origin, age, disability, genetic information or veteran status.

Whole Wheat P izza Crust 2 cups whole wheat flour ¾ teaspoon salt 

1 Tablespoon vegetable oil (canola/olive oil) 1 package active dry yeast/instant yeast 

1 cup hot tap water (120‐125˚F)  1 Tablespoon honey or granulated sugar Preheat oven to 425˚. In large mixing bowl, combine whole wheat flour, yeast and salt. Blend in water, oil and honey or sugar. Stir by hand vigorously until all ingredients are well mixed. Cover with plastic wrap and  let rise to desired size. Place dough  in greased 15 x 10 x 1‐inch  jelly roll pan or 12‐14  inch pizza pan. Press dough to cover bottom of pan and up sides to form a rim. Add sauce and toppings and bake 15 to 20 minutes or until toppings are done. 

 

 

Provided by: Texas A&M AgriLife Extension Service Family and Community Health County Agents

Contact Us:

Lizabeth Gresham, County Agent - Potter 3301 E. 10th Avenue, Amarillo, TX 79104 [email protected] Tel. 806.373.0713 Amy Wagner, County Agent - Randall 200 N. Brown Rd, Canyon, TX 79015 [email protected] Tel. 806.468.5543 Carolyn Prill-Bennett, County Agent - Moore 310 E. 1st Room 100, Dumas, TX 79029 [email protected] Tel. 806.935.2594

Jill Pronger-Killian, County Agent - Sherman Box 540, Stratford, TX 79084 [email protected] Tel. 806.366.2081 Sidney Atchely, County Agent – Carson P.O. Box 279, Panhandle, TX 79068 [email protected] Tel. 806.537.3882  

Page 30: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 31: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Tex

as A

&M

Agr

iLif

e R

esea

rch

20

19 W

hea

t F

ield

Day

To

ur

Fu

ngi

cid

e C

on

sid

erat

ion

s fo

r Ir

riga

ted

Wh

eat

in T

exas

Fu

ng

icid

e(s

)

Co

mp

an

y

Ra

te/A

(fl.

Oz.

)

Po

wd

ery

mil

dew

Sta

go

no

-

spo

ra

lea

f/g

lum

e

blo

tch

Sep

tori

a

lea

f

blo

tch

Ta

n

spo

t

Str

ipe

rust

Lea

f

rust

Ste

m

rust

Hea

d

sca

b4

Pre

-

Ha

rves

t

Inte

rva

l

(PH

I)

Ap

pli

cati

on

tim

ing

(fro

m l

ab

el)

Cla

ss

Pro

du

ct/A

ctiv

e

ing

red

ien

t

Triazole

Alto

100

SL

8.9%

cyp

roco

nazo

le

Syng

enta

3.

0 –

5.5

- -

- -

- -

- -

30 d

ays

App

ly b

etw

een

Feek

es 8

and

10

.5.1

**

Mon

soon

, Ons

et 3

.6 L

, Te

bust

ar 3

.6 L

, etc

. ~3

8.7%

tebu

cona

zole

Love

land

Pro

duct

s A

griS

olut

ions

4.

0 -

- -

- -

- -

- 30

day

s A

pply

at e

arlie

st si

gn o

f rus

t pu

stul

es o

n fo

liage

Car

amba

0.7

5 SL

8.

6% m

etco

nazo

le

BA

SF

10.0

– 1

7.0

VG

V

G

- V

G

E E

E G

30

day

s A

pply

afte

r fla

g le

af

emer

genc

e fo

r opt

imum

re

sults

Strobilurin

Apr

oach

SC

22

.5%

pic

oxys

trobi

n D

u Po

nt

6.0

– 12

.0

G1

VG

V

G2

VG

E3

VG

V

G

NL

45 d

ays

App

ly n

o la

ter t

han

begi

nnin

g of

flow

erin

g (F

eeke

s 10.

5)

Evito

480

SC

40

.3%

fluo

xast

robi

n A

ryst

a Li

feSc

ienc

e 2.

0 –

4.0

- -

- -

- -

- -

40 d

ays

From

Fee

kes 5

(lea

f she

aths

st

rong

ly e

rect

) up

to la

te h

ead

emer

genc

e (F

eeke

s 10.

5)

Hea

dlin

e SC

23

.6%

pyr

aclo

stro

bin

BA

SF

6.0

– 9.

0 G

V

G

VG

2 E

E3 E

G

NL

14 d

ays

App

ly n

o la

ter t

han

begi

nnin

g of

flow

erin

g (F

eeke

s 10.

5)

Qua

dris

22

.9%

azo

xyst

robi

n Sy

ngen

ta

4.0

– 12

.0

- -

- -

- -

- -

45 d

ays

Do

not a

pply

afte

r Fee

kes

10.5

4 (~

flow

erin

g co

mpl

eted

)

Mixed modes of

action

Abs

olut

e M

axx

22.6

% te

buco

nazo

le

22.6

% T

riflo

xyst

robi

n

Bay

er C

rop

Scie

nce

5.0

G

VG

V

G

VG

V

G

E V

G

NL

35 d

ays

No

mor

e th

an 5

fl. o

z pe

r se

ason

Apr

oach

Prim

a SC

17

.94%

pic

oxys

trobi

n 7.

17%

cyp

roco

nazo

le

Du

Pont

3.

4 –

6.8

VG

V

G

VG

V

G

E V

G

- N

R

45 d

ays

For o

ptim

izin

g yi

eld

and

flag

leaf

dis

ease

con

trol,

appl

y at

Fe

ekes

9 (‘

flag

leaf

out

’)

Cus

todi

a

11.0

% a

zoxy

stro

bin

18.3

5% te

buco

nazo

le

MA

NA

6.

4 –

8.6

- -

- -

- -

- -

45 d

ays

At e

arlie

st si

gn o

f rus

t pu

stul

es u

p to

late

hea

d em

erge

nce

(Fee

kes 1

0.5)

N

OTE

: Thi

s is n

ot a

com

plet

e lis

t for

Tex

as. *

Som

e oth

er p

rodu

cts c

onta

inin

g pr

opic

onaz

ole i

nclu

de F

itnes

s and

Pro

pico

nazo

le E

-AG

. **S

ome o

ther

gen

eric

tebu

cona

zole

pro

duct

s inc

lude

Em

brac

e, M

uscl

e 3.6

F, T

ebuc

on, T

oled

o,

Tebu

zol 3

.6F,

and

Oriu

s. Th

e in

form

atio

n ab

ove

may

cha

nge.

Ple

ase r

ead

labe

l car

eful

ly.

Ken

Oba

sa, P

h.D

. (ke

n.ob

asa@

ag.ta

mu.

edu)

, Ext

ensi

on P

lant

Pat

holo

gist,

Tex

as A

&M

Agr

iLife

Ext

ensi

on, A

mar

illo,

TX

. A

pril

30, 2

019

Cla

rk N

eely

, Ph.

D. (

cbne

ely@

tam

u.ed

u), E

xten

sion

Smal

l Gra

ins S

peci

alist

, Tex

as A

&M

Agr

iLife

Ext

ensi

on, C

olle

ge S

tatio

n, T

X. A

pril

30, 2

019.

The

info

rmat

ion

give

n he

rein

is fo

r edu

catio

nal p

urpo

ses o

nly.

Ref

eren

ce to

com

mer

cial

pro

duct

s or t

rade

nam

es is

mad

e w

ith th

e un

ders

tand

ing

that

no

disc

rimin

atio

n is

inte

nded

and

no

en

dors

emen

t by

the

Texa

s A&

M A

griL

ife E

xten

sion

Serv

ice i

s im

plie

d. T

exas

A&

M A

griL

ife E

xten

sion

is an

equ

al o

ppor

tuni

ty e

mpl

oyer

and

pro

gram

pro

vide

r.

Texa

s Hig

h Pl

ains

Pla

nt D

isea

se D

iagn

ostic

Lab

orat

ory

6500

Am

arill

o B

lvd.

W.,

Am

arill

o, T

X 7

9106

W

ebsit

e: h

ttps:/

/thpp

dd-la

b.ta

mu.

edu

Emai

l: th

ppdd

-lab@

ag.ta

mu.

edu

Follo

w u

s on

twitt

er @

thpp

dd_l

ab

Page 32: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Nutritional Value of Wheat and Triticale Silage for Dairy Cattle

Juan M. Piñeiro, DVM, MSc, PhD Extension Dairy Specialist, Department of Animal Sciences

Texas A&M AgriLife Extension Service, The Texas A&M University System

In dairy-cropping systems the use of small grains cover crops has considerably increased in recent years. This occurred partially because small grains crops provide winter ground cover, thus preventing soil erosion and improving land stewardship1,3 (Figure 1). In addition, dairymen rely on these crops to feed their cattle, mainly as a source of fiber, in areas where the amount of corn silage produced might not be enough. In the Southern Great Plains, with the declining Ogallala Aquifer2, it is more efficient to irrigate during winter. Considering water and land limitations, winter crops provide an option for dairymen to have enough forage to meet the fiber requirement in the total mixed rations fed to their cattle.

When should it be harvested?

It really depends on what the dairymen need. Wheat and triticale present more versatility compared with other crops, such as corn. If the desire is to get a high nutritive value, it could be harvested at a vegetative stage and wilted until a moisture content of around 65% is obtained to chop it. Sometimes, producers might rake it to accelerate the wilting process and to line up the forage to be chopped. However, many producers in the High Plains region of Texas need higher yield and harvest can range from flag leaf, boot or soft dough stages depending on individual contracts.

How to read a wheat/triticale silage feed analysis?

Perhaps, the first and most important number we must pay attention to is the dry matter (DM) of the sample (Figure 2). This number will estimate the quality and storage stability of the silage. For instance, a silage with a DM >48% might have increased mold and yeast proliferation after it is fed as a result of poor fermentation. Consequently, there will be reduced intake and increased heat production in the ration that would result in heat-damaged protein. In that case, the value of crude protein (CP) would not be reliable, and we would need to include an adjusted CP essay in the analysis4.

Wheat or triticale silage with a high content of neutral detergent fiber (NDF; e.g., >60%) will limit feed intake of lactating cows and result in decreased milk production. Therefore, high

Page 33: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

values of NDF should be avoided if the group to be fed are lactating cows. In vitro NDF digestibility is obtained after the feed is incubated with rumen fluid for a period of time (e.g., 30 hours; Figure 2) and could also be used to estimate the intake and milk potential of the silage4.

Crude protein content is particularly important in lactating cows and will determine the supplemental costs dairymen would incur to meet the protein requirement of cows4 (Figure 3).

Ash content will indicate if there could be issues with soil contamination that could dilute and underestimate energy content and overestimate NDF content of the silage. However, to obtain accurate information about ash and mineral content, it would be preferable to request to the lab that wet chemistry analyses are used instead of NIR. In addition, if the silage is going to be included in the diet of dry cows, information about mineral content will be paramount to accurately balance the diet to prevent metabolic diseases of cows, such as hypocalcemia4.

Conclusions

The use of small grain crops is continuously increasing in dairy cropping systems. Double cropping winter crops with corn silage might decrease corn silage yields by 10-20% due to delayed planting5. However, it increases average annual forage yields while improving soil stewardship3. The nutritional value of wheat or triticale silage will vary depending on the variety planted, stage of maturity of the plant at harvest, ensilage practices, among other factors. This nutritional value will determine which group of dairy cattle should be fed the silage (e.g., dry cows, low or high milk production lactating cows) and the rate of inclusion in the ration of each group. Acknowledgements

The information and bibliography provided by Dr. Jourdan Bell, Dr. John Goeser (Rock River Laboratory) and Ron Kershen, as well as nutritionists and dairymen from the High Plains region of Texas is greatly appreciated.

References

1 Coblentz W. K., Akins M. S., Kalscheur K. F., Brink G. E., Cavadini J. S. 2018. Effects of growth stage and growing degree day accumulations on triticale forages: 1. Dry matter yield, nutritive value, and in vitro dry matter disappearance. J. of dairy science. Oct 1;101(10):8965-85.

2 Wagner K. L. 2017. Assessing Irrigation Aquifer Depletion: Introduction. Journal of Contemporary Water Research & Education 162(1).

3 Harper, M. T., J. Oh, F. Giallongo, G. W. Roth, and A. N. Hristov. 2017. Inclusion of wheat and triticale silage in the diet of lactating dairy cows. J. Dairy Sci. 100:6151–6163.

4 Weiss, W. P. 2017. International Dairy Certificate Program. Goals of Forage Evaluation.

5 PSU. 2015. The Penn State Agronomy Guide. The Pennsylvania State University, University Park.

Page 34: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Figure 3. Triticale silage feed analysis from a dairy in the South Plains region of Texas.

Page 35: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Wheat genetic research at Amarillo-BushlandShuyu Liu, Chenggen Chu, Xiaoxiao Liu, Jaqueline Avila, Kele Hui,

Brittany Ehrlich, Jorge Valenzuela Antelo, Mehmet Dogan

The genetic program has been working on the understanding of the popularity of TAM cultivars, mainly TAM 111, TAM 112, TAM 113, TAM 114, TAM 204 etc on major genes for resistances to major diseases and pests, yield related traits, and end-use quality traits. Diseases and pests include stripe rust, greenbug, hessian fly, wheat curl mite and its transmitted wheat streak mosaic virus; yield related traits include heads/m2, kernels/head, kernel weight, major genes for height, photoperiod, and vernalization; end-use quality includes kernel hardness and diameter, flour milling yield, protein content; dough mixing properties include midline peak time etc.

The two breeding programs and genetic program working with the Genomic and Bioinformatic Center in College Station on partial wheat genome sequencing on many TAM elite lines. We are deploying the publicly available techniques and knowledge to understand the mechanisms of drought tolerance, genes highly expressed under drought conditions, and controlling higher yield under both dry and irrigated conditions. In the past few years, we have developed some medium throughput molecular markers linked to major genes for resistances to greenbug (Gb3 and Gb7), hessian fly (H32), wheat curl mite (CmcTAM1112), wheat streak mosaic virus (Wsm2), stripe rust (YrTAM1112BS), etc. Currently we are working on association analyses and genomic prediction models to provide some tools for marker- and genome-assisted breeding soon.

The genetic program has established the wheat doubled haploid line development pipeline, led by Dr. Chenggen Chu. He is a worldwide well-known expert in wheat doubled haploid development. He has led the DH team and developed more than 1300 wheat pure lines in 2018 and a great progress has been made for the DH line development in 2019.

In addition, we also working on two USDA-NIFA Federal grants. One is the WheatCAP (coordinated agricultural project) from USDA-NIFA-IWYP (International wheat yield partnership, 2016-2021) that we are cloning major genes for increasing kernel weight from TAM 111 as part of a national team with other 14 universities and several USDA-ARS centers. We are also leading a 3-year USDA-NIFA-Foundation project to transfer the resistances to greenbug, hessian fly, and wheat curl mite simultaneously from primary synthetics to TAM 114.

The wheat genetic program would like to thank the funding support from Texas Wheat Producer Board, Texas A&M AgriLife Research, Texas A&M University and BASF.

Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106 Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu

Page 36: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

High Wheat Yield under Drought is Related to More Water Extraction from Deeper Soil Profile

Sushil Thapa, Qingwu Xue, Kirk E. Jessup, Jackie C. Rudd, Shuyu Liu, Jason Baker, Shannon Baker, Ravindra Devkota

Texas A&M AgriLife Research

Supported by the Texas Wheat Producers Board, the USDA-Ogallala Aquifer Program, & Texas A&M AgriLife Research

BACKGROUND: Winter wheat is a major crop for grain and forage production and is managed under both dryland and irrigated conditions in the U.S. Southern High Plains. Wheat yield and water-use efficiency (the ratio of yield to evapotranspiration, ET) in the area are primarily limited by soil water deficit from late spring to early summer. Therefore, the effective use of soil water, which is from soil water storage at planting as well as precipitation during the growing season, is very important to achieve yield potential. Adoption of drought-tolerant cultivars is another significant strategy; however, little was known about the cultivar differences in soil water extraction and use during the growing season.

OBJECTIVES: Characterize the differences in winter wheat

cultivars in terms of soil water extraction and use, aboveground biomass, and grain yield under dryland conditions.

RESULTS: We investigated the depth and amount of soil water extraction in four winter wheat cultivars that included TAM 105 as an older variety, and TAM 110, TAM 111 and TAM 112 as more recent. In a season with high yield (2016), net soil water extraction occurred from the entire 8-foot profile. In contrast, in a season with very low yield (2011), net soil water extraction was limited to the upper 4 feet. The new cultivars were able to extract more water from deeper in the soil profile (particularly between jointing and maturity stages), and had higher ET, biomass and grain yield than the older cultivar under drought conditions.  

For details, please visit: https://dl.sciencesocieties.org/publications/aj/abstracts/109/6/2771.

Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106 Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu

Dryland wheat at Bushland, TX in 2018

Page 37: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Highlights of 2018 Dryland Research at Bushland, TX (a severe drought year)

March 2018 April 2018

Soil water extraction in the profile in 4 cultivars. Sum of soil water extraction in different layers.

TAM105 TAM110 TAM111 TAM 112 Late grain filling 2018

0.0

0.4

0.8

1.2

1.6

2.0

2.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Soil depth (m)

Soil water extraction (in)

TAM 105

TAM 110

TAM 111

TAM 112

0

1

2

3

4

5

6

7

Total 0‐1.2 m 1.2‐2.4 m

Soil w

ater extraction (in)

TAM 105 ‐ 19 bu/ac

TAM 110 ‐ 19 bu/ac

TAM 111 ‐ 18 bu/ac

TAM 112 ‐ 25 bu/ac

Cultivar        Yield

Page 38: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Measuring CT using continuous recording IRTs

Cooler Canopy Contributes to Higher Grain Yield and Drought Tolerance in Winter Wheat

Sushil Thapa, Qingwu Xue, Kirk E. Jessup, Jackie C. Rudd, Shuyu Liu, Texas A&M AgriLife Research - Amarillo

Supported by the Texas Wheat Producers Board, the Ogallala Aquifer Program, and Texas A&M AgriLife Research

BACKGROUND: Drought is the single most

important environmental factor causing substantial yield loss in winter wheat in the U.S. Southern High Plains. Under high solar radiation and drought conditions, stomatal conductance decreases when soil moisture is not adequate to keep up with evaporative demands; and this, in turn increases plant canopy temperature. Canopy temperature depression (CTD) is expressed as the difference between air temperature and canopy temperature. The CTD value is generally higher, or more positive in well-irrigated plants, but generally lower, or more negative under water deficit conditions. A genotype that has a cooler canopy than other genotypes during the heading and grain filling period in wheat, in the same environment, can be an important indicator of drought-stress tolerance.

OBJECTIVES:

Compare the CTD among 20 elite wheat cultivars during mid-grain filling. Characterize the relationship between CTD and grain yield under the dryland conditions.

RESULTS: We used continuously recording wireless infrared thermometers to determine the CTD in

20 elite wheat cultivars during grain filling. There was a genotypic variation for CTD regardless of time of the day; however, the variation was more evident during the daytime (10 a.m. to 6 p.m.), with the smallest CTD (i.e., warmer canopy) at 2-3 p.m. Grain yield increased as thedaytime CTD increased. Results also showed a trend of greater CTD (i.e., cooler canopy) in more recent cultivars. This knowledge may help breeders in screening genotypes in large breeding populations.

For details, please visit: https://www.sciencedirect.com/science/article/pii/S0378429017316209

Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106  Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu

Page 39: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Physiological Mechanisms are Important Indicators for Greater Drought Tolerance in Winter Wheat

Sushil Thapa, Qingwu Xue, Kirk Jessup, Jackie Rudd, Shuyu Liu, Texas A&M AgriLife Research

Supported by the Texas Wheat Producers Board and Texas A&M AgriLife Research

BACKGROUND: Moderate to severe drought (water stress) at the reproductive stage is common in the U.S.

Southern High Plains, where wheat is grown as a major winter crop. A decrease in photosynthesis and increase in leaf senescence associated with drought stress during the grain-filling period of wheat results in yield reduction. Wheat breeding has greatly contributed to minimize the impact of drought and to increase yield and water-use efficiency under the condition of limited water supply. Based on our previous results, more drought-tolerant genotypes were able to extract more water from the deeper soil profile, had more aboveground biomass, and a cooler canopy temperature. However, before this study the cultivar differences in terms of physiological responses, especially variations in gas exchange parameters under water stress, were largely unknown.

OBJECTIVES: Understand the physiological basis of drought tolerance in the leading wheat cultivars -

TAM 111, TAM 112 and TAM 304 - under the conditions of adequate (wet) and limited (dry) water supply.

For details, please visit: http://onlinelibrary.wiley.com/doi/10.1111/jac.12263/full.

Texas A&M AgriLife Research and Extension Center at Amarillo 6500 Amarillo Blvd. West, Amarillo, Texas 79106 Phone: (806) 677-5600, Fax: (806) 677-5644 www.amarillo.tamu.edu

RESULTS: In the dry treatment, TAM 112 had 67% and 81% more

grain yield than TAM 111 and TAM 304, respectively. Water-use efficiency for grain and water-use efficiency for biomass were also greater in TAM 112 compared to other cultivars in the dry treatment. The flag leaves in TAM 112 at mid-grain filling stage (about 15 days after flowering) had lower stomatal conductance, intercellular CO2 concentration, transpiration rate, and net photosynthetic rate, but higher photosynthetic water-use efficiency than TAM 111 and TAM 304 under water stress. This study demonstrated a distinct role of gas exchange parameters in response to drought, and TAM 112 was more adapted to water stress compared to TAM 204 and TAM 111.  

A head of TAM 112

Page 40: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Winter Wheat, Which insects are we concerned about?Dr. Ed Bynum, Texas A&M AgriLife Extension Service entomologist

False and True Wireworm, several species in Tenebrionidae and Elateridae families Wireworms destroy planted seed and feed on seedling roots reducing stands and plant vigor. Wireworm damage potential is reduced when wheat is planted in enough moisture to stimulate rapid germination. Wireworms become active again in the spring but cause very little injury. Cultural controls are the same for both types of wireworms: Killing weeds in fields Rotating to warm-season crops Rotating to crops that can be treated with a pre-plant soil insecticide

Greenbug, Schizaphis graminum Greenbugs are also carriers of the virus that causes barley yellow dwarf disease. Wheat leaves react to a substance in greenbug saliva, causing young leaves to turn yellow and older leaves to develop orange-red spots. Greenbugs often occur in concentrated patches within a field, damaging small circular patches that radiate from dead spots. When abundant, greenbugs can stunt plants and eventually kill them. If seedlings are infested in the fall, they seem to be more susceptible to winter kill. Alternate hosts – grain sorghum, oats, wild grasses, and Johnsongrass. Tam 110 and Tam 112 wheat varieties are resistant to greenbugs.

Russian Wheat Aphid, Diuraphis noxia Russian wheat aphids feed on the newest growth on the plant and effectively cause cessation of chlorophyll production in those leaves. As it feeds, the Russian wheat aphid causes the leaf to curl and creates an enclosure that protects the insect from climate, natural enemies, and insecticides. Damage symptoms include white, yellow, or purple longitudinal streaks on the leaf and prostrate growth of the plant. These insect are 1/16 inch long, light green, spindle-shaped with short antennae and no prominent cornicles. It has a projection above the hind end that gives it a double-tail appearance. Alternate hosts – cool season grasses, barley, crested wheat grass, but oats are not a host. Hatcher and Bill Brown wheat varieties are resistant to biotype 1 RWA.

Hessian Fly, Mayetiola destructor The adult fly is tiny, fragile and mosquito-like and measures 1/8 inches. The legless maggot-like larvae are reddish or orange when newly hatched, but become whitish-green as they feed. When they are ready to pupate, they form a dark brown puparium, which is called a flax seed, which are normally inserted into the crown or just above the joint of a stem. This is normally the most common sign of Hessian fly infestations.

Injury is caused by larval feeding on stem tissue at the crown of young plants, or just above the nodes of jointed wheat. Young plants suffer the most serious injury, as plants become stunted, and secondary tillers that are infested fail to develop. Young plants that are infested are actually a darker green to bluish-green color, and the leaves are thicker. When larvae feed on jointed stems, they become weakened and lodge.

Page 41: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Bird Cherry-oat Aphid, Rhopalosiphum padi These aphids are yellowish green, dark green, or black and have a reddish-orange area around the base of the cornicles. Because bird cherry-oat aphids do not inject a toxin while feeding (unlike the greenbug), they are less damaging and do not cause visible feeding injury. However, they are very efficient vectors of barley yellow dwarf virus. Heavy infestations will cause plants to become sticky with honeydew, the liquid waste that is excreted by aphids as they feed.

Winter Grain Mite, Penthaleus major Mites are not true insects, but are closely related to ticks and spiders. The winter grain mites are dark-brown, with orange-red legs and an orange or red spot on the upper abdomen. The mites have a long life cycle taking up to 98 days to complete. There are two generations of winter grain mite each year. The first begins in the fall, as over-summering eggs hatch. The second generation begins sometime in January, and reaches peak numbers in March. These mites feed on the leaf sheaths and shoots near the ground. They move up the plant at night and on cloudy days. Leaves take on a silvery gray color when injured and leaf tips may turn brown.

Wheat Curl Mite, Aceria tosichella Keifer The wheat curl mite is approximately 1⁄100 inch long, white, sausage-shaped and has four small legs on the front. They reproduce most rapidly at temperatures between 75 and 80 degrees F. They crawl very slowly and depend almost entirely on wind for dispersal. The mite is most active during warm weather and moves mostly on warm, southwesterly winds. Mite feeding cause leaves to roll, taking on an onion-leaf appearance. Their feeding causes very little damage, but they are vectors of wheat streak mosaic, wheat mosaic virus (formerly called High Plains virus), and triticum mosaic virus which can severely damage wheat. For the disease to be transmitted the immature mite nymphs must become infected with the virus. The mites become infected after feeding for 15 to 30 minutes on an infected plant and can then transmit the virus to other plants for 7 days. Currently, the best management practices are to destroy volunteer wheat three weeks before planting. TAM112 has been shown to have resistance, but not immunity, to both the wheat curl mite and the viral diseases. Summer grasses that are a host for the wheat curl mite are Barnyard grass, witchgrass, and prairie cupgrass.

Brown Wheat Mite, Petrobia latens (Müller) Brown wheat mites are about the size of the period at the end of this sentence and are considerably smaller than the winter grain mite. Its rounded body is metallic dark brown with a few short hairs on the back. The front legs are about twice as long as the other three pairs of legs. It is most prevalent in dry weather, and populations increase when wheat suffers from deficient moisture. The brown wheat mite occurs throughout the High Plains and Rolling Plains. Miticides may not economically control this pest if the crop is unable to respond because of dry conditions.

White grub, Phyllophaga spp. & Cyclocephala spp. White grubs are the larval stage of May or June beetles. Larvae are “c-shaped” with white bodies and tan to brown heads. Larvae feed on roots and may cause stand loss. As soil temperature decreases in the fall, white grub feeding decreases, and larvae migrate deeper in the soil. Delayed planting may improve plant establishment.

Armyworm Complex All armyworms have four life stages: egg, larva, pupa and adult. Eggs are very small, white, laid in clusters of 50 or more and are covered with grayish, fuzzy scales from the body of the female moth. The eggs are seldom seen and are usually laid at the base of host plants. Lush plant

Page 42: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

growth is preferred by the adults for egg laying. Larvae (caterpillars) are very small when they emerge from the egg. Larvae will feed for 2-3 weeks and can be 26-37 mm (1-1.5 inches) long with various color patterns depending on the species. The larvae have five instars (stages when molting occurs) and sometimes hide in debris on the soil surface in the middle of the day. When full grown, larvae enter the soil and form the pupal stage. Adult moths emerge from pupae. Moths mate and lay eggs, thus starting the life cycle over again. A generation typically takes about 28 days to complete.

Damage consists of defoliation. The small larvae will chew the green layer from the leaves, creating a “window pane” effect. The first three instars cause very little feeding damage while the last two instars consume 85% of the total foliage consumed.

Armyworm, Pseudaletia unipuncta (Haworth) The adult moths are grayish tan, with small salmon or orange-pink dots on the forewings. The armyworm larva are pale green when small and turn dark grayish green with a dark band running lengthwise along the middle of the back with a pale stripe just below the dark band. Fall armyworm has the reverse coloration. Armyworm caterpillars have a net-like or “honeycomb” pattern in their eyes and a dark band at the top of each proleg (unjointed legs near the back of the body). Armyworm larvae lack the inverted “Y” and four black spots on the last segment which are characteristic of the fall armyworm. Larvae feed at night and injure the upper leaves and flag leaf. Armyworms should be controlled when they occur in large numbers or plant damage is becoming excessive.

Fall Armyworm, Spodoptera frugiperda (J.E. Smith) The fall armyworm overwinters in the pupal stage in the southern regions of Texas. The adult is a moth that migrates northward as temperatures increase in the spring. The adult moth has a wingspan of 32-40 mm (about 1.5 in.). The hind wings are silver-white; the front wings are dark gray, mottled with lighter and darker splotches. Male moths have a noticeable whitish spot near the extreme tip of each front wing. Larval color can vary from light tan to shades of green. The head is brown or black with a prominent white line between the eyes which forms an inverted “Y.” The fall armyworm has four large spots on the upper surface of the last segment of its body. Fall armyworms feed any time of the day or night, but they are most active early in the morning or late in the evening. The threshold level ranges from two to three larvae per square foot for seedling wheat. For older plants, four or more larvae 1 inch or longer per square foot and obvious foliage loss justify control measures.

Wheat Head Armyworm, Faronta spp. There are 13 known species of wheat head armyworms in the genus Faronta and all larvae and moths look similar. Adult moths have a wing span about 1.2 to 1.5 inches. Moths are yellow-brown with a brown stripe running down the length of each fore wing. Moths emerge to lay eggs in the spring and first generation larvae can be found in wheat in late May and in June. Larvae vary in color from gray to cream to green with distinct yellow, white and brown strips along the length of the body. Larvae feed at night on all parts of the plant, but prefer the head and can be seen clinging to the “awns”. The larvae bore a small hole into the base of the floret and the damage looks similar to that caused by weevils in stored grain. Pupation occurs during the summer in the soil and a second moth flight occurs in late August. The second generation overwinters as pupae. The wheat head armyworm rarely causes economic damage in Texas. Infestations often occur along field margins. No thresholds have been established for treatment. Also, when larvae are feeding in the head the pre-harvest intervals of most insecticides (14 to 35 day PHI) would prevent the use of these products.

Page 43: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Cutworm Complex, various species There are many species of cutworms but the army cutworm, Euxoa auxiliarias, and pale western cutworm, Agrotis orthogonia, are occasional pests of small grains. In general cutworm moths are medium sized with a wing span of 1 to 2 inches. They are dingy, grayish brown colored with light or dark spots on the wings. Caterpillars are pale, black, gray or brown and smooth –skinned that are about 1 ½ inch in length. When disturbed the larvae curl up tightly into a C shape.

Army cutworm, Euxoa auxiliarias The army cutworm caterpillars are surface feeders which feed at night and on cloudy days. They cut off small plants at or near the soil surface. During the day the larvae can be found hiding under soil clods and debris close to the base of the plant. The army cutworm has one generation per year. Eggs are laid in the fall and hatch following a rainfall. It spends the winter as developing larvae and feeds on warmer days. Larvae pupate in the spring. Moths emerge in April and May and migrate to higher elevations in the Rocky Mountains to escape high summertime temperatures. Fertile female moths fly back in the fall to lay up to 1,000 or more eggs per female in newly seeded or cultivated fields. Guidelines for treating depend on the condition of the crop. If the wheat is moisture stressed or has thin stands treating is recommended if there are 2 or more larvae per square foot. When the crop is healthy the treatment is not recommended until there are 4 or more larvae per square foot.

Pale western cutworm, Agrotis orthogonia The pale western cutworm is a subterranean cutworm which feeds almost entirely just below the soil surface on the stems at the wheat crown. Larvae prefer loose, dry, sandy or dusty soil. Areas with wilted leaves, dead tillers and thinning stands are evidence of caterpillar feeding. Under severe infestations larvae can destroy a field in a matter of days. In late summer and fall, adult moths emerge and deposit up to 300 eggs per female in cultivated soil. Some eggs may hatch in the fall, but most hatch in late winter or early spring. After developing in the spring the mature larvae burrow into the soil to transform into a pre-pupa. This stage over-summers until pupation occurs in August. Dry weather favors pale western cutworm survival and outbreaks may follow dry springs. Consider treating when there is 1 larva per square foot when the potential for yield is good and 2 larvae per square foot when the potential for yield is low.

INFORMATION GIVEN HEREIN IS FOR EDUCATIONAL PURPOSES ONLY. REFERENCE TO COMMERCIAL PRODUCTS OR TRADE NAMES IS MADE WITH THE UNDERSTANDING THAT NO DISCRIMINATION IS INTENDED AND NO ENDORSEMENT BY TEXAS A&M AGRILIFE EXTENSION SERVICE IS IMPLIED. The pesticide information included in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Read and follow label directions and Use pesticides safely. Conditions or circumstances which are unforeseen or unexpected may result in less than satisfactory results even when these suggestions are used. Texas A&M AgriLife Extension Service will not assume responsibility for risks. Such risks shall be assumed by the user of this publication.

Page 44: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Quick Reference Guide for Wheat Pests with Established Thresholds

True Armyworm, Pseudaletia unipucta (Haworth) - Control measures are suggested when four to five larvae per square foot are found in combination with evidence of extensive feeding on lower leaves. Fall Armyworm, Spodoptera frugiperda (J. E. Smith) - The threshold level ranges from two to three larvae per square foot for seedling wheat. Once plants are established, control is suggested when there are four or more larvae 1 inch or longer per square foot and when their damage is threatening the stand. Pale western cutworm, Agrotis orthogonia Morr. - Consider treating when there are 1 larvae per square foot when the potential for yield is good and 2 larvae per square foot when the potential for yield is low. Greenbugs, Schizaphis graminum (Rondani) - Glance ‘n Go scouting forms and information can be obtained at http://entoplp.okstate.edu/gbweb/index3.htm.

General Action ThresholdPlant height (inches) Number of greenbugs per linear foot

3-6 100-3004-8 200-400

6-16 300-800Occasionally, populations of 25 to 50 greenbugs per foot of drill row on very young plants may warrant treatment.

Russian wheat aphid, Diuraphis noxia (Mordviko) Russian WheatAphid EconomicThreshold

UsingPercentInfestedWheatTillersastheSamplingUnit

Controlcost peracre$

Marketvalueofcrop($)peracre

50 100 150 200 250 300

Percentinfestedtillers

4 16 8 5 4 3 3

5 20 10 7 5 4 3

6 24 12 8 6 5 4

7 28 14 9 7 6 5

8 32 16 11 8 6 5

9 36 18 12 9 7 6

10 40 20 13 10 8 7

11 44 22 15 11 9 7

12 48 24 16 12 10 8

FormulaforCalculatingThresholdLevels

% tillers infested to treat =Cost of Control/Acre * 200

Expected Yield/Acre * Market Value per Bushel

Calculations for determining the threshold during and after flowering should substitute 500 for 200 in the formula.

Page 45: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell
Page 46: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Wheat Variety Characteristics Varieties Planted in the Texas High Plains Uniform Variety Trials

2018-2019

Jourdan M. Bell, Agronomist, Texas A&M AgriLife Extension and Research, Amarillo Jackie Rudd, Texas A&M AgriLife Research Wheat Breeder, Amarillo Calvin Trostle, Agronomist, Texas A&M AgriLife Extension, Lubbock

Clark Neely, Texas A&M AgriLife Extension Service Small Grains Specialist, College Station

Variety selection is a critical decision that can significantly affect yield potential, disease, insect pressure, and seed quality. The Texas A&M AgriLife uniform variety trials are a coordinated effort between AgriLife Research and AgriLife Extension, providing unbiased yield comparisons over multiple environments and growing conditions. Each location consists of at least 30 entries composed of both state and regional entries. The composite data is the foundation of our annual “Pick” wheat varieties. Entries are replicated 3 or more times and evaluated under irrigated and dryland production.

2018-2019 Entries:

Croplan by Winfield CP7869 (Croplan) New Croplan 2018 release with good standability adapted to the High Plains. Tolerance to stripe, stem, and leaf rust. Height: Medium

CP7909 (Croplan by Winfield) New Croplan 2018 release.

Dyna-Gro Long Branch (Dyna-Gro) Dyna-Gro 2016 release adapted for both dryland and irrigated acres. Very good straw strength and excellent winter hardiness. Reported to be adapted to heat and moisture stress very well; finishes well in adverse conditions. Moderately resistant to stripe rust. Susceptible to leaf rust and moderately susceptible to stem rust. Excellent winter hardiness and very good straw strength but prone to lodging under excessive irrigation and fertility. Test weights tend to be lower than for other comparable varieties. Marginal bread-making quality. Height: Medium-Tall Heading Maturity: Medium-Late

Limagrain Cereal Seeds LCS Chrome Limagrain Cereal Seeds 2016 release that is well adapted to the Great Plains and Rolling Plains regions. Resistant to leaf and stripe rust. Very good drought tolerance and high-tillering ability. Medium coleoptile length. Excellent straw strength. Leaf and stripe rust resistance. Height: Medium-Tall Heading Maturity: Medium-Late Tillering: High Pedigree: Unavailable

Page 47: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

LCS Link (Limagrain) Limagrain Cereal Seeds 2017 release that was developed with the University of Nebraska. It is well adapted to southern Nebraska and northern Kansas, but it may have good production potential farther south into the Texas Panhandle. Very good drought tolerance. Excellent straw strength and winter-hardiness. Not recommended for grazing. Resistant to barley yellow dwarf. Intermediate resistance to stripe rust and resistant to leaf rust. Marketed for grain quality including milling and baking properties. Height: Medium-Tall Heading Maturity: Late Tillering: Intermediate Pedigree: LC Experimentals

LCS Mint Limagrain Cereal Seeds 2012 release that is well adapted to the Southern Great Plains through the Texas Panhandle. Excellent drought tolerance and medium–long coleoptile. Tolerates limited grazing. Moderately susceptible to barley yellow dwarf. Intermediate resistance to stripe rust but susceptible to leaf rust. Marketed for grain quality including milling and baking properties. Prone to lodge with heavy nitrogen fertility under irrigation. Maturity varies due to strong photoperiodism. Height: Medium-Tall Heading Maturity: Medium Tillering: Intermediate Pedigree: Unavailable

LCS Pistol (Limagrain) Limagrain Cereal Seeds 2015 release that is a winterhardy variety adapted to the Southern Great Plains through the Texas Panhandle for dual purpose production. Moderately susceptible to stripe rust but moderately resistant to leaf rust. Prone to lodge in high yielding environment. It is best adapted to dryland and limited irrigated conditions. Excellent drought tolerance, but variety has a medium–short coleoptile. Poorer baking characteristics than comparable varieties. Height: Medium Heading Maturity: Medium-Early Tillering: Very High Pedigree: T158 and T157

T158 Limagrain Cereal Seeds variety 2009 release that is well adapted to the Texas Panhandle, eastern Colorado, Oklahoma, Kansas and Nebraska. Moderately resistant to stripe rust but moderately susceptible to leaf rust. Intermediate susceptibly to wheat streak mosaic virus. Drought tolerant. Only tolerates limited grazing. Very good shattering resistance. Very good straw strength. Height: Medium Heading Maturity: Medium-Early Tillering: Very High Pedigree: T81, KS93U206 experimental

OSU Bentley (OSU) Oklahoma State 2015 release that marketed by Oklahoma Genetics, Inc. Bentley is a dual-purpose variety for dryland acres that performs well under moderate drought stress. Bentley should not be planted early (August to early-September) as germination and seedling stages are sensitive to heat. Moderate resistance to barley yellow dwarf, susceptible to leaf rust, and intermediate resistance to stripe rust. Moderately susceptible to wheat streak mosaic.

Page 48: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Height: Medium-Tall Heading Maturity: Late first hollow stem but Medium Early Tillering: Intermediate Pedigree: TAM 303 and Overley

Gallagher (OSU) Oklahoma State University 2012 release marketed by Oklahoma Genetics. Adapted to Oklahoma, southern Kansas and central-eastern Texas Panhandle. Moderately susceptible to wheat streak mosaic virus. Intermediate resistance to barley yellow dwarf. Resistant to both leaf and stripe rust. Good dual-purpose variety that tolerates heavy grazing. Height: Medium Heading Maturity: Medium Tillering: High Pedigree: Duster and Oklahoma Experimental that includes 2180

Iba (OSU) Oklahoma State University 2012 release marketed by Oklahoma Genetics. A dual-purpose variety that performs very well in Kansas and Oklahoma. Good grain yield potential. Marketed as later to first hollow stem. Resistant to leaf and stem rusts. Intermediate resistance to stripe rust. Susceptible to wheat streak mosaic virus. Moderate resistance to barley yellow dwarf. Height: Medium Heading Maturity: Medium Tillering: High Pedigree: Duster and Oklahoma experimental that includes Karl 92 and Tomahawk

Lonerider (OSU) Oklahoma State University 2017 release marketed by Oklahoma Genetics. Lonerider is a dual-purpose variety with good grain potential that is well adapted for the western High Plains. Moderately susceptible to barley yellow dwarf. Intermediate resistance to leaf and stripe rusts. Noted for rapid stand establishment in the fall under ideal conditions, but it does not recover from heavy grazing. Susceptible to sprouting if not harvested on time. Height: Short Heading Maturity: Early Tillering: Intermediate Pedigree: Billings and Oklahoma experimental that includes Duster and OK101

Showdown (OSU) Oklahoma State University 2018 release marketed by Oklahoma Genetics. Showdown is marketed for a broad range of environmental conditions.

Smith’s Gold (OSU) Oklahoma State University 2017 release marketed by Oklahoma Genetics. Showdown is a dual-purpose variety with good grain potential that tolerates heavy grazing. Intermediate susceptibility to barley yellow dwarf. Moderately resistant to leaf rust and resistant to stripe rust. Good winterhardiness. Susceptible to sprouting if not harvested on time. Height: Medium Heading Maturity: Medium Tillering: High Pedigree: Gallagher and Oklahoma experimental that includes TAM110

Page 49: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Plains Gold (Colorado Wheat Research Foundation - CWRF) Plains Gold Avery (CSU) Colorado State University 2016 release marketed by Plains Gold. A white chaffed, awned wheat with a medium-long coleoptile. Avery has performed well under irrigated and dryland conditions. It is noted for having excellent winterhardiness and drought tolerance. Resistant to the wheat curl mite and greenbug biotype E. Moderately resistant to wheat streak mosaic virus. Intermediate to wheat streak mosaic virus. Susceptible to stripe rust and stem rust. Resistant to leaf rust. Good milling and baking qualities. Height: Medium-Tall Heading Maturity: Medium Late Tillering: Very High Pedigree: TAM 112 and Byrd

Plains Gold Canvas (CSU) Colorado State University 2018 release marketed by Plains Gold (CWRF). Canvas is a high yielding hard red winter wheat with medium maturity and a strong straw. Very good stripe and stem rust resistance. It also has very good wheat streak mosaic virus. It is noted for excellent test weight and milling/baking quality.

Plains Gold Langin (CSU) Colorado State University 2018 release marketed by Plains Gold (CWRF). Langin is an early semi-dwarf variety for grain only production. It is noted for having excellent winterhardiness and drought tolerance. Resistant to the wheat curl mite. Noted as having moderate susceptibility to wheat streak mosaic virus. Susceptible to leaf rust, but moderately resistant to stripe rust. Height: Short Heading Maturity: Early Pedigree: Byrd and Colorado Experimental that includes Byrd

AgriPro (Syngenta) SY Flint (AgriPro) AgriPro (Syngenta) 2015 dual-purpose variety tolerant of heavy grazing with good grain yield potential. Intermediate resistance to stripe rust and moderately susceptible to leaf rust. Good straw strength and shattering resistance. Height: Medium Heading Maturity: Medium-early Tillering: High Pedigree: Experimental, Jagalene and Duster

SY Grit (AgriPro) AgriPro (Syngenta) 2017 release. A medium early dual-maturity variety that is adapted to the Southern Great Plains. Noted for drought tolerance and straw strength with a good disease package. Moderately susceptible to leaf rust and intermediate tolerance to stripe rust. Height: Medium Heading Maturity: Medium-Early Tillering: High

SY Monument (AgriPro) AgriPro (Syngenta) 2014 release. Resistant to stripe and leaf rust. Very good drought tolerance. Tolerant of limited grazing. Average straw strength. Excellent milling and baking properties. Height: Medium-Tall Heading Maturity: Medium-Early Tillering: Very High Pedigree: AgriPro Experimentals

Page 50: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

SY Rugged (AgriPro) AgriPro (Syngenta) new 2017 release. Certified seed available beginning in 2018. Rugged is adapted to the western High Plains and suitable for dryland. Dual purpose variety with good grain yield potential. Tolerates heavy grazing. Resistant to stripe rust and moderately resistant to leaf rust. Very good drought tolerance and winterhardiness. Height: Short Heading Maturity: Medium-Early Tillering: Good Pedigree: Greer and Doans

SY Wolverine (AgriPro) AgriPro new 2019 release, certified seed will be available in the fall of 2020. Fits both Irrigated and dryland in the western high plains. SY Wolverine is half SY Wolf but is a medium early maturity. Like Wolf, it has good disease tolerance including improved tolerance to Wheat Streak Mosaic Virus. Excellent straw strength under irrigation, high tillering and good drought tolerance. Over three years of testing, Wolverine has consistently been a top yielding variety in irrigated and dryland regional variety trials. Silage yield testing is ongoing. Height: Medium Heading Maturity: Medium-Early Tillering: Very Good Pedigree: Everest/Platte//SY Wolf

Texas A&M AgriLife TAM W-101 Texas A&M 1971 release. Used in trials as a historical check. This variety has long been surpassed by newer genetics, and it should not be planted for commercial grain production

TAM 111 Texas A&M AgriLife 2003 release. Marketed by AgriPro. Susceptible to stripe and leaf rusts. Good straw strength and unlikely to shatter. Good overall variety for the Panhandle but only tolerates limited grazing. Medium-long coleoptile. Later to first hollow stem. Height: Medium-Tall Heading Maturity: Medium-Late Tillering: Intermediate Pedigree: TAM 107, Centurk, and others

TAM 112 Texas A&M AgriLife 2005 release marketed by Watley Seed. Very consistent dual-purpose high-yielding variety under dryland and limited irrigated conditions. Straw strength and lodging may be questionable under full irrigation. Recovers well from heavy grazing. Greenbug and wheat curl mite resistant. Some tolerance to wheat streak mosaic virus. Susceptible to stripe and leaf rust. Unlikely to shatter. Good overall variety for the Texas High Plains. Medium-long coleoptile. Good quality. Good fall grazing potential. Early first hollow stem. Height: Medium-Tall Heading Maturity: Early Tillering: Very High Pedigree: TAM 110 sib, TAM 200, WGRC experimental

Page 51: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

TAM 113 Texas A&M AgriLife 2011 release marketed by Adaptive Genetics. Very good dual-purpose variety that provides good fall forage. Positioned for Texas and Oklahoma Panhandles, western Kansas and eastern Colorado. Moderately susceptible to wheat streak mosaic virus. Moderately resistant to stripe and leaf rust. Emerges well under stressful conditions. Very good shattering reputation. Below average straw strength. Medium-short coleoptile. Good quality grain with excellent milling and baking qualities. A common choice for organic production. Good fall grazing potential. Early first hollow stem. Height: Medium Heading Maturity: Medium Tillering: High Pedigree: TAM 200, TAM 202, TAM 105, and WGRC experimental

TAM 114 Texas A&M AgriLife 2014 release marketed by Adaptive Genetics. Positioned for the Texas High Plains, western Kansas and eastern Colorado. Good for dual-purpose systems; tolerates heavy grazing pressure and maintains grain yield. Similar to TAM 111 but higher yield potential and improved leaf disease resistance. Moderately susceptible to wheat streak mosaic virus. Resistant to stripe and leaf rust. Good straw strength. Excellent bread-making quality. Height: Medium Heading Maturity: Medium Tillering: Very High Pedigree: TAM 111, TAM 200, Texas and Nebraska experimentals

TAM 115 New Texas A&M AgriLife 2019 release previously tested under TX12A001295. A dual-purpose variety positioned for the Texas High Plains. Resistant to leaf rust, stripe rust, stem rust, green bug and wheat curl mite. A few days later to first hollow stem. Excellent drought tolerance. Excellent bread-making quality. Height: Medium Heading Maturity: Medium Tillering: Intermediate-High Pedigree: TAM 112 and TX02U2508

TAM 204 Texas A&M AgriLife 2014 release marketed by Watley Seed. Positioned for the Texas High Plains, Oklahoma, and southern Kansas. A beardless wheat positioned for heavy grazing and graze-out conditions. Produces good fall ground cover. Not ideal for grain production due to low test weights. Resistant to Hessian fly, wheat curl mite and greenbugs. Moderately resistant to wheat streak mosaic virus. Tolerant to acid soils. Moderately resistant to stripe rust, resistant to stem rust and moderately susceptible to leaf rust. Height: Medium short Heading Maturity: Medium late Tillering: Intermediate-High Pedigree: TAM 112, Pecos, Mason, Jagger

TAM 205 New Texas A&M AgriLife 2019 release previously tested under TX12V7415. A dual-purpose variety positioned for the Texas High Plains and Rolling Plains with good fall forage production. Resistant to leaf rust, stripe rust and stem rust. It is also resistant to the wheat curl mite and wheat streak mosaic virus. It has high test weights. Excellent bread-making quality. Height: Medium

Page 52: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Heading Maturity: Medium Tillering: High Pedigree: X05A650 and RonL

TAM 304 Texas A&M AgriLife 2007 release marketed by Scott Seed. Consistently high yield potential; well positioned for the Texas High Plains, Kansas and Oklahoma. Moderately susceptible to wheat streak mosaic virus. Resistant to leaf rust and moderately susceptible to stripe rust. Good straw strength makes it suitable for high-input systems. Tolerates heavy grazing. Height: Medium Heading Maturity: Medium Tillering: Low Pedigree: Pioneer germplasm and Arkansas Experimentals Westbred (Bayer)

WB4303 Westbred (Bayer) 2017 release that is well adapted to the eastern Southern Great Plains, but it also performs well under irrigated conditions in the Texas High Plains and southwestern Kansas. Very good yield potential and straw strength. Very good fall growth and winter hardiness, but it only tolerates limited grazing. Excellent test weights. Intermediate stripe and leaf rust tolerance. Resistant to stem rust. Moderately tolerant to stripe and leaf rust. Good grain quality. Height: Medium Heading Maturity: Medium-Early Tillering: Intermediate Pedigree: CIMMYT (HV9W10-100)

WB4418 Westbred (Bayer) 2018 release that is well adapted to a broad region across the Southern Great Plains. Very good yield potential and straw strength. Good fall growth and winter hardiness, but it only tolerates limited grazing. Excellent test weights. Moderately resistant to stripe and leaf rusts. Not well suited for areas with low pH. Height: Medium-Short Heading Maturity: Medium-Early Tillering: Intermediate

WB4721 (initially tested as HV9W10-0129) Westbred (Bayer) 2017 release that is adapted to the Great Plains, but the ideal production region is western Kansas. A good variety for dryland production. Very good fall growth and winter hardiness. Excellent test weights. Moderately resistant to stripe and leaf rust. Intermediate to barley yellow dwarf. Only tolerates limited grazing. Height: Medium-Tall Heading Maturity: Medium-Late Tillering: Very Good Pedigree: Overly and Overland

WB4792 Westbred (Bayer) 2018 release that is well adapted to a broad region across the Southern Great Plains. Very good yield potential and straw strength. Good winter hardiness. Moderately tolerant to stripe and leaf rusts. Height: Medium Heading Maturity: Medium-Late Tillering: Intermediate

Page 53: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

WB-Grainfield Westbred (Bayer) 2012 release positioned for the western central Great Plains (Texas Panhandle and west of I-35). Late maturing variety with very good yield potential and good grazing potential. Good drought tolerance. Moderately resistant to stripe and leaf rust. Moderately susceptible to wheat streak mosaic virus. Good straw strength and shattering reputation. Height: Medium Tall Heading Maturity: Medium-Long Pedigree: Westbred and K-State experimentals

Winterhawk Westbred (Bayer) 2007 release well adapted for the western regions of the Great Plains. Excellent drought tolerance. Well suited for dual-purpose systems with heavy grazing. Produces good fall forage. Intermediate stripe rust resistance but susceptible to leaf rust. Moderately susceptible to wheat streak mosaic virus. Good straw strength with good resistance to shattering. Height: Medium Tall Heading Maturity: Medium Pedigree: Westbred experimentals

For further information about wheat production and management in Texas, including our annual High Plains wheat Picks, consult the following websites:

http://varietytesting.tamu.edu/wheat/ http://amarillo.tamu.edu/amarillo-center-programs/agronomy/wheat-publications/ http://lubbock.tamu.edu/programs/crops/wheat/ http://sickcrops.tamu.edu http://www.texasinsects.org/small-grains.html https://wheatfreezeinjury.tamu.edu/ https://texaswheatupdates.tamu.edu/

Page 54: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Table 2.  Multi‐year IR

RIGATED W

heat Variety Trial Yields & Test Weights, 2015‐2018, Texas & NM High Plains.

Variety

Picks are Bold

Developer

2015

2016

2017

2018

15‐17

17‐18

16‐18

15‐18

2015

2016

2017

2018

15‐17

17‐18

16‐18

15‐18

TAM 114

Texas A&M

90.4

86.9

80.9

72.7

86.1

76.8

80.2

82.7

60.8

59.0

61.9

59.8

60.6

60.9

60.3

60.4

TAM 204§

Texas A&M

87.4

84.4

80.5

68.5

84.1

74.5

77.8

80.2

56.8

56.5

59.3

55.9

57.5

57.6

57.2

57.1

SY M

onumen

tSyngenta

89.8

79.3

81.1

70.0

83.4

75.5

76.8

80.1

59.3

57.4

60.3

57.8

59.0

59.1

58.5

58.7

WB Grainfield

Monsanto

91.4

81.1

78.7

68.9

83.7

73.8

76.2

80.0

59.9

57.9

60.3

57.6

59.4

59.0

58.6

58.9

SY Grit

Syngenta

89.0

83.7

76.3

70.8

83.0

73.5

76.9

79.9

59.0

58.1

61.2

57.8

59.4

59.5

59.0

59.0

T158

Limagrain

85.2

77.6

84.5

70.3

82.4

77.4

77.5

79.4

59.5

58.2

61.0

58.5

59.6

59.7

59.2

59.3

Winterhaw

kMonsanto

82.4

80.0

81.6

72.5

81.3

77.1

78.0

79.1

60.8

58.3

61.7

59.7

60.3

60.7

59.9

60.1

TAM 113

Texas A&M

84.9

78.6

79.0

73.1

80.8

76.1

76.9

78.9

59.6

57.6

62.0

59.2

59.7

60.6

59.6

59.6

Iba

Okla. St.

81.3

78.6

81.8

72.0

80.6

76.9

77.5

78.4

59.9

58.5

62.0

59.6

60.1

60.8

60.1

60.0

WB4458

Monsanto

84.1

80.0

71.3

68.8

78.5

70.1

73.4

76.1

59.5

56.5

60.6

57.8

58.8

59.2

58.3

58.6

TAM 304

Texas A&M

79.3

83.2

76.3

64.6

79.6

70.4

74.7

75.8

56.5

56.1

59.5

56.7

57.4

58.1

57.4

57.2

TAM 305

Texas A&M

84.5

79.2

76.3

62.5

80.0

69.4

72.7

75.6

60.1

58.6

61.7

58.2

60.1

60.0

59.5

59.7

TAM 111

Texas A&M

72.8

79.0

71.8

69.6

74.5

70.7

73.4

73.3

58.0

59.1

61.5

59.4

59.5

60.5

60.0

59.5

TAM 112

Texas A&M

76.2

75.0

62.6

74.5

71.3

68.6

70.7

72.1

58.9

59.6

61.7

59.2

60.1

60.5

60.2

59.9

TAM W

‐101‡

Texas A&M

66.5

66.5

59.9

65.2

64.3

62.5

63.8

64.5

57.4

56.5

60.2

58.6

58.1

59.4

58.5

58.2

Long Branch

Dyna‐Gro

78.0

81.3

73.1

77.2

77.5

57.0

59.3

57.1

58.2

57.8

CROPLAN EXP 69‐16

Croplan

90.3

69.5

79.9

60.1

57.8

59.0

SY Rugged

Syngenta

83.9

67.7

75.8

60.7

58.0

59.4

TAM 115 (TX11A001295Texas A&M

80.3

67.4

73.8

63.2

60.2

61.7

SY Flint

Syngenta

71.7

67.9

69.8

61.3

58.7

60.0

LCS Chrome

Limagrain

72.5

64.5

68.5

59.8

57.1

58.5

CROPLAN EXP 09‐17

Croplan

74.8

58.5

TAM 304RS†

Texas A&M

74.8

57.4

TAM 114ET

Texas A&M

74.1

60.0

TAM 205 (TX12V7415)Texas A&M

73.6

60.7

WB4418 (proposed)

Monsanto

71.1

57.9

CROPLAN EXP 56‐17

Croplan

70.2

59.9

LCS Pistol

Limagrain

64.0

57.7

WB4303

Monsanto

62.6

55.9

TX13M5625

Texas A&M

62.0

57.9

Average

83.0

79.4

77.3

69.4

79.6

73.3

75.3

77.1

59.1

57.8

60.9

58.4

59.3

59.6

59.0

59.1

Average of Pick varieties

83.4

79.5

78.4

72.8

80.4

75.5

76.8

78.4

59.9

58.6

61.7

59.1

60.1

60.5

59.9

59.9

Average of non‐Pick varieties

82.8

79.4

76.8

68.6

79.0

72.4

74.3

76.2

58.5

57.4

60.6

58.1

58.8

59.3

58.5

58.5

Advantage of Pick varieties (%

)0.8%

0.0%

2.1%

6.2%

1.8%

4.3%

3.3%

3.0%

2.4%

2.1%

1.8%

1.6%

2.1%

2.1%

2.4%

2.3%

# of test sites per rep

orting period

56

54

16

915

20

†Purified

 seed rela

ve to commercially available; ‡Historical check released

 in the 1970s; §Beardless.

Yield (Bu/A)

Test W

eight (Lbs./Bu)

Multi‐Year TW (Lbs./Bu)

Multi‐Year Yield (Bu/A)

Page 55: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Table 3.  Multi‐year DRYLAND W

heat Variety Trial Yields & Test Weights, 2015‐2018, Texas & NM High Plains.

Variety

Picks are Bold

Developer

2015

2016

2017

2018

15‐17

17‐18

16‐18

15‐18

2015

2016

2017

2018

15‐17

17‐18

16‐18

15‐18

LCS Mint

Limagrain

34.8

40.0

46.8

26.9

40.5

36.8

37.9

37.1

55.7

59.3

60.2

60.2

58.4

60.2

59.9

58.8

TAM 113

Texas A&M

32.5

38.5

51.3

25.1

40.8

38.2

38.3

36.9

54.9

58.9

61.4

58.3

58.4

59.8

59.5

58.4

WB‐Grainfield

Monsanto

38.6

37.7

48.0

23.0

41.4

35.5

36.2

36.8

53.5

57.9

59.3

56.8

56.9

58.0

58.0

56.9

T158

Limagrain

34.0

37.2

49.9

24.8

40.3

37.3

37.3

36.5

54.2

59.3

59.8

58.2

57.8

59.0

59.1

57.9

PlainsG

old Den

ali

PlainsG

old/CSU

33.4

39.0

47.9

24.8

40.1

36.4

37.2

36.3

56.0

59.2

59.4

56.8

58.2

58.1

58.5

57.9

TAM 204§

Texas A&M

36.7

35.5

47.8

23.0

40.0

35.4

35.4

35.7

53.4

56.6

56.7

56.6

55.6

56.6

56.6

55.8

TAM 114

Texas A&M

33.1

37.1

50.5

21.7

40.3

36.1

36.5

35.6

56.5

59.6

60.8

59.3

59.0

60.0

59.9

59.1

Winterhaw

kMonsanto

36.4

36.6

47.5

21.6

40.2

34.5

35.2

35.5

56.8

59.4

60.8

58.2

59.0

59.5

59.5

58.8

Iba

Okla. St.

35.8

35.4

47.4

22.6

39.5

35.0

35.1

35.3

55.3

59.6

60.6

60.1

58.5

60.4

60.1

58.9

SY M

onumen

tSyngenta

34.8

37.4

45.4

23.4

39.2

34.4

35.4

35.3

55.0

58.0

58.3

57.4

57.1

57.8

57.9

57.2

TAM 111

Texas A&M

35.2

35.4

47.8

22.6

39.4

35.2

35.3

35.2

54.2

59.2

59.7

59.6

57.7

59.6

59.5

58.2

TAM 112

Texas A&M

32.7

37.1

44.8

25.1

38.2

34.9

35.7

34.9

54.4

58.7

60.7

59.7

57.9

60.2

59.7

58.4

TAM 304

Texas A&M

35.5

34.3

42.0

19.2

37.3

30.6

31.8

32.8

52.1

56.0

57.8

56.6

55.3

57.2

56.8

55.6

TAM W

‐101‡

Texas A&M

32.2

28.1

39.1

20.8

33.2

30.0

29.3

30.1

54.9

57.7

59.9

57.0

57.5

58.5

58.2

57.4

Long Branch

Dyna‐Gro

39.5

51.5

27.2

39.4

39.4

57.8

58.2

59.3

58.8

58.4

WB4721

Monsanto

39.1

50.3

23.8

37.0

37.7

59.7

60.3

59.1

59.7

59.7

PlainsG

old Avery

PlainsG

old/CSU

34.3

50.2

28.3

39.2

37.6

57.9

59.1

58.8

58.9

58.6

TAM 115 (TX11A001295)

Texas A&M

50.4

25.6

38.0

62.4

60.8

61.6

CROPLAN EXP 69‐16

Croplan

51.3

24.0

37.7

59.9

58.9

59.4

LCS Chrome

Limagrain

44.1

21.5

32.8

58.6

53.4

56.0

TAM 112ET

Texas A&M

27.0

59.2

CROPLAN EXP 09‐17

Croplan

24.4

58.0

PlainsG

old Langin

PlainsG

old/CSU

24.1

58.6

LCS Pistol

Limagrain

23.3

58.6

TAM 205 (TX12V7415)

Texas A&M

22.4

59.8

TAM 114ET

Texas A&M

22.0

59.6

TAM 304RS†

Texas A&M

21.9

57.7

WB4462

Westbred

21.8

57.0

TX13M5625

Texas A&M

19.5

58.3

CROPLAN EXP 56‐17

Croplan

18.9

58.9

Average

34.7

36.6

47.7

23.3

39.3

35.7

36.0

35.3

54.8

58.5

59.7

58.4

57.7

59.0

58.8

57.8

Average of Pick varieties

33.4

38.2

48.9

24.6

40.0

36.7

37.2

36.2

55.2

59.3

60.5

59.1

58.3

59.8

59.6

58.5

Average of non‐Pick varieties

35.1

35.9

47.0

23.1

38.9

35.3

35.3

34.8

54.6

58.2

59.4

58.2

57.4

58.7

58.5

57.5

Advantage of Pick varieties (%

)‐4.9%

6.4%

4.1%

6.2%

3.0%

4.2%

5.4%

4.0%

1.1%

1.9%

1.9%

1.5%

1.6%

1.9%

2.0%

1.8%

# of test sites per rep

orting period

67

75

20

12

19

25

†Purified

 seed rela

ve to commercially available; ‡Historical check released

 in the 1970s; §Beardless.

Yield (Bu/A)

Test W

eight (Lbs./Bu)

Multi‐Year Yield (Bu/A)

Multi‐Year TW (Lbs./Bu)

Page 56: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Wheat Variety Grain Summary, 2017-2018 & Grain Variety Picks for Texas High Plains—2018-2019

Dr. Calvin Trostle, Texas A&M AgriLife Extension Service, Lubbock,

(806) 723-8432, [email protected] Dr. Jourdan Bell, Texas A&M AgriLife Extension Service, Amarillo

(806) 677-5600, [email protected] 2017-2018 Cropping Season in Review Across the Texas High Plains, much of the early (first half of September 2018) wheat for grazing or dual-purpose production was drilled into good soil moisture. This resulted in good stands and good early forage production. However, rain subsided in October, and much of the late wheat was dry sowed. The drought persisted across the Texas High Plains with the winter of 2017-2018 being one of the driest winters on record. Due to drought, producers pulled cattle off dryland wheat earlier than anticipated due to a lack of forage. Heavy fall forage production depleted soil water and deteriorated wheat conditions especially on dryland acres with many dryland fields not recovering. With irrigation, many producers maintain forage production as well as grain production. Some producers received rain in April and May, but rain was very localized. Where rainfall was received, it helped carry dryland wheat. In several areas, dry sowed winter wheat did not germinate until April. Spring temperatures where above average especially during pollination and early grain development. Yields of early planted ungrazed dryland wheat that established normally, if harvested, ranged from 10 to 20 bu/ac. Amazingly, a few yields on dryland wheat topped 30 bu/ac even though in-season rainfall was near 2”. This is a testament to the value of deep soil moisture that carried the crop. Irrigated wheat ranged 50 to 100 bu/ac depending on irrigation capacity. Harvest results for 2018 wheat variety trials is found in Table 2 (irrigated) and Table 3 (dryland). Wheat Grain Variety “Picks” for 2018-2019 Texas A&M AgriLife staff in College Station, Amarillo, and Lubbock have designated our annual wheat grain variety “Picks” for the 2018-2019 for four distinct variety testing regions of Texas. The High Plains results are discussed here. For a full list of state wheat grain Picks, see the summary document at http://varietytesting.tamu.edu/files/wheat/2019/2018-2019TexasWheatGrainVarietyPicks.pdf Continuing a long-time tradition, our ongoing Picks criteria include a minimum of three years of irrigated or dryland data in Texas A&M AgriLife regional variety trials across numerous annual locations. Furthermore, a “Pick” variety means this: “Given the data these are the varieties we would choose to include and emphasize on our farm for wheat grain production.”

Page 57: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Table 1. Texas A&M AgriLife wheat grain variety Picks for the Texas High Plains based on yield performance and consistency based on over 30 multi-year, multi-site irrigated and dryland trials harvested in 2015-2018. Leaf rust and stripe rust reactions are included (see footnote).

Wheat Variety "Picks", Texas High Plains. 2018-2019

Full Irrigation# Limited Irrigation Dryland

TAM 304§ (MS/MR) TAM 112 (S/S)& TAM 112 TAM 113 (R/R) TAM 113 TAM 113

TAM 114 (MR/R) TAM 114 TAM 114 Iba (MS/MR) Iba LCS Mint (S/MR) Winterhawk (MS/MR) Winterhawk WB4721 (R/MR)

T158 (MS/MR) T158 Wheat Variety "Watch” List, Texas High Plains. 2018-2019

PlainsGold Avery (MS/MS)

Long Branch (MS/MR) #Full irrigation in the Texas & eastern NM High Plains reflects a production system that also is

oriented to ample nitrogen fertilizer applications and likely fungicide application, in particular for leaf rust and stripe rust even when infection is minimal or perhaps even not evident (preventive applications).

&Leaf rust/stripe rust resistance ratings: R, Resistant; MR, moderately resistant; MS, moderately susceptible; and S, susceptible

§New purified seed source. Recent performance from commercial TAM 304 samples is significantly reduced.

Picks are not necessarily the numerical top yielders as important disease resistance traits (leaf or stripe rust, wheat streak mosaic virus), insect tolerance (greenbugs, Russian wheat aphid, wheat curl mite Hessian fly), or standability can also be important varietal traits that enable a producer to better manage potential risk. Varieties placed on our Watch List show promise but have insufficient data (most likely just two years) is yet available to make a conclusion. Changes in the High Plains Picks since 2017 Additions for 2018 Westbred WB4721 and Limagrain LCS Mint have performed well in the past 3+ years of dryland Texas High Plains production. They have appeared to be an improvement over varieties noted below that have been removed from the Picks list. Two additional varieties are noted on the Picks ‘Watch’ list. These varieties show promise, but we need more data to support further consideration. PlainsGold Avery out of Colorado has performed well in early High Plains testing. DynaGro’s Long Branch clearly has the yield potential to merit status as a Pick, but the grain quality is a concern, especially poor dough strength.

Page 58: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Deletions in 2018 & 2017 WB-Grainfield was removed as a Pick for all conditions due to middle-of-the road performance, and Iba was removed as a dryland Pick. What may be of greater interest to High Plains wheat growers is the removal of TAM 111 as a pick for all conditions back in 2016-2017. This variety is still planted on more Texas High Plains acres than any other variety. But TAM 111 performance has become erratic over the past couple of years, sometimes as much as 20% below trial averages. This may be in part due to full susceptibility to leaf and stripe rust. (TAM 112 is the same way, but there are other redeeming traits about TAM 112 that keep it as a Pick: a good yielder in tough conditions, wheat streak mosaic virus/wheat curl mite tolerance and greenbug tolerance.) Producers who have TAM 111 for seed in Fall 2019 don’t need to change varieties but should keep in mind that management for plant diseases may be key in preserving yield potential. Special High Plains Note on Beardless TAM 204 A glance at our multi-year grain yield data suggests TAM 204 merits consideration as a dryland and irrigated Pick in the High Plains. AgriLife staff have discussed this for several years. TAM 204 is tolerant of wheat curl mite/wheat streak mosaic virus, greenbugs, Hessian fly (important in the lower Rolling Plains), and stripe rust. This beardless variety was released for grazing potential and possible use as a dual-purpose wheat. Due to the emphasis on forage, grain milling, and baking qualities are a lesser priority among AgriLife’s TAM beardless varieties. Thus, the use of TAM 204, from AgriLife’s perspective is as a grazing and forage variety. Still, some producers will choose TAM 204 for grain. AgriLife recommends bearded wheats if grain production is your goal, but if you are in a dual-purpose system, or you later decide to go to grain rather than graze out, TAM 204 will yield well.

Page 59: Texas A&M AgriLife Wheat Tour May 22, 2019Breeders or seed company representatives discuss their trial entries IndigoAg wheat seed technology Seeding rate trial – Dr. Jourdan Bell

Texas A&M AgriLife Wheat Improvement Program