test report #63ahrinet.org/app_content/ahri/files/research/arep_final... · 2016-01-20 · test...

24
Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP) TEST REPORT #63 System Soft-optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton Unitary Rooftop Heat Pump-Heating Mode Performance Ken Schultz Marcos Perez-Blanco Steve Kujak Ingersoll Rand 3600 Pammel Creek Road La Crosse, WI 54601 January 18, 2016 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

Upload: others

Post on 31-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP)

TEST REPORT #63 System Soft-optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton Unitary Rooftop Heat Pump-Heating Mode Performance

Ken Schultz Marcos Perez-Blanco Steve Kujak Ingersoll Rand 3600 Pammel Creek Road La Crosse, WI 54601 January 18, 2016 This report has been made available to the public as part of the author company’s participation in the AHRI’s Low-GWP AREP.

Page 2: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 2 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

INTRODUCTION

This report documents tests performed on a 4 RT (14 kW) rooftop heat pump, to evaluate the performance of lower GWP refrigerants as alternatives to R410A in unitary air-conditioning and heat pump equipment. Compositions and GWPs are listed below in Table 1. The unit was run at the rating conditions specified in AHRI Standard 210/240 for heating mode performance. Tests were run using R410A (baseline), DR-55, R32, and DR-5A with performance of the three alternatives compared to the baseline R410A. The tests were performed in controlled ambient chambers at Ingersoll Rand/Trane’s La Crosse Development Laboratory in La Crosse, Wisconsin, from late-May through early-August 2015. Table 1. Refrigerants tested, with compositions and global warming potentials (GWPs). Name composition (%wt) GWP (AR4) GWP (AR5) R410A 50% R32 / 50% R125 2088 1924 DR-55 67% R32 / 7% R125 / 26% R1234yf 698 675 R32 100% R32 675 677 DR-5A 68.9% R32 / 31.1% R1234yf 466 466 The thermodynamic properties of R410A and R32 are based on NIST’s REFPROP v8.1.1 The thermodynamic properties of DR-55 and DR-5A are based on REFPROP v9.1 using mixing parameters for the R32/R1234yf and R125/R1234yf pairs provided Chemours (formerly DuPont).

DETAILS OF TEST SETUP

Description of Baseline System

A Precedent™ model WSC048E3ROA1J rooftop unit, manufactured by Trane, was chosen for refrigerant testing purposes. The unit is rated at a net heating capacity of 44,000 BTU/hr (12.9 kW) heating capacity and 3.40 COP, with a catalog refrigerant charge of 9.0 lbm (4.1 kg) of R410A. The unit is driven by an Alliance model SXA044B2BPA fixed speed scroll compressor with a displacement of 0.00148 ft³/rev (2.56 in³/rev or 0.0419 L/rev) lubricated with Emkarate RL32H POE oil. The compressor runs at 3500 RPM at 60 Hz input frequency for a displacement of 311 ft³/hr (8.82 m³/hr). The indoor and outdoor heat exchangers are of aluminum-fin/copper-tube construction with fixed speed fans.

Description of Modifications to System

The original factory-installed fixed TXVs for cooling and heating were both replaced with adjustable TXVs of the same size. Additionally the compressor was fitted with a variable frequency drive (VFD, Trane TR200 P5K5), which allowed the compressor speed (volumetric capacity) to be varied so that all the refrigerants could be tested at the same thermodynamic capacity. Measure- 1 The descriptions of R410A and R32 have not changed from REFPROP v8.1 to the current v9.1.

Page 3: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 3 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

ment of input power was made upstream of the VFD, however, the efficiency of the AFD is essentially constant (cataloged at 0.97) over the range of power and speed tested, so it has no effect on the comparisons between refrigerants.

Description of Tests Conducted

The method of test was consistent with Appendix M of AHRI Standard 210/240 with Addenda 1 and 2 (2008/2012), with operating conditions generally held within tighter tolerances. The indoor (ID) airflow rate was fixed at the catalog value of 1600 scfm for all tests. Figure 1 shows a diagram of the Precedent unit. In this diagram, the reversing valve is in the heating mode position. The points in the cycle at which measurements such as pressure and temperature were taken are indicated on the diagram. The accuracies of the various instrument types are listed in Table 2.

Table 2. Instrumentation accuracies. measurement accuracy thermocouples (uncalibrated) ±1°F RTD sensors (calibrated) ±0.1°F air-side pressure differences (calibrated) Rosemount 1151DP3S12 (30 inH2O full scale) ±0.075% of span

pressure transducers (calibrated) Honeywell DS-750 (750 psi full scale) ±0.1% full scale

refrigerant turbine meter (calibrated) Flow Technology FT4-8NE00-LEAH4 ±0.5% of reading

electrical power (calibrated) YEW WT230 (6 kW full scale)

± (0.1% of reading + 0.1% of range)

The reported heating capacities were calculated from airside flow rate and temperature (dry bulb and wet bulb) measurements. For confirmation, capacity was also calculated from refrigerant side flow rate and enthalpy measurements around the indoor coil, providing a check on energy balance. Internal property codes, consistent with ASHRAE and NIST REFPROP descriptions, were used for calculation of air and refrigerant thermodynamic properties. Tests were carried out at the rating points called out in AHRI Standard 210/240 for heating performance, listed in Table 3. The H2 conditions produce frosting on the outdoor evaporator coil, resulting in cyclic heat/defrost operation. The capacity and efficiency values reported here are integrated averages over a number of heat/defrost cycles acquired after several heat/defrost cycles had occurred and periodic steady-state had been established. Although the H3 conditions also result in frosting of the outdoor coil, the build-up rate is slow enough to allow essentially steady-state behavior. Performance at the H3 conditions was determined by averaging capacity and power consumption for 30 minute period following the termination of a defrost cycle.

Page 4: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 4 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Table 3. Conditions for the H1, H2, and H3 heating mode rating tests.

test indoor Tdb indoor Twb outdoor Tdb outdoor Twb H1 70°F / 21.1°C ≤ 60°F / 15.6°C 47°F / 8.3°C 43°F / 6.1°C H2 70°F / 21.1°C ≤ 60°F / 15.6°C 35°F / 1.7°C 33°F / 0.6°C H3 70°F / 21.1°C ≤ 60°F / 15.6°C 17°F / −8.3°C 15°F / −9.4°C

Refrigerant charge and compressor speed were taken from the A cooling condition as described in the previous report2 and summarized in Table 4. A charge sweep run with R410A in heating mode at the H1 conditions showed a peak in COP at the same 9.0 lbm (4.1 kg) charge determined from the cooling mode tests. The heating mode TXV was adjusted at the H1 conditions with each alternative refrigerant to deliver the same compressor suction superheat as obtained with R410A (~10°F/5.6°C).

RESULTS

Table 4 shows the refrigerant charge, TXV setting, and compressor speed used for each refrigerant. Also shown is the heating mode capacity and COP measured at the H1 rating point. Air-side capacities relative to the average of the R410A test points are shown in Figure 2. Capacity was very repeatable within ±1.5% for each refrigerant at the H1 point. Unit capacity was very similar with all refrigerants being within 2.5% of R410A. COP data are shown in Figure 3. COP was also very repeatable at the H1 point, generally within ±0.5% to ±1% for each refrigerant. DR-55 and DR-5A provided COPs ~1.5% better than R410A; R32’s COP was ~3% higher.

Table 4. Refrigerant charge, TXV position, and compressor speed selected for each refrigerant, along with the average capacity and COP obtained at the “H1” point for each.

Refrig # of runs

Charge (lbm)

TXV (turns)

AFD (Hz)

CAP wrt

R410A COP

wrt R410A

R410A 5 9.0 0 60 46,500 3.535 DR-55 3 8.2 1 CW 60 45,340 −2.5% 3.587 +1.5% R32 4 7.25 1 CW 55 45,370 −2.4% 3.647 +3.2% DR-5A 2 8.2 1½ CW 61 45,740 −1.6% 3.579 +1.3% CW is clockwise (in/closed), CAP is Air-side Capacity in BTU/hr. The air-side heating capacities and COPs (as integrated averages over a number of heating/defrost cycles) taken under the “H2” conditions are shown in Figure 4 and Figure 5, respectively. Significant variability in performance was observed during the H2 tests, especially with R410A. This can be attributed to several potential causes, one being variability in the frost build process and the (in)ability of the facility to hold chamber conditions perfectly as the unit switches between operating modes. 2 TEST REPORT #56, “SOFT-OPTIMIZED SYSTEM TEST OF R410A, DR-55, R32, AND DR-5A IN A 4-TON UNITARY ROOFTOP HEAT PUMP”, Schultz, Perez-Blanco, and Kujak, submitted to AHRI Low GWP AREP 29-Sep-2015.

Page 5: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 5 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Under the H2 defrost conditions, DR-55 provided about 10% additional capacity over R410A and R32 15% to 20% more capacity along with significantly higher efficiencies. Figure 6 shows time traces of heat pump status and compressor power draw during operating under H2 conditions for each refrigerant. As shown in Figure 7, the fraction of time spent in defrost mode with R32 was shorter than for the other refrigerants. The defrost period for R32 ranged from 2.5 to 3 minutes while being 5 to 10 minutes for the other refrigerants. Heating periods ranged from 35 to 50 minutes for all refrigerants. The differences in defrost periods appear to be driven by differences in controls response. Defrost mode is supposed to terminate when the outdoor coil sensor (attached to the inlet to the bottom circuit) reading (OCT) is a specified offset above the outdoor air temperature. With R32 in the unit, defrost periods terminated when OCT was slightly above the setpoint. With R410A and DR-5A, the OCT reading was 20°Fd to 30°Fd beyond the setpoint before defrost ended. With DR-55, the OCT reading was 10°Fd to 20°Fd higher than the setpoint when defrost stopped. Although this phenomenon was generally repeatable, it is not understood how or why the controls response should be dependent on the refrigerant present.3 Given the similarities in properties of these four refrigerants, it would be expected that similar levels of performance should be obtained if defrost occurred at common initiation and termination temperatures. (This also suggests that the level of performance obtained with R32 should be approachable with the other refrigerants.) Heating capacities and COPs relative to R410A at the “H3” conditions are shown in Figure 11. At this colder outdoor condition, all refrigerants produced slightly lower capacities, ranging from R32 being 1% lower to DR-55 being 4% lower than R410A. COPs were equal to 1% lower with DR-5A and DR-55 and up by 4% with R32. The compressor discharge temperatures (CDTs) measured are shown in Figure 9 for the H1 tests and in Figure 10 for the H3 tests. R32 ran about 20°Fd higher than the baseline R410A. DR-5A ran about 10°Fd to 14°Fd higher and DR-55 ran only 8°Fd higher. Similar results were obtained during the heating segments of the H2 tests. All CDTs were well below the maximum operating temperature limit of 250°F. Heating mode cyclic degradation coefficients (CDh), calculated from the H1C (cyclic) tests with each refrigerant, are shown in Figure 11, along with percent differences relative to R410A. All the CDh values are quite small, so the differences between them are of little significance.

SUMMARY

Performance tests have been run on a standard production rooftop unit of nominal 44,000 BTU/hr heating capacity and 3.40 COP with R410A, serving as the baseline, and alternative refrigerants DR-55, R32, and DR-5A. No alterations were made to the unit other than replacing the fixed TXVs with adjustable TXVs to allow keeping the superheats with the low GWP refrigerants consistent with the R410A baseline, and installing a VFD on the compressor to match the baseline capacity. 3 The OCT values used here are readings from a thermocouple attached to the OCT sensor well. The OCT thermocouple readings closely matched readings from another thermocouple attached to the same circuit approximately 3 inches upstream. Although there might have been an offset between the OCT sensor and thermocouple readings, it would be expected to be a fixed value not dependent on the refrigerant being used.

Page 6: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 6 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

At the H1 and H3 (continuous run) heating points, all three alternative refrigerants showed a small (1% to 4%) decrease in capacity. All three alternatives showed small improvements in COP at the H1 point (1% to 2%). DR-55 showed a small decrease (~1%) at the H3 point while R32 showed a small increase (~4%). At the H2 cyclic defrost test condition, there was a modest increase in capacity with DR-55 (~10%) and a significant increase (~20%) with R32. There was a large improvement in COP at the H2 condition when running with DR-55 (10% to 15%) and R32 (~25%). This was driven mainly by the shorter defrost periods with DR-55 and especially so with R32. This appears to have been driven by the controller tripping the end of defrost at quite different temperatures between the refrigerants. It is unclear at this time why this happened. It is expected that differences in performance under frosting conditions between the refrigerants would be much smaller with consistent trip points. Compressor discharge temperatures (CDTs) were slightly higher when running with DR-55 and DR-5A, typically 5 °Fd to 10 °Fd (3 °Cd to 6 °Cd). As expected, the highest discharge temperatures were measured with R32, being roughly 20 °Fd higher than with R410A.

Figure 1. Precedent unit test setup indicating measurement locations. Heating mode flow directions are shown.

Page 7: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 7 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Figure 2. Air-side heating capacity at the “H1” conditions relative to the average of the R410A baseline points.

Figure 3. Heating COP at the “H1” conditions relative to the average of the R410A baseline points.

Page 8: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 8 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Figure 4. Air-side heating capacity (as an integrated average over a number of heating/defrost cycles) at the “H2” conditions relative to the average of the R410A baseline points. Note the order of runs, starting with R410A, progressing with DR-55, R32, and DR-5A through Run 127. Additional runs were then collected with R410A, R32, and DR-55 (in that order).

Figure 5. Heating COP (as an integrated average over a number of heating/defrost cycles) at the “H2” conditions relative to the average of the R410A baseline points.

Page 9: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 9 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

R410A

R32

DR-55

DR-5A

Figure 6. Traces with time (in minutes) of compressor power (in kW on left axis) and heat pump status (right axis, 0 = defrost mode, 500 = heating mode) while operating at the H2 conditions.

Page 10: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 10 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Figure 7. Fraction of time that unit spent in heating mode (bottom segment of the columns) and defrost mode (upper segment of the columns) during H2 tests.

Figure 8. Performance under H3 conditions. Left) Air-side capacity relative to R410A. Right) Heating COP relative to R410A.

Page 11: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 11 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

Figure 9. Compressor discharge temperatures measured during operation at the H1 test conditions.

Figure 10. Compressor discharge temperatures measured during operation at the H3 test conditions.

Figure 11. Left: Cyclic degradation coefficients determined by the H1C test. Right: Percent difference of cyclic degradation coefficients relative to R410A.

Page 12: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Soft-Optimized Tests of a 4-RT Unitary Rooftop Heat Pump with R410A, DR-55, R32, and DR-5A — Heating Mode Performance — page 12 of 12

IRUnitaryHeatPumpTestReport_Htg_v5b.docx Marcos E. Perez-Blanco & Ken Schultz • Technology Validation Group • Modeling & Simulation NoE

DATA TABLES

Tables of data recorded for the H1 and H3 test points from selected runs for each refrigerant follow. Note: The value for the compressor/unit lubricant charge is unknown (not listed on any of the unit labels nor in the catalog). The standard production lubricant charged was used for both the cooling and heating tests.

Page 13: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant DR‐55 Run #70

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #12

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 60 Hz 1.00

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.72 kg 9.0 8.2 lbm 0.91

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 2.2 0.8 % 2.2 0.8 %

Air‐side Capacity 13.65 13.29 kW 46,590 45,640 Btu/hr 0.980

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.865 3.709 kW 3.865 3.709 kW 0.960

Power to Compressor 3.016 2.855 kW 3.016 2.855 kW 0.947

COP or EER (total) 3.53 3.58 [] 3.53 3.61 [] 1.021

COP or EER (compressor only) 4.53 4.66 [] 4.53 4.66 [] 1.028

Refrigerant Mass Flow Rate 239 158 kg/hr 527 432 lbm/hr 0.820

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

6.1

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

47

43

8.3

3500

H1

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 14: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #12 Alternate Refrig: DR‐55 Run #70

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.12 99.19 kPa 14.38 14.39 psia 1.001

Evaporator (fin‐&tube coil)

fluid

flow rate 45.02 45.27 L/hr 1590 1599 scfm 1.005

entering DBT 21.1 21.1 °C 70.1 70.1 °F –0.0°Fd

entering WBT 14.7 14.3 °C 58.5 57.8 °F –0.7°Fd

entering DPT 10.4 9.6 °C 50.7 49.4 °F –1.4°Fd

leaving DBT 36.1 35.7 °C 97.0 96.3 °F –0.7°Fd

leaving WBT 19.9 19.5 °C 67.8 67.1 °F –0.7°Fd

leaving DPT 10.7 10.0 °C 51.3 50.1 °F –1.2°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT 8.3 8.4 °C 47.0 47.1 °F +0.1°Fd

entering DPT 10.4 9.7 °C 50.8 49.4 °F –1.4°Fd

entering w 0.00804 0.00763 kgW/kgDA 0.00804 0.00763 lbmW/lbmDA –0.00040

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction 4.6 775 5.3 747 40.2 112.4 41.5 108.3

discharge 64.7 2307 68.6 2192 148.4 334.6 155.5 317.9

suction SH 5.5 5.3 9.9 9.5

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 61.2 2267 64.2 2158 142.2 328.9 147.6 313.0

outlet 34.1 5435 33.6 5436 93.4 788.3 92.5 788.4

outlet subcooling 3.2 3.1 5.8 5.6

Expansion Device (TXV)

inlet 32.3 2206 31.6 2118 90.1 320.0 88.9 307.2

inlet subcooling 3.8 4.4 6.9 7.9

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) 2.0 861 1.4 812 35.7 124.8 34.5 117.7

outlet 2.5 778 3.0 747 36.5 112.8 37.4 108.4

outlet superheat 3.3 2.9 5.9 5.3

Refrigerant Reversing Valve

LP inlet 2.7 778 3.3 747 36.9 112.8 37.9 108.4

LP outlet 4.8 775 5.5 747 40.6 112.4 41.8 108.3

HP inlet 63.4 2307 66.9 2192 146.1 334.6 152.5 317.9

HP outlet 60.2 2206 63.2 2118 140.3 320.0 145.8 307.2

H1

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd

Page 15: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant DR‐55 Run #145

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #29

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 60 Hz 1.00

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.72 kg 9.0 8.2 lbm 0.91

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 16.1 11.1 % 16.1 11.1 %

Air‐side Capacity 13.65 13.29 kW 25,270 24,230 Btu/hr 0.959

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.498 3.383 kW 3.498 3.383 kW 0.967

Power to Compressor 2.616 2.501 kW 2.616 2.501 kW 0.956

COP or EER (total) 3.90 3.93 [] 2.12 2.10 [] 0.992

COP or EER (compressor only) 5.22 5.32 [] 5.22 5.32 [] 1.018

Refrigerant Mass Flow Rate 239 158 kg/hr 295 238 lbm/hr 0.809

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

‐9.4

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

17

15

‐8.3

3500

H3

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 16: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #29 Alternate Refrig: DR‐55 Run #145

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.07 99.24 kPa 14.37 14.39 psia 1.002

Evaporator (fin‐&tube coil)

fluid

flow rate 45.56 45.41 L/hr 1609 1604 scfm 0.997

entering DBT 21.2 21.2 °C 70.1 70.2 °F +0.1°Fd

entering WBT 13.1 13.5 °C 55.7 56.3 °F +0.7°Fd

entering DPT 6.9 7.8 °C 44.5 46.0 °F +1.5°Fd

leaving DBT 29.2 28.9 °C 84.6 84.1 °F –0.5°Fd

leaving WBT 16.1 16.3 °C 61.0 61.4 °F +0.4°Fd

leaving DPT 6.8 7.7 °C 44.3 45.9 °F +1.6°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT ‐ 8.7 ‐ 8.6 °C 16.3 16.5 °F +0.3°Fd

entering DPT 7.0 7.8 °C 44.6 46.1 °F +1.5°Fd

entering w 0.00635 0.00671 kgW/kgDA 0.00635 0.00671 lbmW/lbmDA +0.00036

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction ‐ 8.6 449 5.3 747 16.4 65.2 41.5 108.3

discharge 67.0 1933 68.6 2192 152.6 280.4 155.5 317.9

suction SH 8.2 5.3 14.7 9.5

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 59.3 1916 64.2 2158 138.7 277.8 147.6 313.0

outlet 28.5 5436 33.6 5436 83.4 788.4 92.5 788.4

outlet subcooling 2.0 3.1 3.6 5.6

Expansion Device (TXV)

inlet 25.6 1898 31.6 2118 78.1 275.3 88.9 307.2

inlet subcooling 4.6 4.4 8.3 7.9

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) ‐ 14.2 497 1.4 812 6.4 72.0 34.5 117.7

outlet ‐ 11.9 449 3.0 747 10.6 65.1 37.4 108.4

outlet superheat 4.9 2.9 8.9 5.3

Refrigerant Reversing Valve

LP inlet ‐ 11.4 449 3.3 747 11.6 65.1 37.9 108.4

LP outlet ‐ 8.0 449 5.5 747 17.6 65.2 41.8 108.3

HP inlet 64.8 1933 66.9 2192 148.6 280.4 152.5 317.9

HP outlet 58.1 1898 63.2 2118 136.5 275.3 145.8 307.2

H3

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd

Page 17: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant R32 Run #102

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #12

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 55 Hz 0.92

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.29 kg 9.0 7.3 lbm 0.81

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 2.2 2.3 % 2.2 2.3 %

Air‐side Capacity 13.65 13.29 kW 46,590 45,360 Btu/hr 0.974

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.865 3.653 kW 3.865 3.653 kW 0.945

Power to Compressor 3.016 2.802 kW 3.016 2.802 kW 0.929

COP or EER (total) 3.53 3.64 [] 3.53 3.64 [] 1.030

COP or EER (compressor only) 4.53 4.74 [] 4.53 4.74 [] 1.048

Refrigerant Mass Flow Rate 239 158 kg/hr 527 348 lbm/hr 0.659

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

6.1

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

47

43

8.3

3500

H1

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 18: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #12 Alternate Refrig: R32 Run #102

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.12 98.90 kPa 14.38 14.34 psia 0.998

Evaporator (fin‐&tube coil)

fluid

flow rate 45.02 45.31 L/hr 1590 1600 scfm 1.006

entering DBT 21.1 21.2 °C 70.1 70.1 °F +0.0°Fd

entering WBT 14.7 14.4 °C 58.5 57.9 °F –0.6°Fd

entering DPT 10.4 9.7 °C 50.7 49.5 °F –1.2°Fd

leaving DBT 36.1 35.6 °C 97.0 96.1 °F –0.9°Fd

leaving WBT 19.9 19.7 °C 67.8 67.5 °F –0.4°Fd

leaving DPT 10.7 10.6 °C 51.3 51.1 °F –0.2°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT 8.3 8.3 °C 47.0 47.0 °F –0.0°Fd

entering DPT 10.4 9.8 °C 50.8 49.6 °F –1.2°Fd

entering w 0.00804 0.00769 kgW/kgDA 0.00804 0.00769 lbmW/lbmDA –0.00034

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction 4.6 775 5.3 808 40.2 112.4 41.5 117.2

discharge 64.7 2307 76.7 2303 148.4 334.6 170.1 334.0

suction SH 5.5 5.5 9.9 9.9

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 61.2 2267 70.8 2277 142.2 328.9 159.4 330.2

outlet 34.1 5435 34.4 5433 93.4 788.3 93.9 788.0

outlet subcooling 3.2 2.2 5.8 3.9

Expansion Device (TXV)

inlet 32.3 2206 32.2 2251 90.1 320.0 89.9 326.4

inlet subcooling 3.8 3.9 6.9 7.1

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) 2.0 861 1.3 852 35.7 124.8 34.3 123.6

outlet 2.5 778 2.8 808 36.5 112.8 37.1 117.2

outlet superheat 3.3 3.0 5.9 5.5

Refrigerant Reversing Valve

LP inlet 2.7 778 3.1 808 36.9 112.8 37.6 117.2

LP outlet 4.8 775 5.5 808 40.6 112.4 41.9 117.2

HP inlet 63.4 2307 74.7 2303 146.1 334.6 166.4 334.0

HP outlet 60.2 2206 69.9 2251 140.3 320.0 157.8 326.4

H1

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd

Page 19: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant R32 Run #100

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #29

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 55 Hz 0.92

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.29 kg 9.0 7.3 lbm 0.81

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 16.1 16.0 % 16.1 16.0 %

Air‐side Capacity 13.65 13.29 kW 25,270 25,010 Btu/hr 0.990

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.498 3.326 kW 3.498 3.326 kW 0.951

Power to Compressor 2.616 2.444 kW 2.616 2.444 kW 0.935

COP or EER (total) 3.90 4.00 [] 2.12 2.20 [] 1.041

COP or EER (compressor only) 5.22 5.44 [] 5.22 5.44 [] 1.042

Refrigerant Mass Flow Rate 239 158 kg/hr 295 204 lbm/hr 0.693

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

‐9.4

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

17

15

‐8.3

3500

H3

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 20: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #29 Alternate Refrig: R32 Run #100

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.07 99.16 kPa 14.37 14.38 psia 1.001

Evaporator (fin‐&tube coil)

fluid

flow rate 45.56 45.28 L/hr 1609 1599 scfm 0.994

entering DBT 21.2 21.2 °C 70.1 70.1 °F +0.0°Fd

entering WBT 13.1 13.5 °C 55.7 56.2 °F +0.6°Fd

entering DPT 6.9 7.7 °C 44.5 45.8 °F +1.3°Fd

leaving DBT 29.2 29.2 °C 84.6 84.5 °F –0.1°Fd

leaving WBT 16.1 16.4 °C 61.0 61.6 °F +0.6°Fd

leaving DPT 6.8 7.8 °C 44.3 46.0 °F +1.7°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT ‐ 8.7 ‐ 8.7 °C 16.3 16.3 °F +0.1°Fd

entering DPT 7.0 7.7 °C 44.6 45.9 °F +1.3°Fd

entering w 0.00635 0.00667 kgW/kgDA 0.00635 0.00667 lbmW/lbmDA +0.00032

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction ‐ 8.6 449 5.3 808 16.4 65.2 41.5 117.2

discharge 67.0 1933 76.7 2303 152.6 280.4 170.1 334.0

suction SH 8.2 5.5 14.7 9.9

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 59.3 1916 70.8 2277 138.7 277.8 159.4 330.2

outlet 28.5 5436 34.4 5433 83.4 788.4 93.9 788.0

outlet subcooling 2.0 2.2 3.6 3.9

Expansion Device (TXV)

inlet 25.6 1898 32.2 2251 78.1 275.3 89.9 326.4

inlet subcooling 4.6 3.9 8.3 7.1

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) ‐ 14.2 497 1.3 852 6.4 72.0 34.3 123.6

outlet ‐ 11.9 449 2.8 808 10.6 65.1 37.1 117.2

outlet superheat 4.9 3.0 8.9 5.5

Refrigerant Reversing Valve

LP inlet ‐ 11.4 449 3.1 808 11.6 65.1 37.6 117.2

LP outlet ‐ 8.0 449 5.5 808 17.6 65.2 41.9 117.2

HP inlet 64.8 1933 74.7 2303 148.6 280.4 166.4 334.0

HP outlet 58.1 1898 69.9 2251 136.5 275.3 157.8 326.4

H3

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd

Page 21: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant DR‐5A Run #125

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #12

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 61 Hz 1.02

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.72 kg 9.0 8.2 lbm 0.91

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 2.2 ‐0.1 % 2.2 ‐0.1 %

Air‐side Capacity 13.65 13.29 kW 46,590 45,800 Btu/hr 0.983

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.865 3.740 kW 3.865 3.740 kW 0.968

Power to Compressor 3.016 3.299 kW 3.016 3.299 kW 1.094

COP or EER (total) 3.53 3.55 [] 3.53 3.59 [] 1.016

COP or EER (compressor only) 4.53 4.03 [] 4.53 4.03 [] 0.890

Refrigerant Mass Flow Rate 239 158 kg/hr 527 421 lbm/hr 0.798

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

6.1

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

47

43

8.3

3500

H1

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 22: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #12 Alternate Refrig: DR‐5A Run #125

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.12 99.27 kPa 14.38 14.40 psia 1.002

Evaporator (fin‐&tube coil)

fluid

flow rate 45.02 45.39 L/hr 1590 1603 scfm 1.008

entering DBT 21.1 21.1 °C 70.1 70.1 °F +0.0°Fd

entering WBT 14.7 14.3 °C 58.5 57.7 °F –0.8°Fd

entering DPT 10.4 9.5 °C 50.7 49.1 °F –1.6°Fd

leaving DBT 36.1 35.8 °C 97.0 96.4 °F –0.6°Fd

leaving WBT 19.9 19.6 °C 67.8 67.3 °F –0.6°Fd

leaving DPT 10.7 10.2 °C 51.3 50.4 °F –0.9°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT 8.3 8.4 °C 47.0 47.1 °F +0.1°Fd

entering DPT 10.4 9.6 °C 50.8 49.2 °F –1.6°Fd

entering w 0.00804 0.00756 kgW/kgDA 0.00804 0.00756 lbmW/lbmDA –0.00048

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction 4.6 775 5.4 731 40.2 112.4 41.6 106.0

discharge 64.7 2307 69.9 2178 148.4 334.6 157.9 315.9

suction SH 5.5 5.5 9.9 9.9

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 61.2 2267 65.3 2146 142.2 328.9 149.6 311.2

outlet 34.1 5435 33.4 5434 93.4 788.3 92.2 788.2

outlet subcooling 3.2 3.4 5.8 6.2

Expansion Device (TXV)

inlet 32.3 2206 31.3 2106 90.1 320.0 88.3 305.5

inlet subcooling 3.8 4.8 6.9 8.7

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) 2.0 861 1.0 795 35.7 124.8 33.8 115.4

outlet 2.5 778 3.1 731 36.5 112.8 37.6 106.1

outlet superheat 3.3 3.2 5.9 5.8

Refrigerant Reversing Valve

LP inlet 2.7 778 3.3 731 36.9 112.8 37.9 106.1

LP outlet 4.8 775 5.6 731 40.6 112.4 42.0 106.0

HP inlet 63.4 2307 68.1 2178 146.1 334.6 154.7 315.9

HP outlet 60.2 2206 64.3 2106 140.3 320.0 147.8 305.5

H1

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd

Page 23: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 1

Trane Test Point:

Basic Information

Alternative Refrigerant DR‐5A Run #128

Alternative Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Baseline Refrigerant R410A Run #29

Baseline Lubricant Type and ISO Viscosity POE – Emkarate RL32H

Make and Model of System Precedent Rooftop Heat Pump, WSC048E3

Nominal Capacity and Type of System 48,500 Btu/hr cooling (A) / 44,000 Btu/hr heating (H1)

Comparison Data Base Alt. SI Units Base Alt. IP Units Ratio

Mode (heating/cooling) heating

Compressor Type scroll, Alliance model SXA044B2BPA

Compressor Displacement m³/hr ft³/hr

Nominal Motor Size kW hp

Motor Speed (w/60 Hz input) Hz 60 61 Hz 1.02

Expansion Device Type TXV (Emerson: cooling = AACE4 ZW195, heating = AAE3 ZW195)

Lubricant Charge L qt

Refrigerant Charge 4.08 3.72 kg 9.0 8.2 lbm 0.91

°C °F

Entering WBT °C °F

m³/min scfm

°C °F

°C °F

EB = Qrefrig/Qair −1 16.1 11.0 % 16.1 11.0 %

Air‐side Capacity 13.65 13.29 kW 25,270 24,530 Btu/hr 0.971

Sensible Capacity n/a n/a kW n/a n/a Btu/hr n/a

Total System Power Input 3.498 3.403 kW 3.498 3.403 kW 0.973

Power to Compressor 2.616 2.527 kW 2.616 2.527 kW 0.966

COP or EER (total) 3.90 3.91 [] 2.12 2.11 [] 0.998

COP or EER (compressor only) 5.22 5.26 [] 5.22 5.26 [] 1.008

Refrigerant Mass Flow Rate 239 158 kg/hr 295 230 lbm/hr 0.780

Other System Changes

The unit tested was modified from original production by replacing fixed TXVs with adjustable TXVs of the

same size and installing a VFD on the compressor to allow matching baseline capacity.  Compressor speed

   was set by matching cooling capacity at the "A" conditions.  Refrigerant charge was chosen to maximize

   EER at the "A" conditions (essentially the same as matching the baseline condenser exit subcooling).

continued on next page …

‐9.4

Indoor 

Air 

Target

Entering DBT

Flow rate (mixed)

Outdoor 

Air

Dry Bulb

Wet Bulb

70

60

1600

21.1

15.6

45.3

17

15

‐8.3

3500

H3

? ?

Manufacturer:

04/Nov/2015

8.82 311

2.83 3.8

lalks
Text Box
(unknown)
lalks
Text Box
(unknown)
Page 24: TEST REPORT #63ahrinet.org/App_Content/ahri/files/RESEARCH/AREP_Final... · 2016-01-20 · TEST REPORT #63 -optimization Tests of Refrigerant R-32, DR-5A, and DR-55 in a R-410A 4-ton

Low GWP AREP SOFT‐OPTIMIZED SYSTEM TEST DATA FORM page 2

Type of System: Precedent RTU HP Test Point:

Baseline Refrig: R410A Run #29 Alternate Refrig: DR‐5A Run #128

Water/Air Side Data Base Alt. SI Units Base Alt. IP Units Ratio

barametric pressure 99.07 98.97 kPa 14.37 14.35 psia 0.999

Evaporator (fin‐&tube coil)

fluid

flow rate 45.56 45.36 L/hr 1609 1602 scfm 0.996

entering DBT 21.2 21.2 °C 70.1 70.2 °F +0.1°Fd

entering WBT 13.1 11.6 °C 55.7 52.9 °F –2.8°Fd

entering DPT 6.9 2.8 °C 44.5 37.1 °F –7.4°Fd

leaving DBT 29.2 29.1 °C 84.6 84.3 °F –0.2°Fd

leaving WBT 16.1 14.8 °C 61.0 58.7 °F –2.3°Fd

leaving DPT 6.8 3.4 °C 44.3 38.1 °F –6.2°Fd

Condenser (fin‐&‐tube coil)

fluid

flow rate L/hr scfm

entering DBT ‐ 8.7 ‐ 8.5 °C 16.3 16.7 °F +0.5°Fd

entering DPT 7.0 2.9 °C 44.6 37.2 °F –7.3°Fd

entering w 0.00635 0.00477 kgW/kgDA 0.00635 0.00477 lbmW/lbmDA –0.00158

Refrigerant Side 

T (°C) P (kPa) T (°C) P (kPa) T (°F) P (psia) T (°F) P (psia)

Compressor (scroll)

suction ‐ 8.6 449 5.4 731 16.4 65.2 41.6 106.0

discharge 67.0 1933 69.9 2178 152.6 280.4 157.9 315.9

suction SH 8.2 5.5 14.7 9.9

Condenser (refrig‐to‐air fin‐&‐tube coil)

inlet 59.3 1916 65.3 2146 138.7 277.8 149.6 311.2

outlet 28.5 5436 33.4 5434 83.4 788.4 92.2 788.2

outlet subcooling 2.0 3.4 3.6 6.2

Expansion Device (TXV)

inlet 25.6 1898 31.3 2106 78.1 275.3 88.3 305.5

inlet subcooling 4.6 4.8 8.3 8.7

Evaporator (refrig‐to‐air fin‐&‐tube coil)

inlet (header) ‐ 14.2 497 1.0 795 6.4 72.0 33.8 115.4

outlet ‐ 11.9 449 3.1 731 10.6 65.1 37.6 106.1

outlet superheat 4.9 3.2 8.9 5.8

Refrigerant Reversing Valve

LP inlet ‐ 11.4 449 3.3 731 11.6 65.1 37.9 106.1

LP outlet ‐ 8.0 449 5.6 731 17.6 65.2 42.0 106.0

HP inlet 64.8 1933 68.1 2178 148.6 280.4 154.7 315.9

HP outlet 58.1 1898 64.3 2106 136.5 275.3 147.8 305.5

H3

Base Alt. Base Alt.

04/Nov/2015

air

air

not msrd not msrd