tektronix confidential1 signal integrity analysis of gigabit interconnects olie kreidler tektronix,...

155
Tektronix Confidential 1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc.

Upload: annice-french

Post on 25-Dec-2015

252 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential1

Signal Integrity Analysisof Gigabit Interconnects

Olie Kreidler Tektronix, Inc.

Page 2: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential2

Signal Integrity (SI): Digital Becomes Analog

“At high frequencies … crosstalk and signal reflections can be perceived as logic triggers, and can be responsible for erroneous signal patterns”

– EE Times, April 17, 1998, Special Section on Interconnects

Page 3: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential3

Industry Trends and Issues

On-going trends and issues– Trends: faster rise times, clock frequencies, increasing

interconnect complexity– Requirement: increasing need for signal integrity analysis and

SPICE / IBIS interconnect modeling

New trends and requirements– Trends:

S-parameters and eye diagrams are becoming part of compliance testing for passive PHY

All standards currently are differential and serial– Requirements

Eye diagram and S-parameter compliance testing must be performed in differential mode

Frequency dependent losses need to be modeled

Page 4: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential4

Outline

Interconnect Measurement Accuracy Issues TDR/T and VNA Measurement Basics

App Note: “TDR and VNA Measurement Primer”– Impedance Measurements and IConnect® True Impedance

Profile – Time Domain S-parameter Measurements– Eye Diagram Measurements – TDR Probing and Fixturing

Page 5: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

2007/06/10 Confidential V1.15

High-Speed Serial Data Link Analysis The Measurement Challenge - A Closed Eye

An “Open Eye” at the Transmitter

a “Closed Eye” at the Receiver

How to measure this eye?

path

+

-

+

-

Tx +

-

path+

-

+

-

path+

-

+

-

+

-

Rcv

EQ

UA

LIZ

ER

+

-

Rcv

The risetime of the channel is relatively slow compared to the very fast 1’st channel. i.e. modern channel’s risetime is quite longer than the UI, thus the eye blures and ‘ISI’-s itself.

Page 6: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

2007/06/10 Confidential V1.16

High-Speed Serial Data Link Analysis The Serial Data’s Solution to a Closed Eye

An “Open Eye” at the Transmitter

a “Closed Eye” at the Receiver

path

+

-

+

-

Tx +

-

path+

-

+

-

path+

-

+

-

+

-

Rcv

EQ

UA

LIZ

ER

+

-

Rcv

Equalize it!

+

-

EQ.

+

-

Rx

Equalization is the answer for the digital receiver. The eye opens at the input of the receiver, the receiver can decode the signal.

Page 7: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

2007/06/10 Confidential V1.17

High-Speed Serial Data Link Analysis What should the Measurement do? - simple:do what your Tx/Rx does: implement equalization!

An “Open Eye” at the Transmitter

a “Closed Eye” at the Receiver

path

+

-

+

-

Tx +

-

path+

-

+

-

path+

-

+

-

+

-

Rcv

EQ

UA

LIZ

ER

+

-

Rcv

Equalize it!

+

-

EQ.

+

-

Rx

Equalization is the answer to the eSerial receiver, so SW-implemented Equalization on the scope is also the answer to T&M.

-opens the eye for display (the scope-‘receiver’)

-Lets the user view ‘the inside’ of the Receiver This is now in your scope

Page 8: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential8

Tek Solution

DSA8200 with the TDR Module

80E04 reflected rise time: – 35 ps

80E10 reflected rise time– 12ps / 15ps

8 acquisition channels– 8-port TDR– 4-port True Differential TDR

Continuously stabilized rho and impedance waveforms

All standard measurements available on rho and impedance waveforms

Page 9: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

TDR Overview - Typical System

Incident Step

50

Step Generator

Reflections

Sampler

t = 050

Incident Step

Incident

Reflection

Test deviceTest device

Probe

Impedance reference

Page 10: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

TDR Waveform Characteristics

TDR systems observe the superposition of incident and reflected signals at source

Time separation t1-t0 assures ability to discern difference

Timet0 t1

incidentV

reflectedV

Page 11: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

TDR Rho Units Definition

Time

+ 1

0

- 1

t0 t1

0at 0 and ZZV

V

incident

reflected

Characteristic (Z = Z0)

Amplitude

incidentV

reflectedV

Page 12: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

KCL Applied at Discontinuity Transmission lines support propagation with specific

characteristic impedance Z

Reflected and forward propagating signals will be such that i = 0 is satisfied at discontinuity

Can easily solve for Z knowing , Z0, and KCL for lumped circuits

StepSource

Forward

(Z = Z0)

Incident

ReflectedDiscontinui

ty

Z0

Page 13: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Solution for Z Units

0

0

ZZ

ZZ

1

10ZZ

Where– Z0 is the known reference impedance– the sampling oscilloscopedirectly measures – Z is the calculated test device impedance

Note textbooks usually show reversed expression

Page 14: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

TDR Waveforms - Simple Cases

Waveforms with Open, Short and 50 terminations

AmplitudeOpen (Z =)

(Z = 50)

Short (Z = 0)

Time

reflected =+1

+ 1

0

- 1

t0 t1

incident=+1 reflected =-1

Page 15: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential15

TDS Measurement Basics

TDR Block Diagram

Z termination

C ab le: Z 0, tdR source

TD

R O

scill

osc

op

e F

ron

t P

an

el

R source = 50 Z 0 = 50 then V inc ident = ½ V

V inc identV re flected

V

D U T: Z D U T

½ V

0

Z load > Z 0

Z load < Z 0

V •Z load / (Z load + Z 0)V

½ V

0

O pen c ircu it

Short c irc u it

M atched load

Page 16: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential16

TDR Measurements Basics

Inductance and Capacitance Analysis

L-C d isco ntinuity

C -L -C d iscontinuity

Z 0Z 0

Z 0Z 0

S hunt C d isco ntinuity

S eries L d isco ntinui ty

Z 0 Z 0

Z 0Z 0

½ V

0

½ V

0

½ V

0

½ V

0

Page 17: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential17

Measurement Tools: Z-line

Z-line-Based Measurements

2

12

1t

t

dttZL )( 2

1

1

2

1t

t

dttZ

C)(

t2

t1

t2

t1

Page 18: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential18

TDR Measurements Basics

TDR Rise Time and Resolution

Accepted rule of thumb for resolving two discontinuities

80E04 TDR rise time: 30-40ps at the end of the cable, probe, fixture– Base 1/2trise resolution: 15-20ps– 0.1”-0.12” in FR4

80E10 TDR rise time: 12-16ps at the end of the cable, probe, fixture– Base 1/2trise resolution: 6-8ps– 0.04”-0.048” in FR4

tseparateTo resolve a1 and a2 as

separate discontinuities:tseparate > tTDR_risetime /2 a1 a2

Page 19: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential19

TDR Measurements Basics

TDR Rise Time and Resolution

More real case: resolving a single discontinuity

Going beyond the TDR resolution and risetime: relative techniques– Signal integrity modeling – JEDEC standard– Failure analysis – golden device comparisons

tsingle a1 is not resolved iftsingle << tTDR_risetime a1

Page 20: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential20

TDR Measurements Basics

TDR Rise Time and Resolution

If 30-40 ps (or 12 ps) fast TDR rise time does not resolve it ….

How in the world a 80 ps signal rise time will????????????

Conclusion: for SI analysis, use the actual DUT rise time! (filter down the rise time, if necessary)

Page 21: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential21

TDR Measurements Basics

Differential TDR

Differential serial link analysis

Virtual ground plane

Even and odd mode measurements

C ab le: Z 0, tdR so urce

TD

R O

scill

osc

op

e F

ron

t Pa

ne

l

V inc ide ntV re flecte d

D U T: Z D U T

V

V

C ab le: Z 0, td

Virtual g round

R so urce

Page 22: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential22

TDR Measurements Basics

Good Measurement Practices

Perform calibration routines regularly

Minimum warm-up time 20 minutes

Maintain constant temperature in the lab and check the instrument t°

Zoom in on the DUT – but include all the DUT signature transitions (more to follow)

Use torque wrenches when mating SMA or other RF connectors

Page 23: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential23

Time and Frequency Domains

VNA Block Diagram

VNA: Vector Network Analyzer

Similar diagram can be drawn for reverse measurements (port 2 to port 1)

Differential VNA: 4-port measurements

DUTV incident1 V transmitted2

V reflected1

Port 1

Port 2

Cable: Z 0, tdV

NA

Fro

nt P

anel

R source

Calibrationprocedures:- SOLT- TRL- LRRM

V

Page 24: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential24

Time and Frequency Domains

Equations for TDR vs. VNA

))(()(11 tFFTLimitedDurationfS

0)(

0)(

1

111 ZZ

ZZ

V

VS

DUTinput

DUTinput

incident

reflected

11

110)( 1

1

S

SZZ DUTinput

0

0

ZZ

ZZ

V

V

load

load

incident

reflected

1

10ZZDUTTDR

VNA

))(()(21 tFFTLimitedDurationfS

Page 25: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential25

Time and Frequency Domains

TDR vs. VNA

TDNA (Time Domain Network Analysis)– Based on TDR/T measurements:– Transient– Broadband– More intuitive for a digital designer– Dynamic range: about 50-60dB– Less expensive

FDNA (Frequency Domain Network Analysis)– Based on VNA measurements:– Steady-state measurements– Narrow-band– More intuitive for microwave/RF designer– More expensive– Higher dynamic range (up to 110 dB)

Page 26: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential26

Time and Frequency Domains

Time or Frequency Domain?

SI measurements do not require high dynamic range

Compliance testing does not require high DR– About –10 dB for insertion loss– -25 to –35 dB for return loss– Higher for frequency domain crosstalk

VHIGH

VLOW

1% (-40dB) Xtalk

-40dB equals1% in time

domain

Page 27: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential27

Impedance Accuracy

TDR Basic Equations

V inc ident

0

V m easured =V inc ident + V reflec ted

2 td

measuredincident

measured

reflectedincident

reflectedincidentDUT VV

VZ

VV

VVZZZ

21

1000

0

0

ZZ

ZZVV

DUT

DUTincidentreflected

0

0

ZZ

ZZ

V

V

load

load

incident

reflected

Page 28: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential28

Impedance Accuracy

TDR Multiple Reflection Effects

Issue: impedance accuracy suffers due to signal re-reflection inside the DUT

Z0 Z1 Z2 Z3 Z4

Vtransmitted1

Vreflected1 Vreflected2

t0

Time Direction of propagation

Page 29: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential29

Impedance AccuracyIConnect Computation of the True Impedance Profile

nincident

incident

incident

incident

nnnnreflected

reflected

reflected

reflected

V

V

V

V

kkkk

kkk

kk

k

V

V

V

V

3

2

1

121

123

12

1

3

2

1

0

0

000

000

31222111

22

2132

22

213

2112212

111

)( incidentincidentincidentreflected

incidentincidentreflected

incidentreflected

VVtVtttV

VVtV

VV

Page 30: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential30

Impedance Accuracy

Board Trace IConnect® Z-line

Multiple reflections in TDR waveform

Scope reads here about 44 Ohm instead of 50 Ohm

Page 31: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential31

Impedance Accuracy

Board Trace IConnect® Z-line

Accurate impedanceprofile in IConnect®

Page 32: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential32

Impedance Accuracy

Package Trace IConnect® Z-line

Raw TDR: confusing multiple reflections

Impedance profile in IConnect®:Exact failure location,improved resolution

Page 33: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential33

Impedance Accuracy

IConnect® Software Z-line Algorithm

TDR measurements suffer from multiple reflections– No limited to TDR, also in TD in VNA

IConnect removes multiple reflections– Ensures accurate impedance measurements in multi-impedance

DUT– Direct and accurate readout of Z, td, L, C– Different and more accurate than Z readout in the scope

Attention!:– Data noise may interfere with accuracy

Use scope averaging Use software noise filtering

– Line loss is extracted separately

Page 34: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential34

Frequency Dependent S-parameters

Why S-parameters

Compliance testing– Insertion loss (around 6-10 dB)– Return loss (around 20-30 dB)– Frequency domain crosstalk

Link performance evaluation and simulation– Simulate S-parameters directly

Page 35: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential35

Frequency Dependent S-parameters Equations for TDR vs. VNA

0)(

0)(

1

111 ZZ

ZZ

V

VS

DUTinput

DUTinput

incident

reflected

11

110)( 1

1

S

SZZ DUTinput

0

0

ZZ

ZZ

V

V

load

load

incident

reflected

1

10ZZDUTTDR

VNA

))(()(11 tFFTLimitedDurationfS

))(()(21 tFFTLimitedDurationfS

Page 36: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential36

Frequency Dependent S-parameters

Single-ended TDR

22222121

12121111

TDRSTDTS

TDTSTDRS

TDR stimulus on channel 2,response on channel 2

TDR stimulus on channel 2,response on channel 1

TDR stimulus on channel 1,response on channel 1

TDR stimulus on channel 1,response on channel 2

Page 37: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential37

Frequency Dependent S-parameters

Correct Data Acquisition

DUT waveform to settle to steady DC

level

Page 38: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential38

Frequency Dependent S-parameters

Return Loss = TDR

Measure TDR, compute S11 (return loss) in IConnect

What is wrong with this RL picture?

Page 39: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential39

Frequency Dependent S-parameters

Insertion Loss = TDT

Measure TDT, compute S21 (insertion loss) in IConnect

Test casefor loss extraction

Page 40: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential40

Frequency Dependent S-parameters

Differential and Mixed S-parameters

2222212122222121

1212111112121111

2222212122222121

1212111112121111

cccccccccdcdcdcd

cccccccccdcdcdcd

dcdcdcdcdddddddd

dcdcdcdcdddddddd

TDRSTDTSTDTSTDTS

TDTSTDRSTDTSTDRS

TDRSTDRSTDRSTDTS

TDTSTDRSTDTSTDRS

Differential TDR stimulus,differential response

(most important)

Common mode TDR stimulus,common mode response

(less important)

Differential TDR stimulus,common mode response(useful in time domain for

EMI troubleshooting)

Common mode TDR stimulus,differential response

(useful in time domain for EMItroubleshooting)

Page 41: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential41

Frequency Dependent S-parameters

Differential TDR = S11diff

Several InfiniBand traces of different length.

Differential return loss.

Page 42: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Demo of TDR and S parameter measurements

Tektronix Confidential42

Page 43: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Additional Material

Tektronix Confidential43

Page 44: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential44

Page 45: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential45

Frequency Dependent S-parameters

Power Plane Resonance

Resonances between planes

Observe plane impedance profile (Z-line)

Page 46: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential46

Frequency Dependent S-parameters

Electrical Compliance Testing

Need fixture to interface to interconnects for compliance testing

Infiniband Connector

Reference thru Traces

DUT Connection Traces

Page 47: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential47

Frequency Dependent S-parameters

VNA Fixture De-embedding

For VNA requires additional standard to de-embed properly

Insertion loss: fixture insertion loss must be subtracted from DUT insertion loss

Return loss: no way to de-embed without additional standards!– Fixture return loss ends up being lumped with the DUT return

loss– Can be a problem even with quality fixtures

Page 48: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential48

Frequency Dependent S-parameters

VNA Real Fixture Limitation Example

With fixture, the cable assembly is failing the

spec!Fixture is failing the assembly with VNA

measurements

Spec: -10 dB at 1.25 GHz

Page 49: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential49

Frequency Dependent S-parameters

TD-VNA Fixture De-embedding

Simplicity of calibration allows simple fixture de-embedding

Fixture de-embedded with TDNA, the assembly is passing

Spec: -10 dB at 1.25 GHz

Page 50: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential50

Frequency Dependent S-parameters

Correlation with Network Analyzer

Page 51: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential51

Frequency Dependent S-parameters

Correlation with Network Analyzer

-25

-20

-15

-10

-5

0

FR

EQ

, Gh

z

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

VNA SDD11, dB

IConnect®S11.wfm(dBMag). NoTDR calibration

Page 52: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential52

Frequency Dependent S-parameters

Correlation with Network Analyzer

Insertion Loss VNA TDA ComparisonData courtesy Kieran Kelly, Samtec,Inc.

-12

-10

-8

-6

-4

-2

0

000.0E+0

1.0E+9 2.0E+9 3.0E+9 4.0E+9 5.0E+9 6.0E+9 7.0E+9 8.0E+9 9.0E+9 10.0E+9

Frequency (Hz)

IL (

dB

)

VNA

TDA

Page 53: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential53

Frequency Dependent S-parameters

Correlation with Network Analyzer: 65 GHz

The TD-VNA bandwidth is directly related to TDR/T rise time

These data were measured using the PSPL Model 4022 and a 70 GHz sampler

S-parameters correlate to65 GHz

Courtesy: Kipp Schoen, Picosecond Pulse Labs

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60

frequency (GHz)

S2

1 m

ag

na

tud

e (

dB

)

VNA S21

4022 S21

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60

frequency (GHz)

S1

1 m

ag

na

tud

e (

dB

)VNA

4022

Page 54: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential54

Frequency Dependent S-parameters

Calibrated Results: SOLT

Excellent correlation between TDNA and FDNA data

Dashed line – Tektronix 11801 with SOLT cal

Solid line – Agilent 8510 VNA

Page 55: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential55

Frequency Dependent S-parameters

Noise Floor and Dynamic Range

To reduce noise floor:– Increase number of averages Navg– Increase number of points Npoints– Decrease acquisition window length (increase effective incident

power)

Page 56: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential56

Frequency Dependent S-parameters

TD-VNA Incident Effective Power

The TD-VNA bandwidth directly related to the risetime of the TDR and TDT signals

-140

-120

-100

-80

-60

-40

-20

0

0 20 40 60 80 100

frequency (GHz)

ma

gn

atu

de

(d

B)

4022 10ps

54754A 25ps

4022 10 ps TDR 25 ps

Page 57: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential57

Frequency Dependent S-parametersTD-VNA Dynamic Range (with PSPL Module)

Page 58: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential58

Frequency Dependent S-parameters

IConnect Produces S-parameters

Differential, mixed mode and single ended

Insertion, return loss and frequency domain crosstalk

Performance with base DSA8200: 50-60 dB dynamic range (vs. 100 dB for VNA), 12 GHz bandwidth

Performance with 80E10 up to 50GHz bandwidth

Cost ½ of a comparable VNA solution

Intuitive, easy to use and more than adequate dynamic range for digital designers

Page 59: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential59

TDT and IConnect Eye Diagram

Efficient S-parameters Testing in IConnect

Easy, quick, efficient S-parameter measurements and electrical compliance testing– Insertion, return loss, frequency dependent crosstalk– Excellent correlation with traditional VNA techniques– Cost-effective and quick

Minimal calibration required– Only reference at the end of the fixture– Easy fixture de-embedding

Page 60: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential60

TDT and IConnect Eye Diagram

Why Eye Diagram in IConnect?

Eye Diagram for Interconnects– Specification mask testing– Not just communication standards, also for new serial link

standards

IConnect benefit: no pattern generator required for interconnect eye diagram analysis– De-embed deterministic / interconnect jitter– No active component jitter

Page 61: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential61

TDT and IConnect Eye Diagram

Eye Diagram Degradation in Interconnects

Interconnect losses

Pattern-dependent, crosstalk induced jitter

Method to improve the eye– Equalization, pre-emphasis and de-emphasis– Other signal conditioning techniques

Only deterministic jitter exists in interconnects, no random component!

Page 62: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential62

TDT and IConnect Eye Diagram

Eye Diagram Options

TDT easily gives the eye diagram degradation– Deterministic jitter only

Page 63: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential63

TDT and IConnect Eye Diagram

New Eye Mask and Jitter Measurements

Page 64: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential64

TDT and IConnect Eye Diagram

Why is TDT Based Eye Better?

Easy to de-embed fixture– The same improvement as for S-parameter

measurements!

No jitter from the pattern generator

Page 65: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential65

TDT and IConnect Eye Diagram

Predicted and Measured Eye Diagrams

Pattern Generator Based

IConnect K28.5

IConnectPRBS 210-1

Page 66: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential66

TDT and IConnect Eye Diagram

Predicted and Measured Eye Diagrams

2^10-1 IConnect eye fromTDT measurement

2^10-1 pattern generator measurement

Data Courtesy FCI Electronics

Page 67: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential67

TDT and IConnect Eye Diagram

Predicted and Measured Eye Diagrams

MeasuredSimulated

MeasuredSimulated

1.5Gb/s (Gen 1)

6.0Gb/s (Gen 3)

MeasuredSimulated

3.0Gb/s (Gen 2)

Serial ATA data courtesy Molex, Inc.

Page 68: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential68

TDT and IConnect Eye Diagram

Efficient Eye Diagram Testing in IConnect

Easy, quick, efficient eye diagram measurements and compliance testing– Excellent correlation with traditional pattern generator

techniques– Cost-effective and quick

Minimal calibration required– Only reference at the end of the fixture– Easy fixture de-embedding

Page 69: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential69

Outline

Interconnect Measurement Accuracy Issues TDR/T Probing and Fixturing

App Note: “TDR Measurement Primer”App Note: “TDR Techniques for Characterization and Modeling of Electronic Packaging”Quick Guide:“Interconnect Probing Quick Guide”

Interconnect SPICE / IBIS Modeling and Model Validation

Page 70: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential70

Probing and Fixturing

TDR Measurement Setup

TDR probe with signal and ground

connection

TDR oscilloscope

Page 71: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential71

Probing and Fixturing

Probing and Fixturing Issues

Probing is the weakest link!

Start with a probe– 50 Ohm for TDR measurements – must be rugged and inexpensive– ensure stable repeatable contact– large pitch* means small bandwidth– variable pitch means poor repeatability– ensure sufficient compliance

* Pitch: center-to-center signal to ground pad spacing

Page 72: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential72

Probing and Fixturing

Package and Connector Probing

Use a high-quality probe (and positioner) Need an interface adapter or fixture to probe Fixturing requirements

– Reproduce the real application environment– Ensure easy fixture de-embedding (reference short and open

structures may be needed)

P ackage

S igna l-G roundP robe

V ias topackage

leads

P C B providesground

connections

F ixtu regroundp lane

P C B provides groundconnections

P C B trace toconnector lead

F ixtu regroundp lane

Via to ground for reference m easurem ents

R eferenceshort and open

S igna l-G roundP robe

H igh-S peed

C onnector

Page 73: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential73

Probing and Fixturing

Board Probing

Ensure good contact to a via – Difficult for a microwave probe– Use TDA’s QuickTDR™ probe– Probes also available from TDR

manufacturers

Ensure ground contacts near yoursignals

Variable pitch: a sad necessity– Available from from TDR manufacturers and probe

manufacturers (Cascade Microtech, ICM)– Measurements suffer from poor repeatability and decrease the

instrument usable bandwidth

Page 74: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential74

Probing and Fixturing

Probing vs. Fixturing

Probing advantages: Maximum flexibility for multiple

device measurements

No fixture de-embedding required

But:

Requires DUT to have easily accessible contact areas

Positioning system may be expensive

Fixturing advantages: Evaluate the DUT in its

intended environment of use (example: package on a board)

Great flexibility for specific DUT

But: Difficult to change after the

fixture has been designed Must de-embed fixturing from

measurements

These approaches are complementary!

Fixturing is thinking ahead about how you will probe!

Page 75: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential75

Outline

Interconnect Measurement Accuracy Issues– Impedance, S-parameters and eye diagram measurements and

compliance testing

Interconnect SPICE / IBIS Modeling and Model Validation– Z-line, lossy line, and automatic behavioral modeling

Page 76: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential76

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Measurement Based Interconnect Analysis– Behavioral Modeling: MeasureXtractor™ – Topological Modeling:

TDT and Lossy Line Modeling Impedance Profile (Z-line) Transmission Line Modeling L and C JEDEC computation

– Examples: Power Plane Analysis Backplanes and cable assemblies

Page 77: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential77

Measurement-Based Link Design

How to Analyze System Signal Integrity?

App Note: “Signal Integrity Modeling of Gigabit Backplanes, Cables and Connectors Using TDR”

Is this similar to your application?

Tx

Daughtercard

Backplane

CableAssem bly

Board C onnector(s im plified

m odel)

Rx

Connector

Connector

Connector

Page 78: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential78

Measurement-Based Link Design

Interconnect Measurement Based Design

Linearize the link input and termination for initial analysis

Daughtercard

Backplane

CableAssem bly

Board C onnector(s im plified

m odel)

Connector

Connector

Connector

Receiversim plified

Page 79: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential79

Measurement-Based Link Design

Measurement Based Design Details

Impedance measurement => reflections

TDR/T or S-parameters => losses, jitter, eye diagram degradation– System losses is a result of losses in components– Eye diagram is a result of losses and crosstalk in

components

Page 80: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential80

IConnect Modeling Methodology

Goals and Model Validity

Goal: accurately predict interconnect performance via simulations– Need an accurate SPICE /IBIS models

Model required range of validity is defined by the fast corner rise time of the driver– Equivalent bandwidth estimated as:

fbw=0.35 / trise or harmonics of clock

It may be desired to extend the required range of model validity beyond trise and fbw

– Have a confidence guard band

Page 81: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential81

IConnect Modeling Methodology

Modeling Technique: Behavioral

Behavioral Modeling: MeasureXtractor™– A universal, fully automatic, exact

modeling technique– Can use time or frequency domain data – Matches exactly both time and frequency response– Perfect for…

Connector, package or socket modeling Model for a characterization fixture for a connector, a package or a

cable Model for a daughtercard board When behavioral model is acceptable

– Can create large model for a large interconnect such as a backplane or cable assembly

Page 82: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential82

IConnect Modeling Methodology

Modeling Technique: Topological

Lossy line and coupled lossy line modeling– When need to predict losses and crosstalk

Large lossy backplanes and motherboards Cables and cable assemblies

Impedance profile (Z-line) models– When losses are small– Need to predict impedance reflections, crosstalk only

Small daughtercards, boards Electrically long connectors, packages

Page 83: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential83

IConnect Modeling Methodology

Modeling Technique: Topological

JEDEC technique for L and C computation– Industry standard technique for electrically short interconnects– Electrically short: trise >> tprop delay

– Packages, connectors, sockets

trise

tprop delay

Page 84: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential84

IConnect Modeling Methodology

Behavioral or Topological?

Behavioral Topological Measurement Requirements

Requires two-port or four-port measurements

Just TDR (reflection) is sufficient

Topology selection

Automatic, no user intervention

User-controlled (easy and intuitive from TDR measurements)

Extraction Automatic, no user intervention

User-driven; more labor intensive than behavioral

Type of models

“Black-box,” no internal changes allowed

Intuitive, easy “what-if” scenario analysis

Limitation for long interconnects

Large model for long interconnects (backplanes, cable assemblies)

Efficient model extraction processes exist for large interconnects

Page 85: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential85

IConnect Modeling Methodology

Methodology: Gbit Ethernet Example

Cable and Test cards: lossy line modeling

Launch, high-speed connector:Z-line modeling

Any piece can be modeled in MeasureXtractor™

Lumped pieces can be modeledwith JEDEC technique

Page 86: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential86

TDR/T or VNA Measurements

Extracted interconnect, instrument source models

Direct link to simulators

Automatic comparison of simulation and measurement in IConnect waveform viewer

SPICE

IConnect Modeling Methodology

Measurement Based Approach

Page 87: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential87

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Behavioral Modeling: MeasureXtractor™ – Topological Modeling:

TDT and Lossy Line Modeling Impedance Profile (Z-line) Transmission Line Modeling L and C JEDEC computation

– Examples: Power Plane Analysis Backplanes and cable assemblies

Page 88: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential88

Behavioral Modeling

MeasureXtractor™ Modeling

A fully automatic algorithm for conversion of VNA S-parameter or TDR/T data into SPICE or IBIS model– Passivity of the model guaranteed– Compact and efficient– Fully automated– Not an optimization– Behavioral models

Page 89: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential89

Behavioral Modeling

Lack of Passivity Produces Oscillations

Instability is a very bad

thing!

TERASPEEDCONSULTING

GROUP

Slide

courtesy:

Page 90: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential90

Behavioral Modeling

Sources of Passivity Issues

Insufficient attention to measurements or calibration– Interconnects do not amplify signals!– Even if individual measurements are passive, combined system

measurements can have amplification properties

Simulator extrapolation and interpolation based on model, not original measurement

Finite measurement acquisition window (in the limit, the data is infinite!)

Page 91: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential91

Behavioral ModelingExample: Correlation of Measurement and Model

Exact correlation in time and frequency domains

Page 92: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential92

Behavioral Modeling

Example: Model Listing

c33 34 gnd_ 7.10021e-016

r90 35 gnd_ 3622.1

c34 35 gnd_ -7.10021e-016

r91 36 37 176812

r92 36 gnd_ 57641.7

c35 36 gnd_ 7.15572e-016

r93 37 gnd_ 3932.13

c36 37 gnd_ -7.15572e-016

r94 38 gnd_ -2488.86

c37 38 gnd_ -3.07009e-015

r95 39 gnd_ 5982.67

c38 39 gnd_ -2.49077e-014

.ends

r14 port1 15 -1898.27

r15 port1 16 -971048

r16 port1 17 2103.52

r17 port1 18 15884.8

r18 port1 19 326913

r19 port1 20 6566.94

r20 port1 21 1508.55

r21 port1 22 -885.906

r22 port1 23 4789.5

r23 port1 24 2788.21

r24 port1 25 -14075.7

r25 port1 26 -18495.7

r26 port1 27 -1786.85

r27 port1 28 -27328.6

.subckt DUT port1 gnd_

r1 port1 2 -24977.9

r2 port1 3 23982.9

r3 port1 4 -12111

r4 port1 5 3124.2

r5 port1 6 -2348.66

r6 port1 7 14099.3

r7 port1 8 -4392.43

r8 port1 9 1444.76

r9 port1 10 1.1046e+007

r10 port1 11 -301858

r11 port1 12 3622.64

r12 port1 13 -1221.14

r13 port1 14 6965.14

Page 93: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential93

Behavioral Modeling

MeasureXtractor™ Summary

Converts S-parameters or TDR/T data into an exact-match model

Passivity is guaranteed

If you can measure it, and want model it with little effort, use MeasureXtractor™!

Page 94: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential94

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Topological Modeling:

TDT and Lossy Line ModelingApp Note: “Practical Characterization of Lossy Transmission Lines Using TDR”

Impedance Profile (Z-line) Transmission Line Modeling L and C JEDEC computation

– Examples: Power Plane Analysis Backplanes and cable assemblies

Page 95: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential95

TDT and IConnect Lossy Lines

TDT and Lossy Line Modeling Is For:

Long lossy transmission lines in backplanes and motherboards

Long lossy cables

Page 96: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential96

TDT and IConnect Lossy LinesLoss Example: Time and Frequency Domain

Page 97: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential97

TDT and IConnect Lossy Lines

Skin Effect vs. Dielectric Loss

Typical FR-4 50 Ohm Trace

Page 98: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential98

TDT and IConnect Lossy Lines

Different Loss Modeling Approaches

Lumped (behavioral)– Defined for all frequencies– Slow for long lines

Distributed– Based on parameters (Rskin, Gdielectric)

Defined for all frequencies Not as general

– Based on RLGC data General for quasi-TEM Not defined for all frequencies

Page 99: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential99

TDT and IConnect Lossy Lines

Causality in TEM Models

From basic physics, the real and imaginary parts of the dielectric constant are tightly related to ensure causality.

The same is true of the permeability constant, In TEM modeling, this means that R and L are related,

and G and C are related

Models based on RLGC data (or S-parameters) should

address this issue !!!

Page 100: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential100

TDT and IConnect Lossy Lines

Our Model Extraction Approach

Assume standard simulator equations:

Two extraction methods:– Open circuit reflection (TDR, one port)– Matched circuit transmission (TDR, TDT, two-port)

Extract loss parameters: Rdc, Rac, Gdc, Gac, L, C Write resulting model in various formats

– Lumped– Distributed with parameters– Distributed with RLGC data

CjfGGY

LjfRRZ

acdc

acdc

Page 101: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential101

TDT and IConnect Lossy LinesExample: Extraction Results (Transmission)

Extracted skin effect and dielectric loss parameters

Simulated and measured transmission

Page 102: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential102

TDT and IConnect Lossy Lines

Symmetrical Lossy Coupled Line Model

Assumptions:– The lines are symmetrical– TDR steps are symmetrical– TDR steps arrive at the lines at the same time at the beginning

of both lines

B oard lines

TDR source 1

TDR source 2

Page 103: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential103

IConnect Differential TDR Techniques

Even/Odd vs. Common/Differential

mtot

mselfodd CC

LLZ

mtotmselfodd CCLLlt

mtot

mselfeven CC

LLZ

mtotmselfeven CCLLlt

oddaldifferenti ZZ 2

oddaldifferenti tt

2even

commonZZ

evencommon tt

Page 104: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential104

IConnect Differential TDR Techniques

Even and Odd Impedance Profile Example

Note: - Odd mode = differential measurement (two TDR sources of opposite polarity) - Even mode = common mode measurement (two TDR sources of the same polarity)

Zeven>Zself>Zodd

teven>tself>todd

Page 105: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential105

TDT and IConnect Lossy LinesExample: Extraction Results (Reflection, Coupled)

Both self and mutual parameters are extracted

Page 106: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential106

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Topological Modeling:

Impedance Profile (Z-line) Transmission Line ModelingApp Note: “PCB Interconnect Characterization from TDR Measurements” App Note: “Characterization of Differential Interconnect from TDR Measurements”

L and C JEDEC computation– Examples:

Power Plane Analysis Backplanes and cable assemblies

Page 107: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential107

IConnect Single-ended TDR Techniques

Single Transmission Line Modeling Is For:

Short (lossless) transmission lines

Electrically long packages (longer than Trise)

Electrically long connectors (longer than Trise)

Page 108: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential108

IConnect Single-ended TDR Techniques

Transmission Line Z and td

Directly available from impedance profile

Eliminate confusion about:– Exact impedance value– Exact electrical length of the lines

Z01

Z02

td

Page 109: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential109

IConnect Single-ended TDR Techniques

Via L and C

2

12

1t

t

dttZL )( 2

1

1

2

1t

t

dttZ

C)(

t2

t1

t2

t1

Page 110: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential110

IConnect Single-ended TDR Techniques

IConnect® Modeling Process

Measure and acquire

Process data

Extract model

Simulate, compare and verify

Page 111: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential111

IConnect Single-ended TDR Techniques

Modeling in IConnect Software

* Name: Automatically Generated

.subckt Single port1 port2 gnd_

****** Partition #1

c1 port1 gnd_ 456f

l1 port1 1 1.05n

****** Partition #2

t1 1 gnd_ 2 gnd_ Z0=50.8 TD=125p

…………..

****** Partition #4

t3 3 gnd_ port2 gnd_ Z0=48.2 TD=190p

.ends

Page 112: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential112

IConnect Single-ended TDR Techniques

Prepare to Simulate and Validate

Page 113: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential113

IConnect Single-ended TDR Techniques

Simulation and Validation Results

Page 114: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential114

IConnect Single-ended TDR TechniquesUsing Rise Time Filtering to Achieve Simple Models

Page 115: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential115

IConnect Differential TDR Techniques

Coupled Transmission Line Modeling Is For:

Differential transmission lines

Differential connectors and packages that are electrically long (longer than Trise)

Crosstalk prediction (differential and single ended, forward, backward)

Crosstalk induced jitter prediction

Page 116: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential116

IConnect Differential TDR Techniques

Differential Line Modeling

Short interconnect– Use lumped-coupled model

Long interconnect– Split lines in multiple segments

Longer yet interconnect– Symmetric distributed coupled line model– For longer lines, use lossy approach instead

-Z odd/2, todd

Z ev en/2, tev en

Z odd, todd

Z odd, todd

Page 117: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential117

IConnect Differential TDR Techniques

IConnect Differential Line Modeling

Page 118: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential118

IConnect Differential TDR Techniques

Composite Model Generation

* Name: Automatically Generated.subckt Symmetric 1 2 3 4 5****** Partition #1 t1 1 5 6 5 Z0=49.7 TD=92.3p t2 3 5 7 5 Z0=49.7 TD=92.3p****** Partition #2 l1 6 8 19n c1 8 5 6.44p l2 7 9 19n c2 9 5 6.44p c3 8 9 716f k1 l1 l2 207m .ends

Page 119: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential119

IConnect Differential TDR Techniques

Model Validation in IConnect

Page 120: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential120

IConnect Differential TDR Techniques

Coupled LC Computation in IConnect

Page 121: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential121

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Topological Modeling:

L and C JEDEC computationApp Note: “TDR Techniques for Characterization and Modeling of Electronic Packaging”

– Examples: Power Plane Analysis Backplanes and cable assemblies

Page 122: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential122

IConnect Short Interconnect Modeling

When is Interconnect Lumped?

Practical rule of “short” or “lumped” (RLC) interconnect

trise

tprop delay

trise > tprop delay• (2 or 3)

Page 123: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential123

IConnect Short Interconnect Modeling

Short Interconnect Modeling is Used For:

IC packages

Connectors

Sockets

Vias on the board

Use only when short compared to Trise !!!

Page 124: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential124

IConnect Short Interconnect Modeling

Single Parasitic Inductance

dtVVV

ZdttZL

t

shortrefTDR

t

t

1

2

1

0

2

1)(

C ab le: Z 0, tdR source

TD

R O

scill

osc

op

e F

ron

t P

an

el V inc ident

V re flectedV

L

V T D R

V ref s hor tL

Page 125: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential125

IConnect Short Interconnect ModelingSingle-Ended TDR: Package Lead Inductance L Measurements

TDR waveform:– TDR into package lead.

Short all the leads to ground on the inside of the package.

Short the leads that are not being measured to ground on the outside of the package.

Short waveform:– TDR into the “short”; connect the

probe signal contact to ground on a conductive (metal) pad

Induced waveform: Measure near end crosstalk with far

end of the victim shorted

Background waveform: Corrects for the noise and scope DC

offset

V background noise

V induced

Lm utual

P ackageunder testTD R in to the

package lead

M easure re flection

M easure near-endcrossta lk in ad jacent

lead

Packa

ge le

ads

S hort leadends toground

0

0

2dtWW

V

ZL shortTDRself )(

0

0

2dtWW

V

ZL backgroundinducedmutual )(

W TDR

W shortL

Page 126: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential126

dtVVVZ

dttZ

Ct

TDRopenref

t

t

1

2

1 0

11

2

1

)(

C ab le: Z 0, tdR source

TD

R O

scill

osc

op

e F

ron

t P

an

el V inc ident

V re flectedV C

Open

V T D R

V ref open

C

IConnect Short Interconnect Modeling

Single Parasitic Capacitance

Page 127: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential127

IConnect Short Interconnect ModelingSingle-Ended TDR: Package Lead Capacitance C Measurements

TDR waveform:– TDR into package lead

Short the leads that are not being measured to ground on the outside of the package

Open waveform:– TDR into the “open”;disconnect the

probe from the DUT or remove the DUT from the fixture

Induced waveform:– Measure near end crosstalk with far

end of the victim open-ended

Background waveform:– Corrects for the noise and scope DC

offset

W TDR

W open

C

002

1dtWW

VZC TDRopenself )(

V background noise

V induced

Cm utual

002

1dtWW

VZC backgroundinducedmutual )(

P ackageunder testTD R in to the

package lead

M easure re flection

M easure near-endcrossta lk in ad jacent

lead

Packa

ge le

ads

K eep leadends open

Page 128: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential128

IConnect Short Interconnect Modeling

Input Die Capacitance Measurement

Page 129: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential129

IConnect Short Interconnect Modeling

Even-Odd Mode L and C Measurements

Compute C and L in even and odd mode

2

oddevenmutual

evenself

CCC

CC

2

2

oddevenmutual

oddevenself

LLL

LLL

TD R in to the two ad jacentsocket lead w ith d iffe rentia l and

com m on m ode stim ulus

M easure odd m ode TD R w ithd iffe rentia l stim ulus, and

even m ode TD R w ith com m onm ode stim ulus

P ackageunder test

Packa

ge le

ads

Page 130: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential130

IConnect Short Interconnect Modeling

Even-Odd Mode Impedance Profile

Compute C and L from even and odd Z-line

TD R in to the two ad jacentsocket lead w ith d iffe rentia l and

com m on m ode stim ulus

M easure odd m ode TD R w ithd iffe rentia l stim ulus, and

even m ode TD R w ith com m onm ode stim ulus

P ackageunder test

Packa

ge le

ads

oddoddevenevenself tZtZL 2

1

oddoddevenevenm tZtZL 2

1

even

even

odd

oddtot Z

t

Z

tC

2

1

even

even

odd

oddm Z

t

Z

tC

2

1

Ctotal = Cself + Cm

Page 131: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential131

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Examples:

Power Plane Analysis Backplanes and cable assemblies

Page 132: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential132

Power Plane AnalysisPower Distribution Network (PDN) Test Vehicle

3"

1 3

/8" (3

5m

m)

Top plane

Via connection to bottom plane

P robe p lacem ent a t po in to f power app lica tion

P oin t o f power de livery

Pad connection to top plane

R eference short connection forinductance m easurem ent

Page 133: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential133

Power Plane Analysis

PDN Equivalent Models

R C

R C LR C 1 L

R

C

L

C 2

Page 134: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential134

Power Plane Analysis

PDN Capacitance Measurements

Page 135: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential135

Power Plane Analysis

PDN Impedance

Page 136: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential136

Power Plane Analysis

PDN Resonance: Analysis for Bypass Caps

Page 137: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential137

Power Plane Analysis

PDN Model Validation

Page 138: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential138

Power Plane Analysis

PDN Model Accuracy

Page 139: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential139

Power Plane Via

Power Via Inductance

22oddeven

mutualoddeven

self

LLL

LLL

oddoddevenevenmutualoddoddevenevenself tZtZLtZtZL 2

1

2

1

Page 140: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential140

Power Plane Via

Example: Via Modeling

***** Partition #1 l1 port1 1 1.9n l2 port3 2 1.9n k1 l1 l2 200m

Correlation between simulation and measurement

Page 141: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential141

Outline

Interconnect Measurement Accuracy Issues

Interconnect SPICE / IBIS Modeling and Model Validation Examples:

Backplanes and cable assemblies

Page 142: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential142

Putting It All TogetherComplete Topological Modeling Methodology

Connectors, packages:– Short structures => use lumped elements (LC) or lossless T-

lines – Use the true impedance profile approach

Cables – lossy transmission line

Backplane traces – lossy transmission line

Combine the model and verify the accuracy with simulations

Note that MeasureXtractor™ can do any of that! (behaviorally)

Page 143: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential143

Single-ended Example

Example: IConnect-Extracted Model

LCL=700pHC=280fF

T-lineZ=53 OhmTd=520ps(short => lossless)

CLCL=6nHC=1.5pF

W-lineL=198nH, C=69.7pFRo=0.18 OhmRs=0.2uOhmGd=6.7nS (nMho)(long => lossy)

Page 144: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential144

Single-ended Example

Simulation Results

Page 145: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential145

Differential Example

Backplane Example

Courtesy FCI Electronics

Page 146: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential146

Differential Example

Backplane Example: PCI-X Eye Diagram

Page 147: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential147

Differential Example

Backplane Example

Differential measurement, full mode analysis

Daughter Card Backplane Daughter Card

Connector Connector

Page 148: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential148

Differential Example

Daughter Card and Backplane Models

Daughter Card Model (odd mode)

Backplane Model (odd mode)

Page 149: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential149

Differential Example

Full Daughter Card Modeling

Page 150: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential150

Differential Example

Full Backplane Modeling

Page 151: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential151

Differential Example

Simulation Results

Page 152: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential152

Differential Example

Jitter De-Embedding: Daughter Card Only

Page 153: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential153

Differential Example

Jitter De-Embedding: Backplane Only

Page 154: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential154

Outline

Interconnect Measurement Accuracy Issues– Impedance, S-parameters and eye diagram measurements

Interconnect SPICE / IBIS Modeling and Model Validation– Z-line, lossy line, and automatic behavioral modeling

Page 155: Tektronix Confidential1 Signal Integrity Analysis of Gigabit Interconnects Olie Kreidler Tektronix, Inc

Tektronix Confidential155

Visit Us at the Tektronix Booth