teh yu tan - duke university · and diffusional aspects of materials science in crystalline...

25
TEH YU TAN Professor of Materials Science Department of Mechanical Engineering and Materials Science Duke University Durham, North Carolina 27706 Phone: (919) 660-5323 FAX: (919) 660-8963 email: <[email protected] > EDUCATION Ph.D. in Materials Science, University of California, Berkeley, 1971. M.S. in Electrical Engineering, Tulane University, 1965. B.S. in Electrical Engineering, National Taiwan University, 1962. ACADEMIC AND INDUSTRIAL EXPERIENCES March 1986-: Duke University, Durham, NC, Professor of Materials Science 1984 - 1986: IBM T.J. Watson Research Center, Yorktown Heights, NY, Research Staff Member, Physical Sciences Department. 1982 - 1984: IBM General Technology Division, Hopewell Junction, NY, Senior Engineering Manager, Advanced Silicon Technology Department. 1978 - 1982: IBM T.J. Watson Research Center, Yorktown Heights, NY, Research Staff Member, Physical Sciences Department. 1974 - 1978: IBM General Technology Division, Essex Junction, VT, Staff Scientist. 1972 - 1974: Cornell University, Ithaca, NY, Research Associate, Department of Materials Science. RESEARCH INTERESTS General: Fundamental studies in materials science and processes related to microelectronics. Specific: Impurity diffusion mechanisms and point defects in silicon and III-V compounds; line defects; precipitation and gettering; kinetic processes of defect evolution; x-ray scattering and electron microscopy. PROFESSIONAL ACTIVITIES Member of: Materials Research Society; the Electrochemical Society; American Physics Society; Electron Microscopy Society of America. Symposium chairman and session chairman on numerous occasions.

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

TEH YU TAN

Professor of Materials ScienceDepartment of Mechanical Engineering

and Materials ScienceDuke University

Durham, North Carolina 27706 Phone: (919) 660-5323FAX: (919) 660-8963

email: <[email protected]>

EDUCATIONPh.D. in Materials Science, University of California, Berkeley, 1971.M.S. in Electrical Engineering, Tulane University, 1965.B.S. in Electrical Engineering, National Taiwan University, 1962.

ACADEMIC AND INDUSTRIAL EXPERIENCESMarch 1986-: Duke University, Durham, NC, Professor of Materials Science1984 - 1986: IBM T.J. Watson Research Center, Yorktown Heights, NY,

Research Staff Member, Physical Sciences Department.1982 - 1984: IBM General Technology Division, Hopewell Junction, NY,

Senior Engineering Manager, Advanced Silicon Technology Department.1978 - 1982: IBM T.J. Watson Research Center, Yorktown Heights, NY,

Research Staff Member, Physical Sciences Department.1974 - 1978: IBM General Technology Division, Essex Junction, VT,

Staff Scientist.1972 - 1974: Cornell University, Ithaca, NY,

Research Associate, Department of Materials Science.

RESEARCH INTERESTSGeneral: Fundamental studies in materials science and processes related to

microelectronics.Specific: Impurity diffusion mechanisms and point defects in silicon and III-V

compounds; line defects; precipitation and gettering; kinetic processes of defect evolution; x-ray scattering and electron microscopy.

PROFESSIONAL ACTIVITIESMember of: Materials Research Society; the Electrochemical Society; American Physics Society; Electron Microscopy Society of America.

Symposium chairman and session chairman on numerous occasions.

Page 2: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 2

HONORS1. SEMMY AWARD for outstanding contributions to the semiconductor industry in the

materials category (1987).

2. ALEXANDER VON HUMBOLDT PRIZE (1994).

3. EXCELLENT FOREIGN SCIENTIST INVITEE of the Japanese Society for the Promotion of Science (1995).

4. ROYAL SOCIETY KAN TONG PO VISITING PROFESSOR to City University of Hong Kong (2007).

PUBLICATIONS AND LECTURESCo-editor of “Defects in Semiconductors” (North-Holland, NY, 1981).Over 240 reviewed journal and proceeding papers.Over 100 invited and contributed talks.

QUALIFICATIONSIn depth knowledges in the structural, analytical (Electron Microscopy and X-rays), thermodynamical, kinetical and diffusional aspects of Materials Science in crystalline matters.

Outstanding contributions in• Extended defects (dislocations, precipitations, grain boundary structures) in silicon and other materials.• Point defects and diffusion in silicon.• Experimental as well as theoretical works.• Technological as well as scientific works.

Excellent ability in lecturing.

MOST SIGNIFICANT ACHIEVEMENT 1. Intrinsic gettering in silicon.

** Originator of the subject.

** Suggested and identified the fundamental mechanisms governing the subject.

** Suggested and demonstrated the basic engineering approaches to achieve the gettering purposes.

** Demonstrated the effectiveness of the scheme in actual integrated circuit fabrications.

** Status of Subject:

Page 3: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 3

• Used world-wide; constitute as a primary determining factor in achieving today’s phenomenal yield in fabrications of integrated circuits and hence their low costs.

• Provided the basic driving force for the efforts in controlling oxygen and carbon in Czochralski silicon crystal growth.

• Provided the basic driving force for the world-wide interests and efforts in oxygen precipitation related studies in Czpchralski silicon. Such studies fell largely in the scope of our original proposals.

2. Nature of point defects and diffusion mechanisms in silicon.

** Established that vacancies and silicon self-interstitials coexist and attained a local dynamical equilibrium at high temperatures. Allowed consistent interpretations of experimental results pertaining to:

• Oxidation effects.• Nitridation effects.• Gold diffusion.• Swirl defect formation.• Derivation of the thermal equilibrium values of the concentrations and diffusivities of vacancies and self-

interstitials.

** Status of subject.

• A general consensus has been established.• Has provided valuable informations for interpreting and analysing other related subjects, e.g., details of

dopant diffusion mechanisms, oxygen precipitation kinetics and gettering mechanisms.• Knowledge widely used in available process simulation programs.

3. Nature of point defects and diffusion mechanisms on the Ga sublattice in GaAs.

** Established that the charged point defects and co-contributing to Ga self-diffusion and diffusion of the impurities Si, Zn, Be, and Cr in GaAs, and to AlGaAs/GaAs superlatice disordering. Provided a globally consistent view in accordance with:

• The As vapor phase pressure effect.• The Fermi-level effect.• The non-equilibrium point defect influences.

** Status of subject.

• A general consensus is emerging.• Knowledge begins to be incorporated in process simulation programs.

ADDITIONAL SIGNIFICANT ACHIEVEMENT • Demonstrated that high angle grain boundaries of gold are periodic structures.

Page 4: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 4

• Demonstrated that silicide precipitate fomation on SiO2 precipitates and dislocations is an important mode of

gettering of metallic impurities in silicon.• Showed that SiO2 precipitates serve as oxidation-induced stacking fault nucleation centers in silicon.

• Discovered and explained a thin twin formation mechanism in silicon due to the operation of an unfaulting error.

• Discovered that amorphous silicon can be created via rapid melting of crystalline silicon and the subsequent rapid cooling using an UV laser irradiation. Explained the results by the classical ‘splat quenching’ effect.

• Explained and demonstrated that a stacking fault in silicon possesses the character of a thin twin.• Showed that a hexagonal phase of silicon may be created from the diamond cubic silicon. Developed a

phase transformation model which explained the role of stress and the orientation relationship between the hexagonal and the diamond cubic silicon latttices.

• Observed that vacancy type dislocation loops form in laser annealed amorphous silicon created on single crystal silicon substrates. Explained the result by invoking the argument that when laser irradiation takes place the liquid silicon produced is undercooled, and that the subsequent rapid solidifacation resulted in a less dense silicon solid.

• Proposed a model to explain why long undissociated dislocation dipoles form in silicon by condensation of the silicon self-interstitials.

• Detected and explained the formation of interstitial chains in ion damaged silicon.• Proposed a quantitative model to explain why silicon self-interstitials are injected into the silicon substrate

during a surface oxidation by invoking an argument based on the density difference between SiO2 and

silicon.• Developed a quantitative model which successfully explained the growth/shrinkage kinetics of the oxidation-

induced stacking faulty in an oxidizing ambient containing HCl.• Correlated the A-swirl spacing in Czochralski silicon crystal to the periodicity of a temperature fluctuation in

the melt during the crystal growth.• Formulated the silicon point defect diffusion problem during crystal growth which successfully explained on

a quantitative basis the dependence of swirl defect formation on the crystal growth rate and the thermal gradient at the crystal-liquid silicon interface.

• Studied kinetical and structural aspects of silicide formation of Pd, Ti, V, Ta, etc.

Page 5: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 5

PUBLICATIONSI. BOOKS

J. Narayan and T.Y. Tan (editors) Defects in Semiconductors, MRS Symposium Proc. Vol. 2, North-Holland, N.Y. 1981.

II. SCIENTIFIC PAPERS

1. W.M. Nunn, Jr. and T.Y. Tan, “Electrostatically-Focused Ribbon Beams Employing Periodic Cylindrical Electron Lenses,” IEEE Trans. on Electron Devices, ED-11, 524 (1964).

2. T.Y. Tan and W.M. Nunn, Jr., “Azimuthally Periodic Electrostatically-Focused Electron Ribbon Beams,” IEEE Trans. on Electron Devices, ED-13, 706 (1966).

3. S.E. Schwarz and T.Y. Tan, “Wave Interactions in Saturable Absorbers,” Appl. Phys. Lett. 10, 4 (1967).

4. T.Y. Tan, “Dynamical Theory of Kikuchi Electrons,” Proc., EMSA, 28th Annual Meeting, 42 (Houston, 1970).

5. T.Y. Tan and W.L. Bell, “A Computational Method for Image Analysis of a Crystal Containing Defects,” Proc. EMSA, 29th Annual Meeting, 84 (Boston, 1971).

6. T.Y. Tan, W.L. Bell and G. Thomas, “Crystal Thickness Dependence of Kikuchi Line Spacing,” Phil. Mag., 24, 417 (1971).

7. R.W. Balluffi and T.Y. Tan, “Comments on the Range of Applicability of the Grain Boundary (Secondary) Dislocation Model to High Angle Grain Boundaries,” Scripta Met. 6, 1033 (1972).

8. W.R. Wagner, T.Y. Tan and R.W. Balluffi, “Faceting of High Angle Grain Boundaries in the Coincident Lattice,” Phil. Mag. 29, 895 (1974).

9. S.L. Sass, T.Y. Tan and R.W. Balluffi, “The Detection of the Periodic Structure of High Angle Twist Boundaries - I. Electron Diffraction Study,” Phil. Mag. 31, 559 (1975).

10. T.Y. Tan, S.L. Sass and R.W. Balluffi, “The Detection of the Periodic Structure of High Angle Twist Boundaries - II. High Resolution Electron Microscopy Study,” Phil. Mag. 31, 575 (1975).

11. T.Y. Tan and W.K. Tice, “The Generation of Dislocations at the Interface between Oxygen Precipitates and Silicon Matrix,” Proc. EMSA, 33rd Annual Meeting, 252 (Las Vegas, 1975).

Page 6: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 6

12. R.W. Balluffi, P.J. Goodhew, T.Y. Tan and W.R. Wagner, “Electron Microscopy Studies of Grain Boundary Structures in Cubic Metals,” J. De Physique, Colloque C-4, Supplement au No. 10, 17 (1975).

13. T.Y. Tan, J.C.M. Hwang, P.J. Goodhew and R.W. Balluffi, “Preparation and Applications of Thin Film Specimens Containing Grain Boundaries of Controlled Geometry,” Thin Solid Films, 33, 1 (1976).

14. W.K. Tice and T.Y. Tan, “Nucleation of CuSi Precipitate Colonies in Oxygen Rich Silicon,” Appl. Phys. Lett. 28, 564 (1976).

15. T.Y. Tan and W.K. Tice, “Weak Beam Imaging and Diffraction Studies of Stacking Faults in Silicon,” Proc. EMSA, 34th Annual Meeting, 590 (Miami Beach, 1976).

16. T.Y. Tan and W.K. Tice, “Oxygen Precipitation and the Generation of Dislocations in Silicon,” Phil. Mag. 34, 615 (1976).

17. T.Y. Tan, L.L. Wu and W.K. Tice, “Nucleation of Stacking Faults at SiO2 Precipitate -

Dislocation Complexes in Silicon,” Appl. Phys. Lett. 29, 765 (1976).

18. T.Y. Tan, E.E. Gardner and W.K. Tice, “Intrinsic - Gettering by Oxide Precipitate Induced Dislocations in Czochralski Si,” Appl. Phys. Lett. 30, 175 (1977).

19. T.Y. Tan, H.J. Geipel and W.K. Tile, “The Isochronal Annealing Behavior of Silicon Implanted with Arsenic Ions,” in Extended Abstracts, Vol. 76-2, p. 863, Fall Meeting, ECS (Las Vegas, October, 1976).

20. T.Y. Tan, H.C.W. Huang and W.K. Tice, “Characterization of Oxide Precipate-Dislocation Complexes in CZ Si Wafers,” in Extended Abstracts, Vol. 7701, p. 195, Spring Meeting, ECS (Philadelphia, May 8-13, 1977).

21. W.K. Tice, T.Y. Tan and E.E. Gardner, “Intrinsic Gettering by Oxide Precipitate-Induced Dislocations in CZ Si,” in Extended Abstracts, Vol. 77-1, p. 198, Spring Meeting, ECS (Philadelphia, May 8-13, 1977).

22. P.J. Goodhew, T.Y. Tan and R.W. Balluffi, “Low Energy Planes for Tilt Grain Boundaries in Gold,” Acta Met. 26, 557 (1978).

23. T.Y. Tan, “Residual Stacking-Fault-Type Contrast in Silicon After Apparent Unfaulting Reactions,” Appl. Phys. Lett. 34, 714, (1979).

24. T.Y. Tan, R. Tsu, P.S. Ho and K.N. Tu, “Crystallization of Amorphous Silicides by Energy Beam Annealing,” AIP Conf. Proc. 50, Laser-Solid Interactions and Laser Processing-1978, p. 533, (1979).

Page 7: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 7

25. T.Y. Tan, P.S. Ho and R. Tsu, “Temperature Distribution and Microstructure in Small-Diameter Laser Beam Annealed Amorphous Silicon,” ibid, p. 463, (1979).

26. R. Tsu, J.E. Baglin, T.Y. Tan, M.Y. Tsai and K.C. Park, “Laser Crystallization of Ion-Implanted Si by Frequency-Doubled Nd: YAG Laser,” ibid, p. 344 (1979).

27. P.S. Ho, T.Y. Tan, J.E. Lewis and G.W. Rubloff, “Chemical and Structural Properties of the Pd/Si Interface During the Initial Stages of Silicide Formation,” J. Vac. Sci. Technol., 16, 1120, (1979).

28. R. Tsu, R.T. Hudson, T.Y. Tan and J.E. Baglin, “Order-Disorder Transition in Single Crystal Silicon Induced by UV Laser,” Phys. Rev. Lett. 42, 1356 (1979).

29. T.Y. Tan, “An Unfaulting Error in Silicon,” Proc. EMSA 37th Annual Meeting, p. 688, (1979).

30. T.Y. Tan, “An Electron Diffraction Study of Single Extrinsic Stacking Fault in Silicon as Twin and Double HCP Structures,” Proc. EMSA 37th Annual Meeting, 1979, p. 692, (1979).

31. S. Kritzinger, H.C.W. Huang and T.Y. Tan, “TEM Observations of Hillock Nucleation on Lead Films,” EMSA 37th Annual Meeting, p. 662, (1979).

32. R. Tsu, J.E. Baglin, T.Y. Tan and R.J. Von Gutfeld, “On Laser Induced Undercooled Liquid State of Amorphous Si,” in Laser and Electron Beam Processing of Electronic Materials, eds. C.L. Anderson, G.K. Celler and G.A. Rozgonyi, p. 382 (Electrochem. Soc., Princeton, 1980).

33. R. Tsu, R. Hodgson, T.Y. Tan and J.E. Baglin, “Laser-Induced Order-Disorder Transitions in Si by Pulsed UV Laser,” in Laser and Electron Beam Processing of Materials (Ed. C.W. White, P.S. Peercy, Academic Press, N.Y.) p. 149, (1980).

34. T.Y. Tan, R. Tsu and J.R. Lankard, “Higher Order Defects in Si,” ibid, p. 447, (1980).

35. T.Y. Tan and H. Foell, “Undissociated Dislocations in Ion Damaged Si,” Proceedings EMSA Meeting (38th), (Reno, Nevada), p. 314, (1980).

36. T.Y. Tan and H. Foell, “A Diamond Cubic to Hexagonal Phase Transformation in Silicon,” ibid, p. 342, (1980).

37. E. Rimini, W.-K. Chu, J.E.E. Baglin, T.Y. Tan and R.T. Hodgson, “Laser Annealing of Si Implanted with both Ar and As,” Appl. Phys. Lett. 37, 81 (1980).

38. T.Y. Tan, H. Foll and S.M. Hu, “On the Diamond Cubic to Hexagonal Phase Transformation in Silicon,” Phil. Mag. A44, 127 (1981).

Page 8: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 8

39. J.W. Corbett, J.P. Karins and T.Y. Tan, “Ion-Induced Defects in Semiconductors,” Nuclear Instruments and Methods 182/183, 457 (1981).

40. T.Y. Tan, “Atomic Modeling of Homogeneous Nucleation of Dislocations from Condensation of Point Defects,” Phil. Mag. A44, 101 (1981).

41. T.Y. Tan, H. Föll and W. Krakow, “Detection of Extended interstitial Chains in Ion Damaged Silicon,” Appl. Phys. Lett. 37, 1102 (1981).

42. T.Y. Tan, “Dislocation Nucleation Models from Point Defect Condensations in Silicon and Germanium” in Defects in Semiconductors, eds. J. Narayan and T.Y. Tan, (North Holland, N.Y.), p. 163 (1981).

43. H. Föll, T.Y. Tan and W. Krakow, “Undissociated Dislocations in As+ ion damaged Silicon,” ibid, p. 173 (1981).

44. T.Y. Tan, H. Föll, S. Mader and W. Krakow, “A Tentative Identification of the Nature of {113] Stacking Faults in Si - Model and Experiment,” ibid, p. 179 (1981).

45. W. Krakow, T.Y. Tan and H. Föll, “Detection of Point Defect Chains in Ion Irradiated Silicon by High Resolution Transmission Electron Microscopy,” ibid, p. 185 (1981).

46. W.K. Tice and T.Y. Tan, “Precipitation of Oxygen and Intrinsic Gettering in Silicon,” ibid, p. 367 (1981).

47. T.Y. Tan and U. Gösele, “Growth Kinetics of Oxidation Induced Stacking Faults in Silicon: A New Concept,” Appl. Phys. Lett. 39, 86 (1981).

48. T.Y. Tan, H. Föll and W. Krakow, “Intermediate Defects in Silicon,” Proc. 2nd of Oxford Conference on Microscopy of Semiconducting Materials, Inst. of Phys. Conf. Series 60, p. 1 (1981).

49. W. Krakow, T.Y. Tan and H. Föll, “Detection of Point Defect Chains in Silicon by High Resolution Electron Microscopy,” ibid, p. 23 (1981).

50. W. Krakow, T.Y. Tan, H. Föll, D. Cherns and D.A. Smith, “Point Defect and Interface Imaging at the Atomic Resolution Level,” Proc. 39th Ann. Electron Microscopy Soc. Amer., p. 116 (1981).

51. T.Y. Tan and U. Gösele, “Oxidation-Enhanced or Retarded Diffusion and the Growth or Shrinkage of Oxidation-Induced Stacking Faults in Silicon,” Appl. Phys. Lett. 40, 616 (1982).

52. T.Y. Tan and U. Gösele, “Kinetics of Silicon Stacking Fault Growth/Shrinkage in an Oxidizing Ambient Containing a Chlorine Compound,” J. Appl. Phys. 53, 4767 (1982).

Page 9: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 9

53. U. Gösele and T.Y. Tan, “Oxygen Diffusion and Thermal Donor Formation in Silicon,” Appl. Phys. A28, 79-92 (1982).

54. D.A. Smith and T.Y. Tan, “Effect of Doping and Oxidation on Grain Growth in Polysilicon” in Grain Boundaries in Semiconductors edited by H.J. Leamy, G.E. Pike and C.H. Seager (North-Holland, N.Y.) p. 65 (1982).

55. D.A. Smith, T.Y. Tan and C. Fontaine, “Grain Growth and Grain Boundary Dislocations in Polysilicon” in Character of Grain Boundaries, M.F. Yan and A.H. Heuer eds. (Am. Ceramic Soc., Columbus) p. 184 (1983).

56. T.Y. Tan and U. Gösele, “Kinetics of Si OSF Growth/Shrinkage in Oxidizing Ambients Containing Cl Compound” in ECS extended abstract, Montreal, p. 312, (1982).

57. T.Y. Tan and U. Gösele, “On Oxidation-Enhanced and -Retarded Diffusion of Substitutional Dopants and the Nature of Thermal Equilibrium Point Defects in Silicon,” in ECS extended abstracts, Montreal, p. 314 (1982).

58. U. Gosele and T.Y. Tan, “The Role of Vacancies and Self-Interstitials in Diffusion and Agglomeration Phenomena in Silicon,” in “Aggregation Phenomena of Point Defects in Silicon,” eds. E. Sirtl and J. Goorissen (Electrochemical Soc. Pennington) p. 17 (1983).

59. T.Y. Tan and B.J. Ginsberg, “Observation of Oxidation-enhanced and Oxidation-retarded Diffusion of Antimony in Silicon,” Appl. Phys. Lett. 42, 448 (1983).

60. T.Y. Tan, U. Gösele and F. Morehead, “On the Nature of Point Defects and the Effect of Oxidation on Substitutional Dopant Diffusion in silicon,” Appl. Phys. A31, 97 (1983).

61. U. Gösele and T.Y. Tan, “The Nature of Point Defects and Their Influence on Diffusion Processes in Silicon at High Temperatures” in Defects in Semiconductor II” eds. S. Mahajan and J.W. Corbett (North-Holland, N.Y.) p. 45, (1983).

62. T.Y. Tan and B.J. Ginsberg, “Observation of Oxidation-Enhanced and -Retarded Diffusion of Sb in Si: The Behavior of (111) Wafer” ibid, p. 141 (1983).

63. U. Gösele and T.Y. Tan, “Thermal Donor Formation by the Agglomeration of Oxygen in Silicon” ibid, p. 153 (1983).

64. T.Y. Tan, F. Morehead and U. Gösele, “An Examination of Vacancy and Self-Interstitial Contributions to Silicon Self-Diffusion and Swirl Defect Formation” in “Defects in Silicon” eds. L.C. Kimerlin and W.M. Bullis (Electrochemical Soc., Pennington) p. 325 (1983).

65. J.G. Clabes, G.W. Rubloff and T.Y. Tan, “Chemical Reaction and Schottky-Barrier Formation at V/Si Interfaces” Phys. Rev. B29, 1540 (1984).

Page 10: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 10

66. P.E. Schmid, P.S. Ho, H. Föll and T.Y. Tan, “Effects of Variations of Silicide Characteristics on Schottky Barrier Height of Silicon-Silicide Interfaces,” Phys. Rev. B28, 4593 (1983).

67. T.Y. Tan, “Characterization of Semiconductor Silicon by Transmission Electron Microscopy” in “Spectroscopic Characterization Techniques for Semiconductor Technology,” eds. F.H. Pollak and R.S. Bauer (The International Soc. for Optical Engineering, Berlingham) p. 170 (1984).

68. T.Y. Tan and U. Gösele, “Point Defects and Diffusion Processes in Silicon” in VLSI Science and Technology (1984)” eds. K.E. Bean and G.A. Rozgoniyi (The Electrochem. Soc. Pennington) p. 151 (1984).

69. T.Y. Tan, “Intrinsic Point Defects and Diffusion Processes in Silicon” in “Electron Microscopy of Materials,” W. Krakow, D.A. Smith and L.W. Hobbs eds. (North-Holland, N.Y.) p. 127 (1984).

70. R. Butz, G.W. Rubloff, T.Y. Tan and P.S. Ho, “Chemical and Structural Aspects of Reactions at Ti/Si Interface,” Phys. Rev. B. 30, 5421 (1984).

71. T.Y. Tan and U. Gösele, “Current Understanding of Point Defects and Diffusion Processes in Silicon,” in Proc. of the Flate-Plate Solar Array Project Research Forum on High-Efficiency Crystalline Si Solar Cells (Jet Proulsion Lab., Pasadena) p. 257 (1985).

72. T.Y. Tan and U. Gösele, “Point Defects, Diffusion, and Swirl Defect Formation in Silicon,” Appl. Phys. A37, 1 (1985).

73. T.Y. Tan, K.H. Yang and C.P. Schneider, “Observation of a Doping Dependent Orientation Effect of the Depletion of Silicon Self-Interstitials during Oxidation,” J. Appl. Phys. 57, 1812 (1985).

74. U. Gösele and T.Y. Tan, “The Influence of Point Defects on Diffusion and Gettering in Silicon,” in “Impurity Diffusion and Gettering in Silicon,” eds. R.B. Fair, C.W. Pearce and J. Washburn (Mat. Res. Soc., Pittsburgh, PA) p. 105 (1985).

75. K.H. Yang and T.Y. Tan, “On the Interaction of Intrinsic and Extrinsic Gettering Schemes in Silicon,” ibid, p. 223 (1985).

76. T.Y. Tan and C.Y. Kung, “On Oxygen Precipitation Retardation and Recovery Phenomena in Czochralski Silicon: Experimental Observations, Nuclei Dissolution Model, and Relevency with Nucleation Issues,” J. Appl. Phys. 59, 917 (1986).

77. T.Y. Tan, R. Kleinhenz, and C.P. Schneider, “On the Kinetics of Oxygen Clustering and Thermal Donor Formation in Czochralski Silicon,” in “Oxygen, Carbon, Hydrogen and

Page 11: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 11

Nitrogen in Silicon” eds. J.C. Mikkelsen, Jr., S.J. Pearton, J. W. Corbett and S.J. Pennycock (Proc. vol. 59, Mat. Res. Soc., Pittsburgh, PA) p. 195 (1986).

78. T.Y. Tan, “Exigent-Accomodation-Volume of Precipitation and Formation of Oxygen Precipitates in Silicon” ibid., p. 269 (1986).

79. T.Y. Tan and C.Y. Kung, “On Oxygen Precipitation Retardation/Recovery Phenomena, Nucleation Incubation Phenomenon, and the Exigent-Accomodation-Volume Factor of Preciptation” in “Semiconductor Silicon 1986” eds. H.R. Huff, T. Abe and B. Kolbesen (The Electrochem. Soc., Pennington, NJ) p. 864 (1986).

80. G.S. Oehrlein, T.Y. Tan, R. Kleinhenz, and J.L. Lindstrom, “On the Question of Oxygen Diffusion during Oxygen Related Thermal Donor Formation in Silicon,” eds. M. Wittmer, J. Stimmell and M. Strathman (Proc. vol. 71, Mat. Res. Soc., Pittsburgh) p. 65 (1986).

81. B.P.R. Marioton, U. Gösele and T.Y. Tan, “Are Self-Interstitials Required to Explain Non-Equilibrium Diffusion Phenomena in Silicon?” Chemitronics 1, 156 (1986).

82. T.Y. Tan and U. Gösele, “The Destruction Mechanism of III-V Quantum Well Structures Due to Impurity Diffusion” J. Appl. Phys. 61, 1841 (1987).

83. T.Y. Tan and U. Gösele, “Mechanism of Doping-Enhanced Supperlattice Disordering and of Ga Self-Diffusion in GaAs” Appl. Phys. Lett. 52, 1240 (1988).

84. T.Y. Tan and U. Gösele, “Diffusion Mechanisms and Supperlattice Disordering in GaAs” Mat. Sci. Eng. B1, 47 (1988).

85. U. Gösele and T.Y. Tan, “Point Defects and Diffusion in Si and GaAs” Diffusion and Defect Data A59, 1 (1988).

86. T.Y. Tan, U. Gösele and B.P.R. Marioton, “Mechanisms of Doping-Enhanced Superlattice Disordering and of Ga Self-diffusion in GaAs” in “Defects in Electronic Materials” Mat. Res. Soc. Proc. 104, eds. M. Stavola, S.J. Pearton and G. Davies (Mat. Res. Soc., Pittsburgh, 1988) p. 605.

87. U. Gösele and T.Y. Tan, “Point Defects and Diffusion in Si and GaAs,” in “Diffusion in High Technology Materials 1988” eds. G. Gupta, A.D. Roming and M.A. Dayananda (Trans. Tech., Switzerland, 1988) p. 1.

88. A.J. Hill, F.H. Cocks, U.M. Gösele, P.L. Jones, T.Y. Tan, and A.I. Kingon, “Investigation of Y-Ba-Cu-O Superconducting Materials by Positron Annihilation Lifetime Spectroscopy” in “High-Temperature Superconducting Materials” eds. W.E. Hatfield and J.H. Miller,Jr., (Dekker, NY, 1988) p. 305.

Page 12: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 12

89. U. Gosele, K.-Y. Ahn, B.P.R. Marioton, T.Y. Tan and S.T. Lee, “Do Oxygen Molecules Contribute to Oxygen Diffusion and Thermal Donor Formation in Silicon?” Appl. Phys. A48, 219 (1989).

90. B.P.R. Marioton, T.Y. Tan and U. Gösele, “Influence of Dislocations on Diffusion-Induced Non-Equilibrium Point Defects in III-V Compounds.” Appl. Phys. Lett. 54, 849 (1989).

91. T.Y. Tan and U. Gösele, “Mechanisms of Self-Diffusion and of Doping-Enhancement of Superlattice Disordering in GaAs and AlAs Compounds” in “Advances in Materials, Processing and Devices in III-V Compound Semiconductors” eds. D.K. Sadana, L. Eastman and R. Dupuis, Mat. Res. Soc. Proc. (Mat. Res. Soc., Pittsburgh, 1989) p. 221-232.

92. K.Y. Ahn, R. Stengl, T.Y. Tan, U. Gösele and P. Smith, “Stability of Interfacial Oxide Layers During Silicon Wafer Bonding.” J. Appl. Phys. 65, 561 (1989).

93. W.B. Rogers, H.Z. Massoud, R.B. Fair, U.M. Gösele, T.Y. Tan, and G.A. Rozgonyi, “The Role of Silicon Self-Interstitial Supersaturations in the Retardation of Oxygen Precipitation in Czodralski Silicon,” J. Appl. Phys. 65, 4215 (1989).

94. W. Taylor, B.P.R. Marioton, T.Y. Tan, and U. Gösele, “The Diffusivity of Silicon Self-Interstitials.” Rad. Effects, 111-112, 131 (1989).

95. S. Yu, U.M. Gösele, and T.Y. Tan, “A Model of Si Diffusion in GaAs Based on the Effects of the Fermi-Level,” J. Appl. Phys. 66, 2952 (1989).

96. S. Chen, S.-T. Lee, G. Braunstein, and T.Y. Tan, “Void Formation and Inhibition of Layer Intermixing in Ion-Implanted GaAs/AlGaAs Superlattices,” Appl Phys. Lett. 55, 1194 (1989).

97. R. R. Kola, G.A. Rozgonyi, J. Li, W. Rogers, T.Y. Tan, K.E. Bean, and K. Lindber, “Transition Metal Precipitation in Silicon Induced by Rapid Thermal Processing and Free-Surface Gettering,” Appl. Phys. Lett. 55, 2108 (1989).

98. R. Stengl, T.Y. Tan, and U.M. Gösele, “A Model for the Silicon Wafer Bonding Process,” Jpn. J. Appl. Phys. 28, 1735 (1989).

99. S. Chen, S.-T. Lee, G. Braunstein, K.-Y. Ko, L. R. Zheng, and T. Y. Tan, “ Void Formation and Its Effect on Dopant Diffusion and Carrier Activation in Si-Implanted GaAs,” Jpn. J. Appl. Phys. 29, L1950 (1990).

100. U. G sele, B. P. R. Marioton, and T. Y. Tan, “Non-Equilibrium Point Defects and Diffusion in Silicon and Gallium Arsenide,” in “Defect Control in Semiconductors” ed. K. Sumino, Vol. 1 (North-Holland, NY, 1990) p. 77.

Page 13: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 13

101. S. Yu, U. M. G sele, and T. Y. Tan, “An Examination of the Mechanisms of Si Diffusion in GaAs,” in “Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures,” eds. D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc. 163 (Mat. Res. Soc., Pittsburg, 1990) p.671.

102. U. M. G sele, T. Y. Tan, and S. Yu, “Diffusion in GaAs and GaAs-Based Layered Structures,” ibid, p.715.

103. K.-Y. Ko, S. Chen, S.-T. Lee, L. Zheng, and T. Y. Tan, “Correlation of Void Formation with the Reduction of Carrier Activation and Anomalous Dopant Diffusion in Si-Implanted GaAs,” ibid, p.983.

104. S.-T. Lee, S. Chen, G. Braunstein, K.-Y. Ko, M. L. Ott, and T. Y. Tan, “Void formation, electrical Activation, and Layer Intermixing in Si-Implanted GaAs/AlGaAs Superlattices,” Appl. Phys. Lett. 57, 389 (1990).

105. W.-S. Yang, K.-Y. Ahn, J. Li, P. Smith, T. Y. Tan, and U. G sele, “Gettering Phenomena in Directly Bonded Si Wafers,” in “Semiconductor Silicon 1990,” eds. H. R. Huff, K. G. Baraclough, and J-i. Chikawa (The Electrochem. Soc., Pennington, NJ, 1990) p.628.

106. T. Y. Tan, U. G sele, and S. Yu, “Point Defects, Diffusion Mechanisms, and Superlattice Disordering in GaAs-Based Materials,” in “Proc. 2nd International Cof. on Process Physics and Modeling in Semiconductor Technology,” eds. G. R. Srinivasan, J.D. Plummer, and S. T. Pantelides. (The Electrochem. Soc. Pennington, NJ, 1991) p. 195.

107. Y. Kim, T.Y. Tan, H. Massoud, and R.B. Fair,” Modeling the Enhanced Diffusion of Implanted Boron in Silicon,” ibid, p. 304.

108. S. Yu, T. Y. Tan, and U. M. G sele, “Physical Modeling of Zinc and Beryllium- Diffusion in Gallium Arsenide,” ibid, p. 345.

109. U. G sele and T. Y. Tan, “Equilibria, Non-Equilibria, Diffusion, and Precipitation,” Chpt. 5 of “Electronic Structure and Properties of Semiconductors” vol. 4 of “Materials Science and Technology: A Comprehensive Treatment” eds. R. W. Cahn, P. Haasen, and E. J. Kramer, Vol. 4 ed. W. Schr ter (1991) p. 197-247.

110. U. G sele, V. Lehmann, R. Stengl, K. Mitani, T. Y. Tan, and D. Feijoo, “Particle Protection of Semiconductor surfaces by Reversible Wafer Bonding and Related Concepts,” in Particles on Surfaces 3: Detection, Adhesion and Removal, K. Mittal, ed. (Plenum, NY, 1992) p. 239-247.

111. S. Yu, T. Y. Tan, and U. M. G sele, “Diffusion Mechanism of Zinc and Beryllium in Gallium Arsenide,” J. Appl. Phys. 69, 3547 (1991).

Page 14: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 14

112. T. Y. Tan, U. G sele, and S. Yu, “Point Defects, Diffusion Mechanisms, and Superlattice Disordering in GaAs-Based Materials,” CRC Crit. Rev. Solid State and Mat. Sci. 17, 47 (1991).

113. T. Y. Tan, “Point Defect Thermal Equilibria in GaAs,” Mat. Sci. Eng. B 10, 227 (1991).

114. T. Y. Tan, S. Yu, and U. G sele, “Atomistic Mechanisms of Dopant Induced Multiquantum-Well Mixing and Related Phenomena,” Opt. and Quant. Elec. 23, S863 (1991).

115. T. Y. Tan, “Intrinsic Gettering in Czochralski Silicon” in “Defects in Silicon II,” eds. W. M. Bullis, U. G sele, and F. Shimura (The Electrochem. Soc., Pennington, NJ, 1991) p. 613.

116. J. Li, W.-S. Yang, T. Y. Tan, R. Chapman, and S. Chevacharoenkul, “Formation of a Liquid Metallic Phase in Si Wafers During High Temperature Annealing,” ibid, p. 657.

117. W. J. Taylor, T. Y. Tan, and U. G sele, “Explicit Determination of the Strain Effect Involved During Oxygen Precipitation in Silicon,” ibid, p. 255.

118. S. Chen, S.-T. Lee, G. Braunstein, K-Y. Ko, and T. Y. Tan, “ Void Formation and

Distribution Mechanisms in Si+ Implanted GaAs,” MRS Proc...., (1991) p.

119. S. Chen, S.-T. Lee, G. Braunstein, K-Y. Ko, and T. Y. Tan, “ Void Distribution

Anomalies in Si+ Implanted GaAs,” J. Appl. Phys. 70, 656 (1991).

120. S.T. Lee, S. Chen, G. Braunstlin, K.Y. Ko, and T.Y. Tan, “Anomalous Electrical Activation in Si Implanted GaAs/AlGaAs Superlattices,” Nucl. Inst. Meth. B 59/60, 999 (1991).

121. W.J. Taylor, T.Y. Tan, and U. Gösele, “Oxygen Precipitation in Silicon: The Role of Strain and Self-Interstitials,” Appl. Phys. Lett. 59, 2007 (1991).

122. S. Yu, T.Y. Tan, and U. Gösele, “Chromium Diffusion Mechanisms in Gallium Arsenide” J. Appl. Phys. 70, 4827 (1991).

123. T. Y. Tan, S. Yu and U. Gösele, “Determination of Vacancy and Self-Interstitial Contributions to Gallium Self-Diffusion in Gallium Arsenide” J. Appl. Phys. 70, 4823 (1991).

124. U. Gösele and T. Y. Tan, “Point Defects in Semiconductors,” Mater. Res. Soc. Bulletin, XVI, 11, 42 (1991).

Page 15: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 15

125. S. L. Hsia, T.Y. Tan, P. Smith, and G. E. McGuire, “Formation of CoSi2 Films on (001) Silicon Using Ti-Co Alloy and Bimetal Source Materials,” J. Appl. Phys. 70, 7579 (1991).

126. K. Mitani, T. Y. Tan and U. Gösele, “Atomic Structure and Properties of Bonded Wafer Interfaces,” Proc. of Symposium “Advanced Science and Technology of Silicon Materials,” Nov. 25-29, 1991, Hawaii, (Japanese Society for the Promotion of Science) p. 403.

127. T.Y. Tan, W. J. Taylor, and U. Gösele, “The Role of Strain and Self-Interstitials Associated with Oxygen Precipitation in Silicon,” ibid, p. 22.

128. J. Li, W.-S. Yang, and T.Y. Tan, “Anomalous Au Concentration in Si,” J. Appl. Phys. 71, 527 (1992).

129. J. Li, W.-S. Yang, T.Y. Tan, S. Chevacharoeukul, and R. Chapeman,” Formation of Liquid Silicide on the Si Wafer Free Surface during Ni Diffusion Above 1200°C,” J. Appl. Phys. 71, 196 (1992).

130. W. J. Taylor, T.Y. Tan and U. Gösele, “An Analysis of Point Defect Fluxes During SiO2 precipitation in Silicon,” Mater. Sci. Forum 83-87, 1451 (1992).

131. U. Gösele and T.Y. Tan, “Diffusion in Semiconductors: Unsolved Problems,” Defects and Diffusion Forum 83, 189 (1992); also in Diffusion in Solids: Unsolved Problems, Edited by G.E. Murch (Trans Tech, Switzerland, 1992) p. 189.

132. S. Yu, T.Y. Tan and U. Gösele, “Mechanism of Cr Diffusion in GaAs,” in “Advanced III-V Semiconductor Growth, Processing and Devices” edited by S. J. Pearton, D. K. Sadana and J. M. Zavada, Mat. Res. Soc. Proc., vol. 240 (Mat. Res. Soc., Pittsburgh, PA, 1992). p. 747.

133. T.Y. Tan, S. Yu and U. Gösele, “Determination of Ga Self-Diffusion Coefficient in GaAs,” ibid, p. 739.

134. S.L. Hsia, T.Y. Tan, P. Smith, and G.E. McGuire, “Resistance and Structural Stabilities of Epitaxial CoSi2 Films on (001) Si Substrates,” J. Appl. Phys. 72, 1864 (1992).

135. W.J. Taylor, U. Gösele, and T.Y. Tan, “SiO2 Precipitate Strain Relief in Czochralski Si: Self-Interstitial Emission Versus Prismatic Dislocation Loop Punching,” J. Appl. Phys. 72, 2192 (1992).

136. T.Y. Tan, H.M. You, S. Yu, U.M. Gösele, W. Jäger, F. Zypman, R. Tsu, and S.-T. Lee,

“Disordering and Characterization Studies of 69GaAs/71GaAs Isotope Superlattice Structures: The Effect of Outdiffusion of the Substrate Dopant Si,” in “Defect Engineering in Semiconductor Growth, Processing and Device Technology” eds. S.

Page 16: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 16

Ashok, J. Chevallier, K. Sumino, and E. Weber. Mater. Res. Soc. Proc. vol. 262 (Mat. Res. Soc., Pittsburgh, PA, 1992) p. 873.

137. H. Zimmermann, T.Y. Tan, and U. Gösele, “A Consistent Model for Disordering of GaAs/AlAs Superlattices During Zn Diffusion,” ibid, p. 861.

138. S.L. Hsia, T.Y. Tan, P.L. Smith, and G.E. McGuire, “Characterization of Epitaxial CoSi2 Growth on (001) Si Using Ti-Co Bilayer Sources” in “State-of-the-Art Program on Compound Semiconductors XVI/Materials and Processing Issues for Large Scale Integrated Electronic and Photonic Arrays” edited by V. Swaminathan, D.N. Buckley, G. Valco, T. Kmijoh, R. E. Enstrom, N. Bouadma, and R. A. Ley, Proc. vol. 92-20 (The Electrochem. Soc., Pennington, NJ, 1992) p..

139. T.Y. Tan, H.M. You, S. Yu, U.M. Gösele, W. Jäger, D.W. Boeringer, R. Tsu, and S.-T.

Lee, “Disordering in 69GaAs/71GaAs Isotope Superlattice Structures,” J. Appl. Phys. 72, 5206 (1992).

140. H. Zimmermann, U. Gösele, and T.Y. Tan, “Modeling of Zinc-Indiffusion-Induced Disordering of GaAs/AlAs Superlattices,” J. Appl. Phys. 73, 150 (1993).

141. H.M. You, U. Gösele, and T.Y. Tan, “An Outdiffusion Study of Si in GaAs,” J. Appl. Phys. 73, 7207 (1993).

142. W. Jäger, A. Rucki, K. Urban, H.G. Hettwer, N.A. Stolwijk, H. Mehrer, and T.Y. Tan, “Formation of Void/Ga-Precipitate Pairs During Zn Diffusion into GaAs: the Competition of Two Thermodynamic Driving Forces,” J. Appl. Phys. 74, 4409 (1993).

143. W.J. Taylor, U.M. Gösele, and T.Y. Tan, “Precipitate Strain Relief via Interaction with a Non-Precipitating Point Defect or Impurity Species: Models for SiO2 in Silicon” Mater. Chem. Phys. 34, 166 (1993).

144. H. Zimmermann, U. Gösele, and T.Y. Tan, “Diffusion of Fe in InP Via the Kick-Out Mechanism,” Appl. Phys. Lett. 62, 75 (1993).

145. T. Y. Tan, H.-M. Yu and U. Gösele, “Thermal Equilibrium Concentrations and Effects of Negatively Charged Ga Vacancies in n-Type GaAs,” Appl. Phys. A56, 249 (1993).

146. T. Y. Tan, “ Point Defects and Diffusion in GaAs and AlAs/GaAs Materials,” in The Encyclopidia of Advanced Materials, ed. D. Bloor, R. J. Brook, M. C. Flemings, and S. Mahajan (Pergaman, NY, 1994), p. 635.

147. T. Y. Tan and W. J. Taylor, “Mehcanism of Oxygen Precipitation: Some Quantitative Aspects,” in Semiconductors And Semimetals vol.42: Oxygen in Silicon, edited by F. Shimura (Academic Press, NY, 1994) Chapter 9, p.353.

Page 17: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 17

148. P. L. Smith, S. L. Hsia, T. Y. Tan, and G. E. McGuire, “Insitu TEM Observation of Epitaxial CoSi2 Formation on (001) Silicon” in Proc. 50th Annual Meeting, Electron

Microscopy Society of America, edited by G. W. Bailey, J. Bentley and J. A. Small (San Francisco Press, San Francisco, 1992) p. 1336.

149. S. L. Hsia, T. Y. Tan, P. L. Smith, and G. E. McGuire, “Epitaxial CoSi2 Growth on (001)

Silicon Using Sequentially Deposited Ti-Co Bimetal Layer Source Materials,” in Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Funfamentals and Devices, edited by O. Auciello and J. Engemann (NATO ASI Series E: Applied Sciences Vol. 234 (Kluwer Academic Publishers, Netherlands, 1993) p. 523.

150. S. L. Hsia, T. Y. Tan, P. L. Smith, and G. E. McGuire, “Kinetics of Epitaxial CoSi2 Growth on (001) Silicon Using Ti-Co Bilayer Process,” in Evolution of Surface and Thin Film Microstructure, edited by H. A. Atwater, M. Grabow, E. Chason, and M. Lagally, Mater. Res. Soc. Proc. vol. 280 (Mater. Res. Soc., Pittsburgh, 1993) p.

151. U. Gösele, T. Y. Tan, M. Uematsu, and K. Wada, “Non-Equilibrium Point Defects and Diffusion in GaAs and Related Compounds,” Mater. Sci. Forum 117-118, 53 (1993).

152. H.-M. You, U. Gösele, and T. Y. Tan, “Fermi-level Effect and Vacancy Contribution to the Outdiffusion of Si in GaAs,” Mater. Sci. Forum 117-118, 399 (1993).

153. H.-M. You, U. Gösele, and T. Y. Tan, “Crystal surface Stoichiometery and the Fermi-level Effects on Outdiffusion of Si in GaAs,” in Chemical Perspectives of Microelectronic Materials III, edited by C. R. Abernathy, C. W. Bates, Jr., D. A. Boling and W. S. Hobson, Mater. Res. Soc. Proc. vol. 282 (Mater. Res. Soc., Pittsburg, 1993) p. 151.

154. W. J. Taylor, T. Y. Tan, and U. Gösele, “Carbon Precipitation in Silicon: Why Is It So Difficult?” Appl. Phys. Lett. 62, 3336 (1993).

155. W. J. Taylor, U. Gösele, and T. Y. Tan, “Co-Precipitation of Carbon and Oxygen in Silicon: the Dominant Flux Criterion,” Jpn. J. Appl. Phys. 32, 4857 (1993).

156. H.-M. You, T. Y. Tan, U. Gösele, S.-T. Lee, G. E. Höffler, K. C. Hsieh, and N. Holonyak, Jr., “Al-Ga Interdiffusion, Carbon Acceptor Diffusion, and Hole Reduction in Carbon-Doped Al0.4Ga0.6As/GaAs Superlattices: The As4 Pressure Effect,” J. Appl.

Phys. 74, 2450 (1993).

157. H.-M. You, U. Gösele, and T. Y. Tan, “Simulation of The Transient Indiffusion-Segregation Process of Triply-Negatively-Charged Ga Vacancies in GaAs and AlAs/GaAs Superlattices,” J. Appl. Phys. 74, 2461 (1993).

158. T. Y. Tan, H.-M. You and U. Gösele, “Thermal Equilibrium Concentrations and Effects of Ga Vacancies in n-Type GaAs,” in III-V electronic and Photonic Device Fabrication

Page 18: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 18

and Performance, edited by K. S. Jones, S. J. Pearton, and H. Kanber, Mater. Res. Soc. Proc. 300 (Mater. Res. Soc. Pittsburgh, 1993) p. 377.

159. H.-M. You, T. Y. Tan, U. Gösele, G. E. Höffler, K. C. Hsieh, and N. Holonyak, Jr., and S.-T. Lee,”Layer Disordering and Carrier Concentration in Heavily Carbon Doped AlGaAs/GaAs Superlattices,” ibid, p. 409.

160. W. Taylor, U. Gösele, and T. Y. Tan, “Present Understanding of Point Defect Parameters and Diffusion in Siliocn: An Overview” in Proc. of The Third International Symposium on Process Physics and Modeling in Semiconductor Technology, eds. G. R. Srinivasan, K. Taniguchi, and C. S. Murthy (The Electrochemical Society, Penning, NJ, 1993) p. 3.

161. R. Gafiteanu, S. Chevacharoenkul, U. M. Gösele, and T. Y. Tan, “Twist Boundaries in Silicon: A Model System” Inst. Phys. Conf. Ser. 134 (1993), p. 87.

162. W. Jäger, A. Rucki, K. Urban, H.G. Hettwer, N.A. Stolwijk, H. Mehrer, and T.Y. Tan, “Formation of Void/Ga-Precipitate Pairs During Zn Diffusion into GaAs: Competition of Two Thermodynamic Driving Forces,” in Electron Microscopy of Semiconductors (1993, Oxford).

163. S. L. Hsia, T. Y. Tan, P. L. Smith, and G. E. McGuire, “CoSi and CoSi2 Phase Reversal

in Bulk and SOI Si Wafers” in Silicides, Germanides, and Their Interfaces, eds. R. W. Fathauer, S. Mantl, L.J. Schowalter, and K. N. Tu, Mater. Res. Soc. Proc. 320 (Mater. Res. Soc., Pittsburgh, PA, 1994) p. 373.

164. S. L. Hsia, T. Y. Tan, P. L. Smith, and G. E. McGuire, “Arsenic Diffusion-Segregation at the Interface of Epitaxial CoSi2 Film and Si Substrate” in Silicides, Germanides, and

Their Interfaces, eds. R. W. Fathauer, S. Mantl, L.J. Schowalter, and K. N. Tu. Mater. Res. Soc. Proc. 320 (Mater. Res. Soc., Pittsburgh, PA, 1994) p. 409.

165. R. Gafiteanu, H.-M Yu, U. M. Gösele, and T. Y. Tan, “Diffusion-Segregation Equation for Atomic and Point Defect Species with Spatially Variable Thermal Equilibrium Concentrations” in Interface control of Electrical, Chemical, and Mechanical Properties, eds. S. P. Muraka, T. Omi, K. Rose, and T. Seidel. Mater. Res. Soc. Proc. 318 (Mater. Res. Soc., Pittsburgh, PA, 1994) p. 31.

166. T. Y. Tan, “Point Defect Equilibria in GaAs and Other Compound Semiconductors” J. Phys. Chem. Solids 55, 917 (1994).

167. T. Y. Tan, R. Gafiteanu, and U. M. Gösele, “Diffusion-Segregation Equation and Simulation of the Diffusion-Segregation Phenomena” in Semiconductor Silicon 1994, eds. H. R. Huff, W. Bergholz, and K. Sumino (The Electrochem. Soc., Pennington, PA, 1994) p. 920.

Page 19: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 19

168. S. L. Hsia, T. Y. Tan, P. L. Smith, and G. E. McGuire, “Assured Epitaxial CoSi2 Phase

Formation on (001) Si-On-Insulator Substrates Using CoSi/Ti Bimetallic Source Materials” Technical Digest, 1994 VLSI Technology Symposium (1994) p. 123.

169. S. L. Hsia, G. E. McGuire, P. L. Smith, T. Y. Tan, and W. T. Lynch “High Resistivity Co and Ti Silicide Formation on Silicon-On-Insulator”, Thin Solid Films 253, 462 (1994).

170. B. L. Sopori, L. Jastrzebski, and T. Y. Tan “Gettering Effects in Crystalline Silicon” in Proc. 12th European Photovoltaic Solar Energy Conference, (The Netherlands, 4/11-15, 1994), p. 1003.

171. S. M. Joshi, U. M. Gösele, and T. Y. Tan, “Improvement of Minority Carrier Diffusion length in Si by Al Gettering” J. Appl. Phys. 77, 3858 (1995).

172. J. Y. Huh, T. Y. Tan, and U. M. Gösele, “Model of Partitioning of Point Defect Spicies During Precipitation of a Misfitting Compound in Czochralski Si” J. Appl. Phys. 77, 5563 (1995).

173. T. Y. Tan, “Point Defects and Diffusion Mechanisms Pertinent to the Ga Sublattice of GaAs” in “Sensor Materials, Compound Semiconducting Materials, Materials for Display” eds. G. C. Chi, H. Y. Wen, and S. C. Shiue, 1994 IUMRS-International Conference on Electronic Materials, Proc. vol. 3 (Taiwan, 1994), p. 245.

174. T. Y. Tan, S. L. Hsia, P. L. Smith, G. E. McGuire, and W. T. Lynch, “Epitaxial CoSi2 Films Grown on (001) Bulk and SOI silicon” in “Thin Film Materials, Surface and Interface Structure, ULSI Materials” eds. L. J. Chen, T. T. Tsong, and S. C. Sun, 1994 IUMRS-International Conference on Electronic Materials, Proc. vol. 1 (Taiwan, 1994), p. 173.

175. T. Y. Tan, “Point Defects and Diffusion Mechanisms Pertinent to the Ga Sublattice of GaAs” Mat. Chem. Phys. 40, 245 (1995).

176. R. Gafiteanu, U. Gösele, and T. Y. Tan, “Phosphorus and Aluminum Gettering in Silicon: Simulation and Optimization Considerations” in Defect and Impurity Engineered semiconductors and Devices, eds. S. Ashok, I, Akasaki, J. Chevallier, N. M. Johnson, and B. L. Sopori, Mater. Res. Soc. Proc. 378 (Mater. Res. Soc., Pittsburgh, PA, 1995) p. 297.

177. S. Joshi, U. Gösele, and T. Y. Tan, “Improvement of Minority Carrier Diffusion length in Silicon by Aluminum Gettering” in Defect and Impurity Engineered semiconductors and Devices, eds. S. Ashok, I, Akasaki, J. Chevallier, N. M. Johnson, and B. L. Sopori, Mater. Res. Soc. Proc. 378 (Mater. Res. Soc., Pittsburgh, PA, 1995) p. 279.

178. J.-Y. Huh, U. Gösele, and T. Y. Tan, “Co-Precipitation of Oxygen and Carbon in Czochralski Siliocn: A Growth Kinetics Approach” J. Appl. Phys. 78, 5926 (1995).

Page 20: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 20

179. Chang-Ho Chen and Teh Yu Tan, “On the Validity of the Amphoteric Defect Model in Gallium Arsenide and a Criterion for Fermi-Level Pinning by Defects” Appl. Phys. A 61, 397 (1995).

180. M. Uematsu, P. Werner, M. Schultz, T. Y. Tan, and U. M. Gösele, “Sulfur Diffusion and the Interstitial Contribution of Arsenic Self-Diffusion in GaAs” Appl. Phys. Lett. 67, 2863 (1995).

181. Q.-Y. Tong, G. Kaido, T. Y. Tan, and U. Gösele, “Wafer Bonding of Si with Dis-similar Materials”, Proc. 4th Int. Conf. on Solid-State and Integrated-Circuits Technology (IEEE, NY, 1995) pp. 524-526.

182. Q.-Y. Tong, G. Kaido, L. Tong, M. Reiche, L. Shi, J. Steinkirchner, T. Y. Tan, and U. Gösele, “A Simple Chemical Treatment for Preventing Thermal Bubbles in Semiconductor Wafer Bonding”, J. Electrochem. Soc.142, L120. (1995).

183. T. Y. Tan and U. M. Gösele, “Effects of p-Type Dopants on Enhancing AlAs/GaAs Superlattice Disordering: the Local Equilibrium Phenomena” Mat. Chem. Phys. 44, 45 (1996).

184. S. M Joshi, R. Gafeteanu, U. M. Gösele, and T. Y. Tan, “Simulations and Experiments on External Getteirng of Silicon” AIP Conference Proceedings 357, 527-534 (1996).

185. B. L. Sopori, L. Jastrzebski, and T. Y. Tan, “A comparison of Gettering in Single- and Multi-Crystalline Siliocn for Solar Cells” Record of the 25th IEEE Photovoltaic Specialist’s Conference (1996) p. 625.

186. U. Gösele, E. Schroer, P. Werner, and T. Y. Tan, “Low Temperature Diffusion and Agglomeration of Oxygen in Silicon” in Early Stages of Oxygen Precipitation in Silicon, R. Jones (ed.), (Kluwer Academic Publishers, 1996), p. 243.

187. U. Gösele, A. Plöbl, and T. Y. Tan, “The Influence of Carbon on the Effective Diffusivities of Intrinsic Point Defects in Silicon” in Process Physics and Moeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Dunham (The Electrochemical Society, Pennington, NJ, 1996) p. 309.

188. T.-H. Lee, Q.-Y. Tong, W.-J. Kim, T. Y. Tan, and U. Gösele, “Feasibility Study of VLSI Device Layer Transfer by CMP PETEOS Direct Bonding” Proc. 1996 IEEE Intl.SOI Conference, 96CH35937 (1996) p.36.

190. U. Gösele, T. Y. Tan, M. Schultz, U. Egger, R. Scholz, and O. Breitenstein, “Diffusion in GaAs and Related Compounds: Recent Developments” DIMAT 1996, (8/5-8/9/96, Münster, Germany). Defects and Diffusion Forum 143-147, 1079 (1997).

191. T. Y. Tan, R. Gafiteanu, and U. M. Gösele, “Physical and Numerical Modeling of Gettering Processes in Silicon” in Proceedings of the Second International Symposium on Advanced Science and Technology of Silicon Materials (JSPS, Nov. 25-29, 1996, Kona-Hawaii) p. 461.

Page 21: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 21

192. E. Schroer, S. Hopfe, P. Wener, U. Gösele, T. Y. Tan, G. Duscher, and M. Rühle, “ Oxide Precipitation at Silicon Grain Boundaries” Appl. Phys. Lett. 70, 327 (1997).

193. U. Egger, M. Schultz, P. Wener, O. Breitenstein, U. Gösele, T. Y. Tan, R. Franzheld, M. Uematsu, and H. Itoh, “Interdiffusion Studies in GaAsP/GaAs and GaAsSb/GaAs Superlattices Under Various Arsenic Vapor Pressures” J. Appl. Phys. 81, 6056 (1997).

194. T. Y. Tan, R. Gafiteanu, and U. M. Gösele, “Physical and Numerical Modeling of Gettering Processes in Silicon” AIP Proc. 394 (1997) pp. 215-224.

195. T. Y. Tan, P. Plekhanov, and U. M. Gösele, “ Nucleation Barrier of Voids and Dislocation Loops in Silicon” Appl. Phys. Lett. 70, 1715 (1997).

196. U. Gösele, D. Conrad, P. Werner, Q.-Y. Tong, R. Gafiteanu, and T. Y. Tan, “Point Defects, diffusion and Gettering in Silicon” in: Defects and Diffusion in Silicon Processing (Mater. Res. Soc, Pittsburgh, PA, 1997) pp. p.13-24.

197. B. L. Sopori, J. Alleman, W. Chen, T. Y. Tan, and N. M. Raindra, “Grain Enhancement of Thin Silicon Layers Using Optical Processing” in Rapid Thermal and Integrated Processing VI, Mater. Res. Soc. (Pittsburgh, PA, 1997), pp. 419-24.

198. T. Y. Tan and U. Gösele, “Twist Wafer Bonded “Fixed-Film” Versus “Compliant” Substrates: correlated Misfit Dislocation Generation and Contaminant Gettering” Appl. Phys. A 64, 631 (1997).

199. G. Kästner, U. Gösele, and T. Y. Tan “A Model of Strain Relaxation in Hetero-Epitaxial Films on Compliant Substrates” Appl. Phys. A 66, 13 (1998).

200. P. Plekhanov, and U. M. Gösele, and T. Y. Tan “Nucleation and Growth of Voids in Silicon” in Semiconductor Process and Device Performance Modeling, Eds. S. T. Dunham and J. S. Nelson, Mater. Res. Soc. Proc. vol. 490 (1998), p. 77-82.

201. C.-H. Chen, U. Gösele and T. Y. Tan “Fermi-Level Effect on Group III Atom Interdiffusion in III-V Compounds: Bandgap Heterogeneity and Low Silicon Doping” in Semiconductor Process and Device Performance Modeling, Eds. S. T. Dunham and J. S. Nelson, Mater. Res. Soc. Proc. vol. 490 (1998), p. 105-110.

202. C.-H. Chen, U. Gösele and T. Y. Tan “Simulation of Under- and Supersaturation of Gallium Vacancies in Gallium Arsenide During Silicon In- and Outdiffusion” in Semiconductor Process and Device Performance Modeling, Eds. S. T. Dunham and J. S. Nelson, Mater. Res. Soc. Proc. vol. 490 (1998), p. 99-104.

203. S. M. Joshi, U. Gösele, and T. Y. Tan, “Gold diffusion in Silicon During Gettering by an Aluminum Layer” in Semiconductor Process and Device Performance Modeling, Eds. S. T. Dunham and J. S. Nelson, Mater. Res. Soc. Proc. vol. 490 (1998), p. 117-122.

Page 22: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 22

204. Q.-Y. Tong, R. Scholz, U. Gösele, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and T. Y. Tan, “ A ‘Smater-Cut’ Approach to Low Temperature Silicon Layer Transfer” Appl. Phys. Lett. 72, 49 (1998).

205. R. Scholz, U. Gösele, J.-H. Huh, and T. Y. Tan, “Carbon -Induced Undersaturation of Silicon Self-Interstitials” Appl. Phys. Lett. 72, 200 (1998).

206. Q.-Y. Tong, T.-H. Lee, L.-J. Huang, Y.-L. Chao, W. J. Kim, R. Scholz, T. Y. Tan, and U. Gösele, “ Design Considerations for Si and SiC Layer Transfer by H Implantation” in Proceedings of the Fourth International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (The Electrochem. Soc., Pennington, NJ, 1998) pp. 521-528.

207. U. Gösele, R. Scholz, P. Werner, and T. Y. Tan, “Current Understanding of Diffusion and Point Defect Equilibriua in Silicon: An Overview”, Proceeding of Kazusa Akademia Forum on Science and Technology of Silicon Materials, (Kazusa Akademia Park, Japan, Nov. 12-14, 1997) p.97.

208. T. Y. Tan, R. Gafiteanu, S. M. Joshi, and U. Gösele, “Science and Modeling of Impurity Gettering in Silicon”, in Semiconductor Silicon 1998, eds. H. R. Huff, U. Gösele, and H. Tsuya (The Electrochem. Soc., Pennington, NJ, 1998) p. 1050.

209. T. Y. Tan, C.-H. Chen, U. Gösele, and R. Scholz, “Fermi-Level Effect, Electric Field Effect, and Diffusion Mehcanisms in GaAs Based III-V Compound Semiconductors” in Diffusison Mehcnisms in Crystalline Materials, eds. C. R. A. Catlow, N. Cowern, D. Farkas, Y. Mishin, and G. Vogl, Proc. Mater, Res. Soc. 527 (Mater. Res. Soc., Pittsburgh, PA, 1998) p. 321.

210. P. Werner, R. Scholz, U. Gösele, H. Gossmann, B. Herner, D. Jacobson, and T. Y. Tan, “Carbon Diffusion and Interaction With Point Defects In Si”, in Siliocn Front-End Technology—Materials Processing and Modeling, eds. N. Cowern, P. Griffin, D. Jacobson, P. Packen, ad R. Webb, Mater. Res. Soc. Proc. (Mater. Res. Soc., Pittsburgh, PA, 1998) p.

211. P. Plekhanov, and U. M. Gösele, and T. Y. Tan “Modeling of Nucleation and Growth of Voids in Silicon” J. Appl. Phys. 84, 718 (1998).

212. T. Y. Tan, “Mass Transport Equations Unifying the Descriptions of Isothermal Diffusion, Thermomigration, Segregation, and Position-Dependent diffusivity” Appl. Phys. Lett. 73, 2678 (1998).

213. R. F. Scholz, U. Gosele, O. Breitenstein, U. Egger, and T. Y. Tan, “Cathodoluminescence investigation of diffusion studies on the arsenic sublattice in gallium arsenide”, Diffusion and Defect Data B (Solid State Phenomena), 63-64; 183-190 (1998).

214. B. L. Sopori, W. Chen, J. Alleman, R. Matson, N. M. Ravindra, and T. Y. Tan, “Grain enhancement of polycrystalline silicon films aided by optical excitation” in “Thin-Film

Page 23: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 23

Structures for Photovoltaics” eds. E. D. Jones, J. Kalejs, R. Noufi, and B. L. Sopori, Mater. Res. Soc. Prc. vol. 485 (Mater. Res. Soc., Warrendale, PA, 1998) p. 95-100.

215. C.-H. Chen, U. M. Gösele, and T. Y. Tan, “Dopant Diffusion and Segregation in Semiconductor Heterostructures: Part I. Zn and Be in III-V Compound Superlattices” Appl. Phys. A68, 9-18 (1999).

216. C.-H. Chen, U. M. Gösele, and T. Y. Tan, “Dopant Diffusion and Segregation in Semiconductor Heterostructures: Part II. B in GexSi1-x/Si Structures” Appl. Phys. A68, 19-24 (1999).

217. C.-H. Chen, U. M. Gösele, and T. Y. Tan, “Solubilities of the Amphoteri Dopant Si and the Associated Carrier Concentrations in GaAs” J. Appl. Phys. 86, 5376-5384 (1999).

218. Chang-Ho Chen, Ulrich M. Gösele, and Teh Y. Tan “Fermi-Level Effect and Junction Carrier Concentration Effect on p-Typr Dopant Didtribution III-V Compound Superlattices” in “III-V and IV-IV Materials and Processing Challenges for Highly Integrated Microelectonics and Optoelectronics s”, eds. S.A. Ringel, E.A. Fitzgerald, I. Adesida, D. Houghton, Mater. Res. Soc. Proc. 535 (Mater. Res. Soc., Pittsburgh, PA, 1999) p. 219-224.

219. Chang-Ho Chen, Ulrich M. Gösele, and Teh Y. Tan, “Fermi-Level Effect and Junction Carrier Concentration Effect on Boron distribution in GexSi1-x Heterostructures” in “III-V and IV-IV Materials and Processing Challenges for Highly Integrated Microelectonics and Optoelectronics s”, eds. S.A. Ringel, E.A. Fitzgerald, I. Adesida, D. Houghton, Mater. Res. Soc. Proc. 535 (Mater. Res. Soc., Pittsburgh, PA, 1999) p. 275-280.

220. R. Scholz, P. Werner, U. Gösele, and T. Y. Tan, “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett. 74, 392 (1999).

221. P. S. Plekhanov, R. Gafiteanu, U. M. Gösele, and T. Y. Tan, “Modeling of Gettering of Precipitated Impurities for Carrier Lifetime Improvement in Solar Cell Applications”, J. Appl. Phys. 86, 2453-2458 (1999).

222. C.-H. Chen, U. M. Gösele, and T. Y. Tan, “Dopant Diffusion and Segregation in Semiconductor Heterostructures: Part III. Diffusion of Si into GaAs”, Appl. Phys. A 69, 313-321 (1999).

223. B. Sopori, W. Chen, T. Tan, P. Plekhanov, “ Overcoming the efficiency-limiting mechanisms in commercial Si solar cells”, NCPV Photovoltaics Program Review: AIP Conference Proceedings no. 462 (1999) p. 341-347.

224. P. S. Plekhanov, U. M. Gösele, T. Y. Tan,” Physical and numerical modeling of gettering of precipitated metallic impurities in Si”, NCPV Photovoltaics Program Review: AIP Conference Proceedings no. 462 (1999) p. 412-417.

Page 24: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 24

225. P. S. Plekhanov and T. Y. Tan, “A Schottky Effect Model of Electrical Ectivity of Metallic Precipitates in silicon” Appl. Phys. Lett. 76, 3777-3779 (2000).

226. T. Y. Tan and U. Gösele, “Point Defects, Diffusion, and Precipitation”, in “Handbook of Semiconductor Technology, vol. 1: Electronic Structure and Properties of Semiconductors”, eds. K. A. Jackson and W. Schröter (Wieley-VCH, New York, 2000) p. 231-290.

227. T. Y. Tan and P. S. Plekhanov, “A Quantitative Model of the Electrical Activity Of MetallicPrecipitates in Silicon Based on the Schottky Effect” in Proceeding of the 3rd

International Symposium on Advanced Science and Technology of Silicon Materials, (Nov. 20-25, 2000, Kona, Hawaii Island, HI), pp. 337-342

228. S. M. Joshi, U. M. Gösele, and T. Y. Tan, “Extended high temperature Al gettering for improvement and homogenization of minority carrier diffusion lengths in multicrystalline Si”, Solar Energy Materials and Solar Cells 70, 231 (2001).

229. T. Y. Tan, “Compound Semiconductors: Diffusion” in Encyclopedia of Materials: Science and Technology, ed. Subhash Mahajan (Elesevier, Amsterdam, 2001) pp. 1425-1441.

230. T. Y. Tan, “Impurity Gettering in Silicon” in Encyclopedia of Materials: Science and Technology, ed. Subhash Mahajan (Elesevier, Amsterdam, 2001) pp. 4031-4042.

231. T. Y. Tan and U. Gösele, “Oxidation Induced Defects in Silicon” in The Encyclopedia of Materials: Science and Technology, ed. Subhash Mahajan (Elesevier, Amsterdam, 2001) pp.

232. P. S. Plekhanov, M. D. Negoita, and T.Y. Tan, “Effect of Al-Induced Gettering and Back surface Field on the Efficiency of Si Solar Cells” J. Appl. Phys. 90, 5388 (2001).

233. Teh Y. Tan and Pavel S. Plekhanov, “A Quantitative Model of the Electrical Activity of Metal Silicide Precipitates in Silicon Based on the Schottky Effect” in Si Front-End Processing-Physics and Technology of Dopant-Defect Interactions III, eds. E. C. Jones, K. S. Jones, M. D. giles, P. Stolk, and J. Matsuo, Proc. of Mater. Res. Soc. 669 (Mater. Res. Soc., Pittsburgh, PA, 2001) p. J6.11-16.

234. T. Y. Tan, S. T. Lee, and U. Gösele, “A Model of Growth Directional Features of Silicon Nanowires” Appl. Phys. A. 74, 423-432 (2002).

235. T. Y. Tan, “Recent Progresses in Understanding Gettering in Silicon” in Defect- and Impurity-Engineered Semiconductors and Devices III, eds. S. Ashok, J. P. Chevallier, N. M. Johnson, B. L. Sopori, H. Okushi, Proc. of Mater. Res. Soc. 719 (Mater. Res. Soc., Pittsburgh, PA, 2001) p. F4.1.

236. T. Y. Tan, S. T. Lee, and U. Gösele, “A Model of Growth Directional Features of Silicon Nanowires “ Modeling Growth Directional Features of Silicon Nanowires Obtained Using SiO” in Defect- and Impurity-Engineered Semiconductors and Devices III, eds. S. Ashok, J. P. Chevallier, N. M. Johnson, B. L. Sopori, H. Okushi, Proc. of Mater. Res. Soc. 719 (Mater. Res. Soc., Pittsburgh, PA, 2001) p. F8.38.

Page 25: TEH YU TAN - Duke University · and diffusional aspects of Materials Science in crystalline matters. Outstanding contributions in • Extended defects (dislocations, precipitations,

Teh Y. TanJune, 1999Page 25

237. Teh Y. Tan, Na Li, and Ulrich Gösele, “Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process?” Appl. Phys. Lett. 83, 1199-1201 (2003).

This paper has been selected for listing in the August 18, 2003 issue of the Virtual Journal of Nanoscale Science & Technology.

238. Teh Y. Tan, Na Li, and Ulrich Gösele, “On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process” Appl. Phys. A78 519-526 (2004). Appear also as an Appl. Phys. A, On-Line First paper in December 2003.

239. M. D. Negoita and T.Y. Tan, “Metallic Precipitate Contribution to Generation and Recombination Currents in p-n Junction Devices” J. Appl. Phys. 94, 5064-5070 (2003).

240. M. D. Negoita and T.Y. Tan, “Metallic Precipitate Contribution to Carrier Generation in MOS Capacitors due to the Schottky Effect” J. Appl. Phys. 95, 191-198 (2004).

241. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gösele, and T. Y. Tan, “Silicon nanowhiskers grown on <111> Si substrates by molecular beam epitaxy” Appl. Phys. Lett. 84, 4968-4970 (2004).

Also selected for the June 7, 2004 issue of Virtual Journal of Nanoscale Science & Technology. (2004).

242. N. Li, T. Y. Tan, and U. Gösele, ”Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires” Applied Physics A 86, 433-440 (2007). On-line: DOI:10.1007/s00339-006-3809-4.

243. Lili Zhao, Na Li, Andreas Langer, Martin Steinhart, The Y. Tan, Eckhard Pipel, Hebert Hofmeister, King-Ning Tu, and Ulrich Gösele, “Crystallization of amorphous SiO2 microtubes cartalized by lithium vapor” Advanced Functional Materials 17, 1952-1957 (2007).

244. Hui Li, Na Li, S. Joshi, and T. Y. Tan, " Predominance of alternate diffusion mechanisms for interstitial-substitutional impurities in Si" in Materails Research Society Proceedings 944: Semiconductor Defect Engineering--Materials, Synthetic Structures and Devices II, editors S. Ashok, J. Chevallier, P. Kiesel, and T. Ogino (MRS, Warrendale. Pennsylvania, 2007) pp. 45-50.

245. N. Li, T. Y. Tan, and U. Gösele, ”Chemical tension in VLS nanostructure growth process: from nanohillocks to nanowires”, in Materails Research Society Proceedings volume 1017E: Low-Dimensional Materials — Synthesis, Assembly, Property Scaling, and Modeling, Editors: M. Shim, M. Kuno, X-M. Lin, R. Pachter, S. Kumar. Article #1017-DD04-09