technology development for coronagraphic imaging · lawson, aas poster, 01/14 exep tdem 12 stdt...

9
Exoplanet Exploration Program Technology Development for Coronagraphic Imaging Nick Siegler NASA Exoplanet Exploration Program Technology Manager 01/07/14 ExEP Program News American Astronomical Society 2014 Winter Meeting (Washington DC) 1 Jet Propulsion Laboratory California Institute of Technology

Upload: others

Post on 24-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

Technology Development for Coronagraphic Imaging

Nick Siegler

NASA Exoplanet Exploration Program Technology Manager

01/07/14

ExEP Program News American Astronomical Society

2014 Winter Meeting (Washington DC)

1  

Jet Propulsion Laboratory California Institute of Technology

Page 2: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

2

Block Diagram of a Typical Lyot Coronagraph!

FSM! DM #1, DM #2!

LOWFS!

Masks,Apodizers!

Flip Mirror!

IFS! IFS FPA!

Post-processing!

Imaging FPA!

high–order wavefront control loop !(WF aberrations due to imperfections in optics)!

jitter correction loop (~ 250 Hz)!(pointing stability)!

drift control loop (< 2 Hz)!(WF aberrations due to thermal changes) !

Light from star and

planet

AFTA telescope!

Optics

Control

Detector

The architecture downselect

Post-processing!

LOWFS!FPA!

Page 3: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

Coronagraph  Mask  Fabrica1on  

Possible  Path  to  Closing  Technology  Gap    

1.   Selec1on  process  underway  from  six  AFTA  candidate  coronagraph  architectures  to  two.  

•  Primary  and  backup  

2.   Fabricate  sets  of  each  mask  

3.   Demonstrate  performance  in  the  two  HCITs  •  Mask/apodizer  itera7ons  likely  

4.   Radia1on  tes1ng  (if  necessary)  •  Some  of  the  masks  may  have  dielectrics  or  liquid  

crystal  polymers  

5.   Down-­‐selec1on  to  one  architecture  

3  

Before (unobscured pupil)

Free standing transmissive binary silicon mask

Black Si substrate with reflective patterned Al coating

AFTA (obscured pupil)

Shaped Pupil Mask

Circular mask with profiled Ni layer (amplitude) coated with profiled MgF2 (phase)

Hybrid Lyot Mask

Linear mask with profiled Ni layer (amplitude) coated with profiled cryolite (phase)

Page 4: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

   4  

Low-­‐Order  Wavefront  Sensing  and  Control  (LOWFS/C)  

Possible  Path  to  Closing  Technology  Gap    

1.   Upon  AFTA  coronagraph  selec1on  and  receiving  telescope  jiUer  and  WF  driV  inputs,  baseline  LOWFS/C  rqmts  for  each  coronagraph.  

2.   Downselect  from  mul1ple  LOWFS/C  techniques.  

3.   Develop  LOWFS/C  algorithms  using  modeling.  

4.   Build  and  demonstrate  LOWFS/C  closed-­‐loop  performance  in  an  independent  vacuum  testbed.  

5.   Deliver  and  integrate  to  coronagraph  testbed  (HCIT)  

Knife  Edged  Mask  •  Use  image  morphology  from  

a  slightly  defocused  PSF  to  sense  WF  

•  Detector  near  image  plane    •  Can  sense  7lt  

Zernike  WFS  •  Point  diffrac7on  interf.  •  Sense  WF  by  interfering  the  

WF  with  a  reference  WF  created  by  a  spa7al  filter  

•  Detector  at  pupil  plane  •  Can  sense  7lt  

Phase  Retrieval    •  Use  FT  and  slightly  defocused  

image  to  sense  the  WF  •  Detector  near  image  plane  •  Can  sense  7lt  

Shack-­‐Hartmann  •  Use  SH  subaperture  image  

centroid  to  measure  local  WF  7lt    

•  Detector  at  pupil  plane  •  Can  sense  7lt  

Fast  WF  JiUer  •  PSF  centroid  or  quad  cell  /  

pyramid  APD  for  line  of  sight  at  high  rate  

•  WF  7lt  only  

Page 5: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

   5  

IFS  Ultra-­‐Low  Noise  Detector  

Possible  Path  to  Closing  Technology  Gap    

1.   Understand  science  opera1onal  scenarios  and  camera  modes;  derive  preliminary  detector  requirements.  

•  <  0.1  e/pix  read  noise  •  ~0.0001  e/pix/s  dark  current  •  QE  >  80%  in  the  visible  

2.   Survey  exis1ng  detector  and  read-­‐out  electronics  technologies  

3.   Select  and  acquire  a  baseline  detector;    characterize  under  realis1c  opera1onal  scenarios    

•  Includes  low-­‐noise  electronics  

4.   Perform  radia1on  tes1ng  of  the  selected  detector;  before  and  aVer  characteriza1on.  

5.   Inves1gate  flight  read-­‐out  electronics  design.  

6.   Design,  build,  and  test  flight-­‐like  electronics  boards.  

e2V  Electron  Mul7plying  CCD  (a  candidate  device)  

 ESA  successfully  demonstrated  gain  stability  and  radia7on  tolerance  for  EMCCDs.  

Page 6: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

   6  

Post-­‐Data  Processing  

Possible  Path  to  Closing  Technology  Gap    

1.   Assess  the  performance  of  current  state-­‐of-­‐the-­‐art  post-­‐processing  algorithms  using  exis1ng  HCIT  data  and  simulated  mul1wavelength  IFS  data  a)  evaluate  the  regime  where  contrast  in  no  longer  

dominated  by  phase  errors.  

2.   Understand  telescope/instrument  temporal  behavior  and  assess  possible  opera1onal  scenarios  and  observa1on  strategies.  

3.   Develop  simula1ons  of  realis1c  AFTA  coronagraphic  PSFs  including  thermal  modeling,  LOWFS,  temporal  varia1ons.  

4.   Develop  simulated  PSF  library  from  actual  HCIT  data  with  AFTA  pupil.  

5.   Demonstrate  algorithm  by  retrieving  simulated  planet  through  PSF  subtrac1on.  

Contrast  Ra7o  vs  Planet/Star  Separa7on  AFTA-­‐WFIRST  Study  Report  (2013)  

3λ/D 4λ/D

10-9

10-8

Page 7: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

System-­‐Level  Testbed  Demonstra1on    with  Dynamic  Wavefront    

Key  Demonstra1on  Objec1ves  •  Contrast  performance  of  the  fabricated  

masks,  including  bandwidth  and  throughput    

•  LOWFS/C  subsystem  and  nulling  algorithms    

•  Preliminary  speckle  reduc1on  algorithms  •  WFE  sensi1vity  studies  •  Op1cal  modeling  valida1on  

7  

Page 8: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

ExEP Technology Development Process

•  Technology  gaps  iden1fied  and  described,  gaps  technically  quan1fied  

8  

•  Priori1zed  for  rela1ve  Importance,  Urgency,  and  Trend  

•  Plans  created  to  re1re  the  top  priori1es  in  1me  

Coronagraph technology plans for AFTA far along; starshade next.

Page 9: Technology Development for Coronagraphic Imaging · Lawson, AAS poster, 01/14 ExEP TDEM 12 STDT ExEP TDEM 10 TDEM 12 ExEP Funding Sources Note: one TDEM 09 mitigated risk of petal

Exoplanet Exploration Program

Starshade Technology Development Areas

   9  Lawson, AAS poster, 01/14

ExEP TDEM 12

STDT ExEP

TDEM 10

TDEM 12 ExEP

Funding Sources

Note: one TDEM 09 mitigated risk of petal fabrication.

Suzanne Casement/NGAS Starshade Straylight Mitigation through Edge Scatter Modeling and Sharp-Edge Materials Development

Tiffany Glassman/NGAS Demonstration of Starshade Starlight-Suppression Performance in the Field