technology controversy essay

24
Lopez 1 Juan Lopez 212956579 SC NATS 1775B Nanotechnology: does the future look hopeful or bleak? For many, the subject of nanotechnology brings about images of miniscule, insect-like robots that are used to control objects or to break down unnecessary scrap metal and junk in dumpsters. Most likely than not, this mentality is due to futuristic movies and sci-fi novels on the subject. However, no matter how many movies or novels portray the abilities of nanorobotics, nanotechnology is far from simply manipulating robots on a nanometric scale. The future is arriving, and sooner or later – the former being more likely – nanotechnology will be readily available; the question that needs to be answered is whether or not this technology should continue to be researched. Nanotechnology is the study of the creation of objects and systems by controlling matter on an atomic level and scale (Green & Ngedwa 1). Over several decades, the concept of nanotechnology has expanded and grown into being more than such minuscule

Upload: juan-lopez

Post on 15-Aug-2015

92 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Technology Controversy essay

Lopez 1

Juan Lopez212956579SC NATS 1775B

Nanotechnology: does the future look hopeful or bleak?

For many, the subject of nanotechnology brings about images of miniscule, insect-like

robots that are used to control objects or to break down unnecessary scrap metal and junk in

dumpsters. Most likely than not, this mentality is due to futuristic movies and sci-fi novels on the

subject. However, no matter how many movies or novels portray the abilities of nanorobotics,

nanotechnology is far from simply manipulating robots on a nanometric scale. The future is

arriving, and sooner or later – the former being more likely – nanotechnology will be readily

available; the question that needs to be answered is whether or not this technology should

continue to be researched.

Nanotechnology is the study of the creation of objects and systems by controlling matter

on an atomic level and scale (Green & Ngedwa 1). Over several decades, the concept of

nanotechnology has expanded and grown into being more than such minuscule machines; there

are now concepts of using nanotechnology to be able to repair the human body – fixing tissue,

repairing organs, and even replacing them without outside help – or allowing scientists to alter

DNA, perhaps one day making the perfect human. This idea, along with others similar to it, is

why there is controversy surrounding the research and development of nanotechnology.

With the increased use of nanotechnology in today’s market economy, companies need to

create an environment for their workers that is safe; this raises the question of how to ensure that

a work station is safe when the potentially dangerous, atom-sized nanorobotics can’t be seen.

Another controversy surrounding nanotechnology is an ethical issue; how ethical is it to be

Page 2: Technology Controversy essay

Lopez 2

altering the DNA of an individual, even for their benefit? How will the waste or pollution change

the environment, or the air, or the water? The interest many companies have in nanotechnology

is the potential ability to create or replicate an object on an atomic level with precision and ease;

how would this affect the global market for objects such as computers or furniture or clothing?

Can nanotechnology be used as medicine? These controversies and issues will be addressed,

examined and reviewed to see whether each issue has enough evidence to support itself against

nanotechnology, and why it should or should not become a part of the distant future and

imagination.

The sources that I am going to be examining, comparing and contrasting in this paper

include: United States government documents submitted by the GAO entitled “Nanomaterials

Are Widely Used in Commerce, but EPA Faces Challenges in Regulating Risk”; a document

from the National Collaborating Centre for Environmental Health by Carolyn J. Green and Sarah

Ngedwa entitled “Nanotechnology: A Review of Exposure, Health Risks and Recent Regulatory

Developments”; newspaper articles from the Guardian by Cathy Holding and Duncan Graham-

Rowe respectively entitled “How nanotechnology is shaping stem cell research” and “Is

nanotechnology safe in the workplace?”; an engineering book by John Wiley & Sons entitled

“Nanotechnology for the Energy Challenge”; an article on MNT by Catharine Paddock entitled

“Nanotechnology in Medicine: Huge Potential, But What Are The Risks?”; an article in the

Examiner by Jim Kouri entitled “Controversy surrounds Nanotech food supply experiments”; a

published review by Nesli Sozer and Jozef L. Kokini in Trends in Biotechnology entitled

“Nanotechnology and its applications in the food sector”; an article on Global by Hitoshi Nasu

entitled “The Future of Nanotechnology in Warfare”; and a video on YouTube by Alternative

Media TV host Cristopher Greene entitled “NANOTECHNOLOGY 2013: Google Nanobots to

Page 3: Technology Controversy essay

Lopez 3

Borg Humans.” With the sources listed, I will first explain both sides of the argument – why

nanotechnology should continue to be developed and why it should not based on potential risks –

and then differentiate between the popular and academic sources, and how they differ in concept

and information.

As stated before, nanotechnology is a rather diverse field, and does not simply focus on

tiny machines. Generally, it is divided into two areas: the area that does include tiny robots, used

for whatever reason, and the area of creating nearly any object on a nanometric scale. I will

include evidence for and relate to the building of objects briefly, but the main focus of this paper

is going to be on the creation and use of tiny robotics for any reason they might be used. This

includes areas such as food, technology, biomedicine, and the human body. The side that I am

first going to be examining is the side that rejects nanotechnology due to the potential risks that it

has. The GAO (Government Accountability Office) of the United States stated in their article

titled that companies are using nanotechnology and nanomaterials in several fields and that the

EPA (Environmental Protection Agency) has issued regulations to address the possible toxicity

and threat of nanomaterials being used, but it has not taken affect yet (GAO 1). Nanomaterials

are materials created and controlled at the nanometric scale – one billionth of a meter. How

many American citizens know that they are purchasing firstly, products that have been

constructed using nanomaterials, and secondly, that the products they might be using, ingesting,

and even taking as medicine might be toxic for them? The article states that the following fields

have been using nanotechnology to create consumer products: “automotive; defense and

aerospace; electronics and computers; energy and environment; food and agriculture; housing

and construction; medical and pharmaceutical; and personal care, cosmetics…” (1). The

American government is allowing these products to be churned out for consumers without

Page 4: Technology Controversy essay

Lopez 4

making sure they are safe for use. The estimated market for nanotechnology in the United States

will be approximately between one trillion and two point six trillion dollars in 2015 (1); An

industry which has existed for less than a century. Unregulated consumer products certainly

counts as a potential risk and as a reason why nanotechnology should not continue, and raises a

question pointed at large companies and how they are potentially exploiting the consumers and

affecting the market economy.

Carolyn J. Green and her article sheds further light on the issues raised in the previous

document. Nanoparticles, specifically human engineered nanoparticles, have become a threat to

humans and could potentially be in air, water and food sources, and in several consumer

products, as well as having unknown reactions based on surface area of where they are located

(Green & Ngedwa 1). Green gathered reviews to exposure of certain nanoparticles, such as

carbon nanotubes, silver nanoparticles, zinc oxide and titanium dioxide nanoparticles, and

cerium oxide nanoparticles; although each nanoparticle, when directly exposed to humans, did

have a negative effect – ranging from discoloration of skin to irritation of skin to causing cellular

damage inside the body – the studies are inconclusive, and more evidence is needed. However,

this by no means indicates that nanoparticles are safe to be around and nanotechnology can

remain unregulated. Nanotechnology is used in the creation of many consumer products, so what

effect does nanotechnology have on the producers?

As nanotechnology increases in popularity and awareness, society has to adjust to this

upcoming new phenomenon that gives humans a plethora of options to create just about

anything. However, before any adjustment can be made, risk assessment and safety measures

have to be put into place, and more information is needed about the nanoparticles. As mentioned

in Green’s document, most cases of harm due to nanoparticles have come back inconclusive, and

Page 5: Technology Controversy essay

Lopez 5

if that’s the case, how does one properly enact safety measures when the threat cannot be

assessed? Graham-Rowe says that despite implementing safety measures such as masks and

ventilation systems, they might not be adequate to get rid of or deal with the nanoparticles in the

environment. Also, the way these nanoparticles will react to the environment is different than the

way similar particles would react on the average scale in the environment (Graham-Rowe 2-3).

The article includes an analysis by Professor Maria Giovanna Mattarolo, and she effectively

states that the regulations and safety measures of various countries are ineffective because they

lack the knowledge on the subject to gauge and measure the risk and consequences of

nanoparticles (4-5). The final paragraph of the article presents a very potent and simple sentence:

“What is needed is a comprehensive means of assessing these nanomaterials.” Thankfully, this is

exactly what the NanoValid project is doing; a four year project with 29 international partners

coming together and testing the risks of exposure to nanomaterials and nanoparticles (10). Until

the project has completed its research, the current safety measures implemented to prevent toxic

exposure to nanomaterials is fit to describe as effective as the blind leading the blind.

After examining the effects of nanotechnology on a manufacturing level, the potential

effects and changes to one of the largest industries in the world is up next; the food industry.

Having over seven billion potential consumers – with that number constantly increasing – the

food industry affects nearly every individual on Earth. It’s no secret that hundreds and thousands

of people starve every day in every corner of the world, and one of the promises that the

companies are making is that with the use of nanotechnology, they will be able to pump out more

food to be distributed to more people. The article comments that despite having the same amount

of information of the medical and cosmetic fields, the general public is a lot more hesitant to join

the craze of nanotech foods (Kouri 7). As well, American company Kraft Foods – who we all

Page 6: Technology Controversy essay

Lopez 6

may or may not love for their mac and cheese – is “at the forefront of nanofood development”

and has named several possible products, including drinks that change colors and flavors to

mimic food, and that can even adjust to allergies or nutritional needs (14). The food the public is

going to be eating is essentially going to change and be different for each individual, and while

that may not necessarily have a negative consequence, it leaves the potential for much worse. If

foods can be controlled, what happens to the food once inside the body? As previously

discussed, nanomaterials on the nanometric scale react differently, and have yet to have proper

examination of the possible reactions. The foods could react in a negative manner in the body,

causing endless havoc within an individual, or a family, or a neighbourhood, or a town. Yet

another area of concern is how the nanomaterials and nanoparticles will affect general human

health – especially if you’re ingesting them – and the environment, and once again, reiterates the

fact and there is very limited understanding to how nanomaterials work, including how they

impact the human body (17-18). All in all, the best course of action is to definitively obtain

results on nanomaterials in the human body before mass producing food and causing a pandemic

to ensue.

For the final media evidence on the side of why nanotechnology should not continue to

be researched and funded, there is a very interesting video involving nanotechnology and

medicine. Medicine is another enormous and ever-expanding field of study, with humans

constantly looking for a way to heal the body. But this video takes this notion a step further, and

some would argue, takes it a step too far. The video discusses the post that CEO of Google Larry

Page left on Google+, which states that he will try to prolong his life, and wishes to live

essentially forever. This transhumanist statement follows the topic of medicine, which will be

personalized and catered to an individual’s needs. This is made possible by scientists and doctors

Page 7: Technology Controversy essay

Lopez 7

studying your genetic makeup and creating medicine that is genetically made for you to improve

your illness. The video continues to state that a director of the engineering department at Google,

Ray Kurzweil, will be ingesting nanorobotics into his body in an attempt to heal and eliminate

human illnesses, including cancer. As great as this sounds, some people may not be comfortable

with swallowing thousands of nanometric robots and having them run through your body, with

who knows who or what controlling them, and having them come and go as they please. Perhaps

as the video says, this is like the RFID chip, a small chip that’s injected into the bodies of pets

and animals to locate them in case they’re lost or to find their owners. Christopher Greene asks a

very powerful question: have we lost our humanity? Have humans become like cattle, to be

herded and used simply as consumers for companies to get profits? Or on the other side of the

spectrum, have humans become so advanced to the point where there will be a merger between

man and machine? Only the future will tell.

The other side of the argument that I am going to be analysing is the argument for

continued use of nanotechnology, and I will be analysing several benefits and theories which

contribute to this notion. The article by Catharine Paddock reveals some light on the potential

benefits of nanotechnology when combined with medicine. The article discusses the topic of

using genetics and DNA in order to cure illnesses and ailments, essentially the personalized

medicine previously mentioned. Scientists will be able to introduce your DNA to nanorobotics,

which will in theory begin to repair the body on a cellular level (Paddock 7). Scientists at

Harvard have created a nanobot that will, in theory, enter the body and introduce molecules that

change the way cells act, in a response to cancer treatment (12). Apart from using nanorobotics

themselves, there is research into creating nanorobotic factories inside the body to consistently

deliver vitamins and nutrients that the body naturally produces, such as protein (16). These

Page 8: Technology Controversy essay

Lopez 8

medical theories are all a possibility with the use of nanotechnology, and this could be the

answer to dealing with cancer in a non-harmful way, and possibly all diseases.

Another aspect of the combination between nanotechnology and medicine is the effects

and impact it can have on stem cell research. Stem cells are extremely important in the field of

medicine, as they are able to transform into nearly any kind of cell. As such, the challenges of

using stem cells include being able to get the stem cells to turn into the type of cells needed

(Holding 2). However, there has been research into using nanotechnology to get the stem cells to

change into the certain cells wanted or required by the body. This reiterates the possibility of

using nanotechnology to heal the body on a cellular level, so that perhaps one day no more blood

transfusions or kidney or lung or heart transplants are needed; the body heals itself.

Yet another big industry that is going to be introduced that nanotechnology affects is the

energy industry. With technology constantly evolving, advancing and growing in popularity,

more and more energy sources need to be found and more energy needs to be used to power

technology. Also, an increasing human population demands more energy for lighting, heating,

gas, water heating, and countless electrical applications and gadgets. It’s no secret that fossil

fuels do great harm to the environment and are non-renewable, two factors which make them

undesirable. What if they could be cut out completely? Although not mentioned, the possibility is

there. With the use of nanotechnology, photovoltaic cells – or solar cells – can be utilized more

efficiently, generating as much as three times the energy per cell as opposed to current solar

energy means. As well, the nanotechnology maintains the charge of the cell through the

conversion process from a primary to a secondary energy source, ensuring that no energy is lost

in the conversion process (John Wiley & Sons 6-11). The result is not only more solar energy

available, but more hydrogen cells are made, both of which are clean energy and do not expunge

Page 9: Technology Controversy essay

Lopez 9

pollutants into the environment. Not only does nanotechnology in the energy industry create an

abundance of energy, which in turns means more technology and cheaper energy costs, but it

keeps the environment clean and does not produce any waste or by-product.

Nanotechnology in the food industry can be a huge development for nutritional issues

and concerns. Sozer and Kokini do not discuss the possibility of mass producing more food, but

rather focus on how nanotechnology can make current food more healthy and beneficial to

consumers. Sozer and Kokini discuss two different methods to how this is possible: the top down

and the bottom up way (Sozer & Kokini 1). The former involves processing foods, such as green

tea, on a nanometric level to create a reaction that in this case, increases the antioxidants in the

tea. The latter can have foods react in ways as to create and organize nutrients in a certain way to

create beneficial compounds, such as protein. Nanotechnology can also react with existing

nutrients in food to increase factors like solubility and more efficient absorption through cells

(1). The result is healthier food for consumers, which can also prevent diseases and illnesses due

to lack of vitamins, all in all creating a healthier human being.

Perhaps the industry that the United States government has involved itself the most is the

defense department. With billions of dollars being spent on it yearly for troops, tanks and other

technological gadgets, the U.S Defense Department has really adopted nanotechnology, and has

already created a line of weapons with this new tech. Hitoshi Nasu writes that the U.S Navy has

deployed a laser weapon – which was created by and uses nanotechnology – aboard the USS

Ponce, which can “limit the damage” it deals to targeted aircraft, hinting at a more humanitarian

form of warfare (Nasu 1-3). The article also mentions that the U.S government is developing

other technological creations with nanotechnology, including a new form of indoor and outdoor

surveillance in the form and size of a robotic hummingbird drone, an invisibility cloak for stealth

Page 10: Technology Controversy essay

Lopez 10

and reconnaissance, and hints at advancing current technologies such as UAVs (Unarmed Aerial

Vehicles) to their “ultimate form.” The article reiterates the theme of avoiding civilian casualty

multiple times, focusing on the limiting of or even erasing harm to civilians with the increased

precision of nanotech weapons. As nanotechnology develops, it will increasingly be added to the

military cache of tools, and has the potential to change the level of warfare in a similar way to

how gunpowder revolutionized warfare.

After analysing the popular and academic sources on both sides of the argument, I

noticed several differences. The popular sources on each side of the argument made grant

assumptions and theories of possible benefits and risks without actually having them present,

such as controlling stem cells in the human body (Holding) or weapons which have not yet been

created (Nasu). On the other hand, the academic papers mostly focused on results, whether they

were good or bad, which were actually proven with testing or information, such as the risks of

not regulating nanotech (GAO), the benefits of using nanotechnology in food (Sozer & Kokini)

and how nanotechnology can aid in energy production (Wiley & Sons). The language does

differ between the two, with popular sources including – I feel – just enough information to not

confuse the reader, whereas the academic sources include complex topics, such as particle

compounds or reactions with different elements on the nanometric scale. The fact that the

popular press uses this method really limits what is being put into the hands of consumers and

changes their knowledge of it, as one can argue the majority of the world’s population reads

more popular press information than academic information.

I feel that the topic of nanotechnology relates to the theme of Management of New

Technologies in a negative manner. Nanotechnology does have its benefits and risks, but the real

argument is for who should control or monitor the use of nanotechnology around the world and

Page 11: Technology Controversy essay

Lopez 11

regulate it. In recent news, the U.S government has decided not to renew the agreement with

ICANN for Internet monitoring, and will allow the contract to expire in 2015, with the

government hopefully having a system in place by then that will be able to fulfill the same duties

(Nagesh 1, 4). Perhaps they will opt for a system that is more internationally open, and this can

be the case for nanotechnology in the future. As the world’s superpower, America will want to

involve itself in the trillion dollar industry that is emerging, and so the questions falls under who

or what should manage this industry and technological system? Perhaps once the United States

has made a decision on what system will replace the duties of ICANN can insight be placed on

the same for nanotech.

One point I would like to mention about both popular and academic sources is the

extreme lack of definition answers and information given or displayed. Whether it be to the

public or in government documents, it is clear that nanotechnology has yet to be properly tested

in the environment and in consumers to examine benefits and risks, and most articles point to

theoretical subjects and projects (popular sources) or results which are either inconclusive or

have not been tested with humans (academic sources). There is no doubt that this is the next big

industry and will revolutionize the way humans live, but until the future arrives when

information is plentiful and nanotechnology is under control, only then will mankind see a

change.

I found the information behind nanotechnology very interesting; I had no idea it was such

a diverse field, but then again my mentality was skewed with futuristic sci-fi movies and their

perception of nanotechnology. All in all, I believe that nanotechnology is the beginnings of a

revolution in technology and human lifestyle and society, but that isn’t definitive for the time

being. Nanotechnology certainly has its benefits and risks, but like all other powerful

Page 12: Technology Controversy essay

Lopez 12

technologies, gadgets and innovations, it is the responsibility of the user to make sure it is used

correctly and in a beneficial manner.

Works Cited

Graham-Rowe, Duncan. “Is nanotechnology safe in the workplace?” The Guardian.

Guardian News and Media Limited. 14 Feb 2012. Web. 11 Mar 2014.

Green, Carolyn J. Ndegwa, Sarah. “Nanotechnology: A Review of Exposure, Health Risks and

Recent Regulatory Developments.” National Collaborating Centre for Environmental

Health. National Collaborating Centre for Environmental Health. August 2011. Web. 15

Mar 2014.

Greene, Christopher. NANOTECHNOLOGY 2013: Google Nanobots to Borg Humans.

YouTube. 27 Oct 2013. Video. Web. 9 Mar 2014.

Holding, Cathy. “How nanotechnology is shaping stem cell research.” The Guardian. Guardian

News and Media Limited. 29 May 2012. Web. 10 Mar 2014.

Kokini, Jozef L. Sozer, Nesli. “Nanotechnology and its applications in the food sector.” Trends

in Biotechnology. Elsevier Inc. 8 Jan 2009. Web. 10 Mar 2014.

Kouri, Jim. “Controversy surrounds Nanotech food supply experiments.” Examiner.com. Clarity

Digital Group LLC. 21 Jan 2010. Web 11 Mar 2014.

Nagesh, Gautham. “ICANN 101: Who Will Oversee the Internet?” The Wall Street Journal:

Washington Wire. Dow Jones & Company. 17 Mar 2014. Web. 19 Mar 2014.

Page 13: Technology Controversy essay

Lopez 13

Nasu, Hitoshi. “The Future of Nanotechnology in Warfare.” Global. The Global Journal. 4 July

2013. Web. 3 Mar 2014.

Paddock, Catharine. “Nanotechnology in Medicine: Huge Potential, But What Are The Risks?”

MNT. MediLexicon International Ltd. 4 May 2013. Web 13 Mar 2014.

U.S Senate. “Nanomaterials Are Widely Used in Commerce, but EPA Faces Challenges in

Regulating Risk.” United States Government Accountability Office. United States

Government Accountability Office. May 2010. Web. 8 Mar 2014.

Wiley, John & Sons. Nanotechnology for the Energy Challenge. Ed. Javier Garcia-Martinez.

Great Britain: Wiley-VCH. 2013. Print. Web. 5 Mar 2014.

Bibliography

Davis, Mark E. Heath, James R. “Nanotechnology and Cancer.” Annual Reviews. Atypon

Literatum. Feb 2008. Web. 12 Mar 2014.

Graham-Rowe, Duncan. “Is nanotechnology safe in the workplace?” The Guardian.

Guardian News and Media Limited. 14 Feb 2012. Web. 11 Mar 2014.

Green, Carolyn J. Ndegwa, Sarah. “Nanotechnology: A Review of Exposure, Health Risks and

Recent Regulatory Developments.” National Collaborating Centre for Environmental

Health. National Collaborating Centre for Environmental Health. August 2011. Web. 15

Mar 2014.

Greene, Christopher. NANOTECHNOLOGY 2013: Google Nanobots to Borg Humans.

YouTube. 27 Oct 2013. Video. Web. 9 Mar 2014.

Page 14: Technology Controversy essay

Lopez 14

Groves, Kathy. Titoria, Pretima. “Nanotechnology and the food industry.” FS&T. Web. 7 Mar

2014.

Holding, Cathy. “How nanotechnology is shaping stem cell research.” The Guardian. Guardian

News and Media Limited. 29 May 2012. Web. 10 Mar 2014.

Kokini, Jozef L. Sozer, Nesli. “Nanotechnology and its applications in the food sector.” Trends

in Biotechnology. Elsevier Inc. 8 Jan 2009. Web. 10 Mar 2014.

Kouri, Jim. “Controversy surrounds Nanotech food supply experiments.” Examiner.com. Clarity

Digital Group LLC. 21 Jan 2010. Web 11 Mar 2014.

Nagesh, Gautham. “ICANN 101: Who Will Oversee the Internet?” The Wall Street Journal:

Washington Wire. Dow Jones & Company. 17 Mar 2014. Web. 19 Mar 2014.

Nasu, Hitoshi. “The Future of Nanotechnology in Warfare.” Global. The Global Journal. 4 July

2013. Web. 3 Mar 2014.

Paddock, Catharine. “Nanotechnology in Medicine: Huge Potential, But What Are The Risks?”

MNT. MediLexicon International Ltd. 4 May 2013. Web 13 Mar 2014.

Shriver, Bruce. “Some Recent Cancer-Related Nanotechnology.” The Liddy Shriver. Liddy

Shriver Sarcoma Initiative. Oct 2005. Web. 11 Mar 2014.

U.S Senate. Government Accountability Office. “Nanomaterials Are Widely Used in Commerce,

but EPA Faces Challenges in Regulating Risk.” United States Government Accountability

Office. United States Government Accountability Office. May 2010. Web. 8 Mar 2014.

Page 15: Technology Controversy essay

Lopez 15

Wiley, John & Sons. Nanotechnology for the Energy Challenge. Ed. Javier Garcia-Martinez.

Great Britain: Wiley-VCH. 2013. Print. Web. 5 Mar 2014.