technological futures - citepa · technological futures ... solar alchemy turns fumes back into...

33
TECHNOLOGICAL FUTURES and what they could mean for air and climate change Rob Maas, chair TFIAM, EGTEI-meeting Marseille, 23-24 November 2006

Upload: lamdat

Post on 20-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

TECHNOLOGICAL FUTURESand what they could mean for

air and climate change

Rob Maas, chair TFIAM,

EGTEI-meeting Marseille,23-24 November 2006

MTFR not sufficient to meet critical loads andlevels in 2020à need for new (emerging)

technologiesEffect indicator

MTFR from EU25

Base year exposure (2000/1990)

Baseline 2020 (Current legislation)

MTFR + Euro 5/6MTFR + shipping

MTFR + non EU measures

No-effect level (critical load/level)

Zero exposure

Remaining gap

Search for morecost-effective solutions

NEC 2010

2004-studyIFARE/UBA-W

Contribution ofemerging technologiesin industryto emission reductionsin 2020

2004-study IFARE/UBA

Malthus & Meadows obsolete?Doomsday or new challenges?

How can we afford a sustainable development?

0

1

2

3

4

5

6

7

1700 1800 1900 2000 2100

global populationbillionschemical fertilizerproductionincrease of CO2Mauna Loa obsC N

HaberBosch

PapinWatt

From single abatement options to anintegrated approach

Lifestyle Conservation Fuel mix EfficiencyDemand Less air and car Insulation, low

travel, public energy appliances,transport, warmer heat recovery,

End Use clothes, less economical vehicles

consumerism

End Use More renewables, Better boilers,

Conversion gas cookers, lights, heat

pumps

Less losses

DistributionEnergy Electricity More renewables, Combined heat and

Industries HeatPrimary gas power, combined

cycleMore renewables,

Energy gas

SENCO

UK Energy flow chart: 1990SENCO GBR : TechBeh : Y1990

Trade Extraction Fuel processing Electricity and heat Delivered Sectors Useful energyEnvironment

Waste energy

Trd_E

Trd_N

Ext_G

Ext_S

Ext_L

Solid

Nuclear

Refinery Liq

Solid

Nuclear

L_FueOil

ElOnly

Gas

Solid

Elec

Liq

Biomass Food

Res_G_

Res_S_Res_E_Res_L_

Ser_G_Ser_S_Ser_E_Ser_L_

Ind_G_

Ind_S_Ind_E_

Ind_L_

Oth_G_Oth_L_

Tra(nat) E

Tra(nat) L

Tra(int) L

Mot W

Proc W

H>120C

H<12-C

Water H

Space H

Space ACCool

CO2 CO2

SENCO

UK Energy flow chart: 2050SENCO GBR : TechBeh : Y2050

Trade Extraction Fuel processing Electricity and heat Delivered Sectors Useful energyEnvironment

Waste energy

Trd_G

Trd_E

Trd_L

Ext_G

Ext_S

Biomass

Solid

Wind

TideWave

Solar

Biowaste

BiomassBiomass

proc

Refinery

S_BioL_Bio

Liq

Wind

TideWaveSolar

Waste

CHPDHFuI

ElOnly

Auto

CHPDH_H

Auto_H

Gas

G_CHP

H_Solar

Solid

Elec

Liq

Biomass Food

Res_G_CHPRes_H_SolarRes_E_

Ser_G_CHPSer_H_SolarSer_E_

Ind_G_Ind_G_CHPInd_H_SolarInd_S_

Ind_E_

Ind_L_Ind_L_CHP

Oth_G_

Tra(nat) ETra(nat) L

Tra(int) L

Mot W

El equipProc WLight

H>120C

H<12-C

Cooking

Water H

Space H

Space ACCool

CO2

SENCO

MFR: NOx-emission UK 1990-2050

0

200

400

600

800

1000

1200

1400

1600

1800

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

ktFue:ExtFue:ProEle:GenEle:PumEle:TraHea:PubHea:AutTra(int):Sea:IntTra(int):Air: InTra(nat):Other iTra(nat):Air: DoTra(nat):RailTra(nat):Road: FTra(nat):Road: PRes:ResSer:SerOth:othInd:AgrInd:LigInd:MetInd:CheInd:Iro

GBR: TechBeh: Air : NOx

SENCO

OptimizedEuropeanelectricity

trade

SENCO

Emissions from large point sources in Europe

SENCO

Mitigation measures for GHGsCumulative carbon removal, 2000-2100 [Gt C]

CO2

CH4

N2O

0 50 100 150 200 250 300

Soil cultivation

Nitric & adipic acid production

Rice cultivation

Enteric fermentation

Manure treatment

Energy sector

Waste treatment

Carbon capture

Carbon sinks

Switch to biomass

Switch to renewables

Switch to natural gas

Switch to nuclear

Stabilization for B1 Stabilization for A2

800

GAINS: GHG cost curve in 2020

GAINS-EUROPE in 2020Aggregated Marginal Cost Curve

-100

-50

-

50

100

150

200

250

300

6,000 6,500 7,000 7,500 8,000 8,500 9,000

GHG Emissions (Mt CO2eq)

Mar

gina

l Cos

t(E

UR

O/tC

O2e

q)

1990CLE

- 20%

Maximum Feasible Reductions in GAINS

PM2.5 Cost Curve: Two modes of GAINS

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

75 80 85 90 95 100 105 110

Remaining Emissions (kt)

Tota

l Cos

t (M

Eur

o)

RAINS mode

GAINS mode - total costs

2020, PRIMES00

systemoptim iza tion

systemre design

functioninnova tion

tim e horizon (in yea rs)

im pro vedenvironmen ta l

e ffic iency(factor)

5 1 0 20

2

5

10+

Sustainable developmentrequires innovations

Efficientpower plants

Efficientpower plants

Cleanerfuels

Cleanerfuels

Hydrogeneconomy

Hydrogeneconomy

Innovations• No science fiction• But technological breakthroughs beyond

optimization of current technologies

Time

Embryonic,chaotic, ‘snake pit’

Growth

Saturation, maturity,senescence

Indicator ofperformance (e.g.market share,technicalperformance)

Succesful Innovation processes

• Often new combinations of existing knowledge• Drivers: R&D-investments, co-operation, urgency, future

perspectives, cross-fertilisation, serendipity, risk taking,etc.

“generate new diversity”

Global R&D expenditures, 2002

Biotechnology & Food

New materials

Nanotechnology

Geology

ICT

Space technology

(Nuclear) Energy

Medicins & Genomics

Social sciences

After 2002: more investments insecurity issues (and clean coal?)

Innovation depends onthe amount of money invested

Innovation throughco-operation & cross-fertilisation

Where to look for innovationsin Europe?

4. Climate change crop failures15. Regional war over resources.

16. Major energy shortages3. Wars re nation-states

1. Widespread criminal terrorism.

14. Environmental refugees.13A. Global epidemics, plagues

18. Crisis in food quality.2. Migration of poor to rich world.

5. Changes in ocean currents13F. Economic meltdown

13G. Magnitude 9 earthquake.8. Abrupt shift in climatic zones11. Fresh water contamination

6. Destruction of the ozone layer.10. Failure to support UN

13. Terrorist genetic agent amok.12. Technological gridlock.

17. Reverse population stabilization9. Decay of human intelligence.

13H. Breakdown of law and order7. Nuclear war.13C. Global war.

13E. Extraordinarily intense solar13B. Large asteroid collision.

13D. Deadly gamma ray burst.0 10 20 30 40 50 60 70 80

Percent

1 or 2

4 or 5

Likelihood of Some Catastrophes: Q13: Rd 1 and 2

Urgentproblemsrequiringinnovation

(perceivedurgencyamongscientists)

UN - State ofthe future,2001

Raw material Gas, Ammonia, Steel

Reformer+CO2 Sep

Air Separation

CO2Separation

CoalGas

Biomass

CO2Compression& Dehydration

Power & Heat

Power & Heat

Power & Heat

Process +CO2 Sep.

N2

N2 O2

O2

H2

N2O2

CO2

CO2

CO2

CO2

Air

Post combustion

Pre combustion

Oxyfuel

Industrial Processes

Air

Air

CoalGas

Biomass

CoalGas

Biomass

Gasification

Gas, Oil

CoalGas

Biomass

Air/O2Steam

Air/O2

Raw material Gas, Ammonia, Steel

Reformer+CO2 SepReformer+CO2 Sep

Air Separation

CO2Separation

CO2Separation

CoalGas

Biomass

CO2Compression& Dehydration

Power & HeatPower & Heat

Power & HeatPower & Heat

Power & Heat

Process +CO2 Sep.

N2

N2 O2

O2

H2

N2O2

CO2

CO2

CO2

CO2

Air

Post combustion

Pre combustion

Oxyfuel

Industrial Processes

Air

Air

CoalGas

Biomass

CoalGas

Biomass

GasificationGasification

Gas, Oil

CoalGas

Biomass

Air/O2Steam

Air/O2

Figure TS.3. Overview of capture processes and systems.

Figure 1, The Mitka-vehicle (May 2001)

Solar alchemy turns fumes back into fuelsIt is the biggest contributor to climate change. Now chemists are hoping to convertcarbon dioxide into a useful fuel, with a little help from the sun. If they succeed, it willbe possible to recycle the greenhouse gas produced by burning fossil fuels. The workcould also lead to a way for future Mars missions to generate fuel for their returnjourney from carbon dioxide in the planet's atmosphere.

Hydrogen Economy moves up a gear with5 billion Euro industrial investment

Bioethanol valorization forincorporation in diesel fuelblends

Diet and air pollution!• meat & milk consumption one of the

most polluting parts of our diet• alternatives: fish & novel protein foods

(NPFs)• replacing meat & milk:

– reduces emissions of CH4, NH3, N2O– reduces land requirements– direct savings consumers (?)

» Eat organic products? (CH):100% 96%

10%

80%

10%3%

1972 1992 2002

Organic farmingIntegrated production"Modern" agriculture

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Number of doublings (installed capacity)

Cos

t ind

ex ($

/kW

)

0.0

0.5

1.0

1.5

Nuclear Reactors France 1977-2000

PVs Japan1976-1995

0.1%

0.1%

50% interval

90% interval

mean learning rate(115 case studies):-20% per doubling

What are the costs?Learning and market growth reduce costs

How to assess new technologies?

• Organize EGTEI-meetings which are achallenge for innovative experts

• Look beyond 2020• Assess potentials for 2050 and beyond• Assess costs incl. learning rates• Feed information to POLES, PRIMES, CAPRI,

TREMOVE and GAINS• Design optimal reduction strategies – balancing

costs of short term regulation and investmentsin long term innovations

Take the future into account

Be the engine behindsustainable development

Thank you !