technical description stm64

146
Information SL64-3.3 Technical Description (TED) A42022-L5907-B51-2-7618

Upload: p2peri2

Post on 24-Mar-2015

539 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Technical Description Stm64

Information

SL64-3.3

Technical Description (TED)

A42022-L5907-B51-2-7618

Page 2: Technical Description Stm64

2 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

f Important Notice on Product SafetyElevated voltages are inevitably present at specific points in this electrical equipment. Some of theparts may also have elevated operating temperatures.

Non-observance of these conditions and the safety instructions can result in personal injury or in prop-erty damage.

The system complies with the standard EN 60950 / IEC 60950. All equipment connected has to complywith the applicable safety standards.

Mount the systems in areas with restricted access only. Only trained and qualified personnel mayinstall, operate, and maintain the systems.

The same text in German:

Wichtiger Hinweis zur Produktsicherheit

In elektrischen Anlagen stehen zwangsläufig bestimmte Teile der Geräte unter Spannung. Einige Teilekönnen auch eine hohe Betriebstemperatur aufweisen.

Eine Nichtbeachtung dieser Situation und der Warnungshinweise kann zu Körperverletzungen undSachschäden führen.

Das System entspricht den Anforderungen der EN 60950 / IEC 60950. Angeschlossene Gerätemüssen die zutreffenden Sicherheitsbestimmungen erfüllen.

Die Anlagen dürfen nur in Betriebsstätten mit beschränktem Zutritt aufgebaut werden. Die Anlagendürfen nur durch geschultes und qualifiziertes Personal installiert, betrieben und gewartet werden.

Trademarks:

All designations used in this document can be trademarks, the use of which by third parties for theirown purposes could violate the rights of their owners.

Copyright (C) Siemens AG 2002-2002.

Issued by the Information and Communication Networks GroupHofmannstraße 51D-81359 München

Technical modifications possible.Technical specifications and features are binding only insofar asthey are specifically and expressly agreed upon in a written contract.

Page 3: Technical Description Stm64

A42022-L5907-B51-2-7618 3

InformationSL64-3.3

Technical Description (TED)

This document consists of a total of 146 pages. All pages are issue 2.

Contents

1 Notes on this Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.1 Documentation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2 Symbols Used in the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2.1 Symbol for Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2.2 Symbols for Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2.3 Symbols for Menu Displays and Text Inputs. . . . . . . . . . . . . . . . . . . . . . . . 121.2.4 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3 Notes on Licensed Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4 Form for your Ideas, Proposals and Corrections . . . . . . . . . . . . . . . . . . . . 13

2 Introduction, Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1 Network Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.1 Terminal-to-Terminal Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.2 Linear Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.3 WDM Operation on Single Fiber Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.4 Single and Multiple Ring Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2 Compatibility with Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.1 Feature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2 Operating Terminals LCT and NCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.3 Connection to Network Management Systems. . . . . . . . . . . . . . . . . . . . . . 39

4 Network Elements, Configuration Types. . . . . . . . . . . . . . . . . . . . . . . . . . . 414.1 Terminal Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2 Add/Drop Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.3 Local Cross-Connect Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.4 Functional Overview of Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.5 Functional Overview of the Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.5.1 List of Modules Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.5.2 Power Supply of the Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.5.3 Modules for Main Signal Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.5.3.1 Optical Interface Synchronous STM-64 Modules

(OIS64 / OIS64-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.5.3.2 Optical Interface Synchronous STM-16 Module (OIS16 / OIS16-2) . . . . . 484.5.3.3 Forward Error Correction FEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.5.3.4 Optical Interface Synchronous STM-4 Module (OIS4 / OIS4-2) . . . . . . . . . 524.5.3.5 Optical Interface Synchronous STM-1 (OIS1) Module . . . . . . . . . . . . . . . . 534.5.3.6 Optical Preamplifier (OP/OP64) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.5.3.7 Optical Booster (OB) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.5.3.8 Switching Network for Line Systems (SNL64-3) Module . . . . . . . . . . . . . . 574.5.3.9 Electrical Interface Plesiochronous/Synchronous

140 Mbit/s/STM-1 (EIPS1) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.5.3.10 Line Terminating Unit (LTU64) Interface Module . . . . . . . . . . . . . . . . . . . . 634.5.3.11 Fast Ethernet Interface Module (ETH100) . . . . . . . . . . . . . . . . . . . . . . . . . 644.5.3.12 Gigabit Ethernet Interface Module (ETH1000) . . . . . . . . . . . . . . . . . . . . . . 65

Page 4: Technical Description Stm64

4 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

4.5.3.13 Line Terminating Unit Ethernet (LTU-ETH) Interface Module . . . . . . . . . . . 674.5.4 Modules for Central Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.5.4.1 Clock Unit Line (CLL64 / CLL64-2) Module . . . . . . . . . . . . . . . . . . . . . . . . . 684.5.4.2 T3/T4 Clock Adapter (CLA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.5.4.3 System Control Unit (SCU-R2 / SCU-R2E) Module. . . . . . . . . . . . . . . . . . . 724.5.5 Modules for Supplementary Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.5.5.1 Overhead Access Unit (OHA) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.5.5.2 Telemetry Interface (TIF) Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.6 Subrack Alarm Panel / Phone Indication (SRAP-PI) . . . . . . . . . . . . . . . . . . 784.6.1 Subrack Alarm Panel SRAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.6.2 Phone Indication PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.7 Fan Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.8 DCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Functional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.1 Operation, Control and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.1.1 Display and Operating Elements of the Network Element . . . . . . . . . . . . . . 835.1.1.1 Display and Operating Elements of the Plug-in Modules. . . . . . . . . . . . . . . 835.1.2 Control and Monitoring by the LCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.1.2.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.1.2.2 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.2.3 User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.3 Control and Monitoring by the NCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.1.3.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.1.4 Control and Monitoring by a Network Management System . . . . . . . . . . . . 875.1.4.1 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.2 Protection Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885.2.1 Module Protection Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885.2.1.1 Criteria for Initiating the Protection Switching Process . . . . . . . . . . . . . . . . 885.2.2 Linear Multiplex Section Protection (Linear MSP) . . . . . . . . . . . . . . . . . . . . 885.2.2.1 Linear (1+1) MSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885.2.2.2 Linear (1:1) MSP with Extra Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2.2.3 Criteria for Initiating the Protection Switching Process . . . . . . . . . . . . . . . . 925.2.3 Bidirectional Self Healing Ring Protection Switching (BSHR) . . . . . . . . . . . 925.2.3.1 2-Fiber Ring Protection Switching (BSHR-2) . . . . . . . . . . . . . . . . . . . . . . . . 925.2.4 Card Release Switching (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.2.5 (1+1) Path Protection Switching

(Subnetwork Connection Protection, SNCP) . . . . . . . . . . . . . . . . . . . . . . . . 955.2.5.1 Path Protection Switching Connection Possibilities . . . . . . . . . . . . . . . . . . . 965.2.5.2 Criteria for Initiating the Protection Switching Process . . . . . . . . . . . . . . . . 965.3 Supplementary Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.3.1 User-Specific Data Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.3.2 Engineering Order Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.4 Clock Pulse Supply, Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.4.1 Synchronous Equipment Timing Source, SETS . . . . . . . . . . . . . . . . . . . . . 985.4.2 Timing Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.5 Real Time Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.6 Laser Safety Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Page 5: Technical Description Stm64

A42022-L5907-B51-2-7618 5

InformationSL64-3.3

Technical Description (TED)

5.7 Single-Fiber Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.1 Racks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.2 Rack Terminal Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.3 Subracks and Equipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.3.1 Subrack SL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.3.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.3.3 Insertion and Extraction Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.3.4 Coding the Module Backplane Connector . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Software and Firmware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.2 Software Structure of the SCU-R2 / SCU-R2E . . . . . . . . . . . . . . . . . . . . . 1097.2.1 SCU-R2 / SCU-R2E Base and Application Software BASW

(Base Software) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.2.2 SEMF Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.2.3 MCF Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.3 Software Structure of Peripheral Control Units PCUs. . . . . . . . . . . . . . . . 1107.3.1 PCU Boot Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.3.2 PCU Application Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.4 Network Addresses of Synchronous Line Equipment. . . . . . . . . . . . . . . . 1107.5 Log Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.6 Software Download. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.7 Management PC Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.7.1 LCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.7.1.1 Software for LCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127.7.2 NCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137.7.2.1 Software for NCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Commissioning, Operation and Maintenance . . . . . . . . . . . . . . . . . . . . . . 1168.1 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.2.1 Operating Devices of the Subrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.2.2 Operating and Display Elements of the Modules . . . . . . . . . . . . . . . . . . . 1168.2.3 Operation with an Operating Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178.3 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.1 Network Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.2 Planning Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.2.1 STM-64 Port (Line Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189.2.2 STM-16 Port (Tributary Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229.2.3 STM-4 Port (Tributary Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269.2.4 STM-1 Port (Tributary Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289.2.5 Ethernet Interfaces (Tributary Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289.2.5.1 Fast Ethernet Interface ETH100, electrical . . . . . . . . . . . . . . . . . . . . . . . . 1289.2.5.2 Gigabit Ethernet Interface ETH1000, optical . . . . . . . . . . . . . . . . . . . . . . 1309.3 Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319.4 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Page 6: Technical Description Stm64

6 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.4.1 Interfaces for the Transmission of the Payload Signal. . . . . . . . . . . . . . . . 1319.4.1.1 Optical Line Interfaces STM-64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319.4.1.2 Optical Tributary Interfaces STM-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329.4.1.3 Electrical Tributary Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329.4.2 Interfaces for Network Clock Pulse Synchronization . . . . . . . . . . . . . . . . . 1339.4.2.1 2048-kHz Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339.4.2.2 2048 kbit/s Interfaces (Using CLA / CLL64-2 Module). . . . . . . . . . . . . . . . 1349.4.3 Interfaces According to ITU-T Recommendation G.703 . . . . . . . . . . . . . . 1349.4.4 Interface Similar to ITU-T Recommendation V.11 . . . . . . . . . . . . . . . . . . . 1349.4.5 Interface for Customer-Specific Channels . . . . . . . . . . . . . . . . . . . . . . . . . 1359.4.6 EOW Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359.4.7 Style-7R Signaling Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379.4.8 Interface QST/F for Operating Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . 1389.4.9 Interface QST/B3 for Network Management System . . . . . . . . . . . . . . . . . 1389.5 Clock Pulse Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1389.6 Switching and Delay Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399.6.1 Switching Time for MSP Line Protection Switching . . . . . . . . . . . . . . . . . . 1399.6.2 Switching Time for SNC Path Protection Switching . . . . . . . . . . . . . . . . . . 1399.6.3 Automatic Laser Shutdown (ALS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399.6.4 Alarm Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409.6.5 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409.7 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409.8 Dimensions in mm (WxHxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409.9 Weights in kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Page 7: Technical Description Stm64

A42022-L5907-B51-2-7618 7

InformationSL64-3.3

Technical Description (TED)

IllustrationsFig. 2.1 Terminal-to-Terminal Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Fig. 2.2 Add/Drop Function within an Unprotected Chain. . . . . . . . . . . . . . . . . . 16

Fig. 2.3 Add/Drop Function within a Protected Chain . . . . . . . . . . . . . . . . . . . . . 16

Fig. 2.4 WDM Link on the Line Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Fig. 2.5 STM-64 Ring on the Line Side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fig. 2.6 Access Ring Network at Tributary Side . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 2.7 Meshed Multiple Ring Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 3.1 Overview of the System Components . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Fig. 3.2 Interface Associations of a local / remote LCT, NCT andTMN Transmission System Configuration . . . . . . . . . . . . . . . . . . . . . . . 39

Fig. 3.3 Embedding of SL64 NEs in a TMN System. . . . . . . . . . . . . . . . . . . . . . 40

Fig. 4.1 SL64 Terminal Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 4.2 SL64 Add/Drop Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Fig. 4.3 SL64 Cross-Connect Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Fig. 4.4 Block Diagram of SL64(Equipping Example; without Line Protection Switching). . . . . . . . . . . . 45

Fig. 4.5 Block Diagram of Modules OIS64 / OIS64-2 . . . . . . . . . . . . . . . . . . . . . 48

Fig. 4.6 Block Diagram of Modules OIS16 / OIS16-2 . . . . . . . . . . . . . . . . . . . . 49

Fig. 4.7 Principle FEC Functions at the Transmit Side . . . . . . . . . . . . . . . . . . . . 51

Fig. 4.8 Principle FEC Functions at the Receive Side . . . . . . . . . . . . . . . . . . . . 51

Fig. 4.9 FEC Embedding within the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Fig. 4.10 Block Diagram of Modules OIS4 / OIS4-2 . . . . . . . . . . . . . . . . . . . . . . . 53

Fig. 4.11 Overview Circuit Diagram of Module OIS1 . . . . . . . . . . . . . . . . . . . . . . 54

Fig. 4.12 Block Diagram of Optical Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 4.13 Block Diagram of Optical Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Fig. 4.14 Block Diagram of SNL64-3 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Fig. 4.15 Possible Environment of EIPS1 Modules in SL64 . . . . . . . . . . . . . . . . . 60

Fig. 4.16 Block Diagram of Module EIPS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 4.17 Block Diagram of Module LTU64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Fig. 4.18 Block Diagram of Module ETH100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Fig. 4.19 Block Diagram of Module ETH1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Fig. 4.20 Block Diagram of Module LTU-ETH. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Fig. 4.21 Block Diagram of Clock Pulse Generation on Clock Unit Line CLL64 . . 69

Fig. 4.22 Block Diagram of CLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fig. 4.23 Block Diagram of the SCU-R2 / SCU-R2E . . . . . . . . . . . . . . . . . . . . . . 74

Fig. 4.24 Block Diagram of Overhead Access Unit. . . . . . . . . . . . . . . . . . . . . . . . 76

Fig. 4.25 Block Diagram of Telemetry Interface TIF . . . . . . . . . . . . . . . . . . . . . . . 77

Fig. 4.26 Front View of the SRAP-PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Fig. 4.27 Local Alarm Signaling for SRAP and forExternal Signaling Equipment via the SCU-R2 / SCU-R2E Module . . . 79

Fig. 4.28 Display LEDs of the Phone Indication Panel PI . . . . . . . . . . . . . . . . . . . 80

Fig. 5.1 Application Example for the Local Craft Terminal LCTin a Transmission Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Page 8: Technical Description Stm64

8 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 5.2 User Interface for SL64 (Sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Fig. 5.3 Application Example for NCT and LCT in a Transmission Network . . . . 86

Fig. 5.4 Linear (1+1) MSP, Fault-Free Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Fig. 5.5 Linear (1+1)-MSP, Switch to Protection Line . . . . . . . . . . . . . . . . . . . . . 90

Fig. 5.6 Linear (1:1) MSP, Fault-Free Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Fig. 5.7 Linear (1:1) MSP, Switch to Protection Line . . . . . . . . . . . . . . . . . . . . . . 91

Fig. 5.8 Example of BSHR-2 in a Fault-Free State . . . . . . . . . . . . . . . . . . . . . . . 93

Fig. 5.9 Example of BSHR-2 in the Event of a Line Interruption . . . . . . . . . . . . . 94

Fig. 5.10 Example of (1+1)-MSP Connection Setup(Status: Protection Switched), CRS not Effective . . . . . . . . . . . . . . . . . . 95

Fig. 5.11 Example of (1+1) MSP Connection Setup(Status: Protection Switched), CRS Effective . . . . . . . . . . . . . . . . . . . . . 95

Fig. 5.12 Example of Path Protection Switching for an STM-1 Line . . . . . . . . . . . 96

Fig. 5.13 SETS Function According to ITU-T G.783 . . . . . . . . . . . . . . . . . . . . . . . 99

Fig. 6.1 Equipping Configuration with two SL64 in one ETSI Rack . . . . . . . . . . 102

Fig. 6.2 Typical Equipping Configuration with one SL64 togetherwith a DCM Shelf and a SL16 Subrack in an ETSI Rack . . . . . . . . . . . 103

Fig. 6.3 Structure of Subrack SL64 with Possible Equipping. . . . . . . . . . . . . . . 106

Fig. 6.4 Mechanical Design of the Interface Modules . . . . . . . . . . . . . . . . . . . . 107

Fig. 7.1 Overview Data Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Fig. 7.2 Product Architecture LCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Fig. 7.3 Software Architecture of the Operating Terminals LCT and NCT. . . . . 113

Fig. 7.4 Product Architecture of the NCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Fig. 9.1 Link Configuration of the STM User Classes . . . . . . . . . . . . . . . . . . . . 132

Page 9: Technical Description Stm64

A42022-L5907-B51-2-7618 9

InformationSL64-3.3

Technical Description (TED)

TablesTab. 3.1 Transmission Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Tab. 3.2 Management & Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Tab. 3.3 System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Tab. 3.4 Maintenance, Supervision & Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . 36

Tab. 4.1 Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Tab. 4.2 Special Functions Supported by OIS16 / OIS16-2. . . . . . . . . . . . . . . . . 50

Tab. 4.3 ETH100, LED Assignement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Tab. 4.4 ETH1000, LED Assignement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Tab. 4.5 Alarm Displays of the SRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Tab. 9.1 STM-64 Port, 1310 nm and 1550 nm. . . . . . . . . . . . . . . . . . . . . . . . . . 118

Tab. 9.2 STM-64 Port 1550 nm with Booster, Preamplifier and Inband FEC . . 120

Tab. 9.3 STM-64 Port 1550 nm for Multi-wavelength Applications . . . . . . . . . . 121

Tab. 9.4 STM-16 Port 1300 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Tab. 9.5 STM-16 Port 1550 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Tab. 9.6 STM-16 Port 1550 nm for Multi-wavelength Applications . . . . . . . . . . 124

Tab. 9.7 STM-4 Port 1300 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Tab. 9.8 STM-4-Port 1550 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Tab. 9.9 STM-1 Port 1300 nm / 1550 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Tab. 9.10 Fast Ethernet Traffic Interface (100BASE-TX). . . . . . . . . . . . . . . . . . . 128

Tab. 9.11 Gigabit Ethernet Traffic Interface (1000BASE-SX/-LX) . . . . . . . . . . . . 130

Tab. 9.12 Quality Levels for the Reference Clock Pulse . . . . . . . . . . . . . . . . . . . 139

Page 10: Technical Description Stm64

10 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Page 11: Technical Description Stm64

A42022-L5907-B51-2-7618 11

InformationSL64-3.3

Technical Description (TED)

1 Notes on this Documentation

1.1 Documentation OverviewThe documentation of the series 3 synchronous multiplexer SL64 3.3 (abbreviated to:SL64-3.3) covers the following descriptions and manuals:

• Technical Description (TED)The Technical Description TED gives an overview of the application, performancefeatures, interfaces and functions of the equipment. It also contains the most impor-tant technical data.The Technical Description contains no definite instructions for action.

• Installation and Test Manual (ITMN)The Installation and Test Manual ITMN contains instructions on connecting up andcommissioning the TransXpress Local Craft Terminal LCT and Network Craft Termi-nal NCT together with instructions on commissioning the synchronous line system(with the aid of the LCT).Any work using the Installation and Test Manual ITMN presumes knowledge of theOperator Guidelines, OGL.

• Operator Guidelines (OGL)The Operator Guidelines OGL describe the operating elements of the network ele-ment and operating and monitoring with the NCT and LCT operating terminals (in-cluding explanation of the graphical user interface of the application software of thenetwork element).In addition, the Operator Guidelines describe the procedures to be followed in thecase of alarms and the fault clearance procedures used for the network element.

Help Besides the OGL, the On-line Help of the application software is of high impor-tance for the operator.

For information about the gateway software NE-UniGATE please refer to thecorresponding documentation.

Page 12: Technical Description Stm64

12 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

1.2 Symbols Used in the Documentation

1.2.1 Symbol for Warnings

1.2.2 Symbols for Notes

1.2.3 Symbols for Menu Displays and Text InputsMenu options from pop-up menus or inputs to be made by the user (texts, commands)are displayed consecutively in their hierarchical sequence in pointed brackets:

<Menu> <Menu item> <Command text> <Parameter> etc.

1.2.4 TermsThe modules of the synchronous line system are also referred to as cards, plug-in unitsor slide-in units; in the English screen text, the designation “Card” is used in addition tothe designation “Module”. In this manual, the designation “Module” is used for the mostpart.

1.3 Notes on Licensed SoftwareThis documentation refers to software products which were taken over from other com-panies as licenses.

In case of problems, please contact Siemens AG as the licensee instead of the relevantlicenser.

In this documentation, the following designations of licensed products are mentioned:• UNIX (registered trademark of UNIX System Laboratories Inc.)• MS-Windows (identification of the Microsoft Corporation)

!This symbol identifies notes which, if ignored, can result in personal injury or in perma-nent damage to the equipment.

iThis symbol identifies notes providing information which extends beyond the immediatecontext.

⇒ Denotes a point in the text which contains specific handling instructiones (InTED not applicable).

Cross reference to other chapters in this manual or cross reference to othermanuals.

Help Note on the on-line help system of the relevant application software concerned.

Page 13: Technical Description Stm64

A42022-L5907-B51-2-7618 13

InformationSL64-3.3

Technical Description (TED)

1.4 Form for your Ideas, Proposals and CorrectionsWe aim to provide clear, user-friendly documentation. To achieve this objective, yourpractical experience is very important. We appreciate your suggestions.

To offer you, the user, a cost-effective opportunity to identify weak points or requests fordocumentation, we have compiled a form for you on the next page. You can use it as amaster or as a printout in electronic documentation.

Please enter your ideas, proposals and corrections on the copy (enclose furtherpages, if required).

The following points are of particular importance to us:• Where are we offering too much or too little detail?• Where should more explanatory graphics be used?• Where is the description difficult to understand?• How can the basic structure of the description or the manual be improved?

Please forward your feedback as a letter, fax or E-Mail to our address given overleaf.

If you want a reply or need to discuss anything with us, please complete the “Sender”field in full.

Many thanks for your feedback!

Page 14: Technical Description Stm64

14 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

To

SIEMENS AKTIENGESELLSCHAFTInformation and Communication Networks GroupICN ON CM TS7Hofmannstrasse 51

Sender

Name:

..........................................................................

D-81359 Munich, Germany

Fax +49 89 722 57315E-Mail: [email protected]

Address:

..........................................................................

..........................................................................Department:

...................................

Tel./Fax:E-Mail:

....................................Date: Signed:

....................................

I use this manual as My functions include(...) Service documentation (...) System commissioning/Startup(...) Commissioning/System startup documentation (...) Operation(...) A general introduction (...) Maintenance(...) A reference work (...) Sales(...) A text book (...) Teaching activities(...) _______________________________ (...) _______________________________

Page Comments on the Documents TED, ITMN, OGL, or on the On-line Help1)

1) Please mark the document concerned.

Page 15: Technical Description Stm64

A42022-L5907-B51-2-7618 15

InformationSL64-3.3

Technical Description (TED)

2 Introduction, ApplicationSynchronous line equipment SL64 is part of the TransXpress product family. It is suit-able for transmission of SDH signals, SONET signals, and plesiochronous signals.

On the line side signals with a bit rate of 10 Gbit/s will be transmitted. The transmissionmedium employed is single-mode optical fiber in the wavelength range around 1550 nm.The optical line signal is an STM-64 signal of the synchronous digital hierarchy. The ba-sic characteristics of the synchronous digital hierarchy are defined in ITU-T Recommen-dation G.707 (03/96).

On the tributary side (feeder side), depending on equipping, there are interfaces avail-able for:– electrical PDH-E4 signals and/or electrical STM-1 signals,– optical STM-16, STM-4 and STM-1 signals,– optical OC-48, OC-12, and OC-3 SONET signals– full duplex transparent Gigabit-Ethernet over VC-4 or VC-4-4v (1000Base)– full duplex transparent Fast-Ethernet over VC-4 (100Base)

For use with WDM units from Siemens special optical modules are available. With thesethe appropriate optical wavelength in accordance with ITU-T Recommendation G.692 isselected.

2.1 Network ApplicationsBy virtue of its modular design, Multiplexer SL64 can be equipped and configured in theoptimum way for all applications.

SL64 is suitable for all connections which impose the very highest demands on trans-mission capacity. The range of applications extends from simple end-to-end connec-tions through classical line networks for national or international connections –expandable with wavelength division multiplex systems – up to complex meshed net-works or ring networks with a variety of protection switching functions and operation asa local cross connect.

Chapters 2.1.1 through 2.1.4 show a number of typical applications.

2.1.1 Terminal-to-Terminal TopologiesTerminal-to-terminal links as shown in Fig. 2.1, are supported by SL64 network ele-ments in terminal applications.

Fig. 2.1 Terminal-to-Terminal Link

SL64

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

10 Gbit/s SL64

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

working

protection/working

Page 16: Technical Description Stm64

16 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

2.1.2 Linear TopologiesUnprotected chains, as shown in Fig. 2.2, are supported by SL64 network elements inadd/drop applications.

Fig. 2.2 Add/Drop Function within an Unprotected Chain

Protected chains, as shown in Fig. 2.3, may be realized by means of concatenatedSL64 network elements with terminal configuration.

Fig. 2.3 Add/Drop Function within a Protected Chain

2.1.3 WDM Operation on Single Fiber PairSL64 network elements are prepared for use within WDM transmission networks (e.g.WL) on the line (see Fig. 2.4) or the tributary traffic side.

Fig. 2.4 WDM Link on the Line Side

SL64 SL6410 Gbit/s

SL6410 Gbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

SL64 10 Gbit/s SL64 SL64 10 Gbit/s SL64

working

protection

working

protection

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

SL64 SL64WL WLn x 10 Gbit/s10 Gbit/s 10 Gbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

Page 17: Technical Description Stm64

A42022-L5907-B51-2-7618 17

InformationSL64-3.3

Technical Description (TED)

2.1.4 Single and Multiple Ring Closures2-fiber ring topologies (unprotected ring or BSHR/2) on the line side are supported bySL64 network elements in an add/drop configuration (see Fig. 2.5). The maximum num-ber of network elements within a BSHR/2 ring is limited to 16.

Fig. 2.5 STM-64 Ring on the Line Side

2-fiber ring topologies (unprotected ring or BSHR/2) on the line and the STM-16 tributaryside are supported by SL64 network elements in an add/drop configuration (see Fig. 2.6and Fig. 2.7).

SL64

SL64

SL64

SL64 SL64

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

2,5 Gbit/s622 Mbit/s155 Mbit/s140 Mbit/s

Page 18: Technical Description Stm64

18 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 2.6 Access Ring Network at Tributary Side

Fig. 2.7 Meshed Multiple Ring Topology

SL64

SL64

10 Gbit/s

SL64

SL16SMA16

SL64

SL16SMA16

10 Gbit/s

10 Gbit/s

10 Gbit/s

2,5 Gbit/s

2,5 Gbit/s

2,5 Gbit/s

SL64

SL64

10 Gbit/s

2,5 Gbit/s

SL64SL64

SLD16

SMA16 SL64

10 Gbit/s

10 Gbit/s10 Gbit/s

2,5 Gbit/s 2,5 Gbit/s

2,5 Gbit/s

10 Gbit/s

Page 19: Technical Description Stm64

A42022-L5907-B51-2-7618 19

InformationSL64-3.3

Technical Description (TED)

2.2 Compatibility with Existing SystemsMultiplexer SL64 can interoperate with the following TransXpress network elements:

SLT16-1.3 (MCF-Qx module required at each case)SLR16-1.3 (MCF-Qx module required at each case)SLT4-1.3 (MCF-Qx module required at each case)SLR4-1.3 (MCF-Qx module required at each case)SMA1KSMA1K-CPSMA16/4SMA1/4SMA4/1SMT1DSL16SLR16SXA, SXDWLWLSMTSOSN

Page 20: Technical Description Stm64

20 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

3 System OverviewIts great flexibility in a great variety of interface modules for the very widest coveragemake the SL64 ideal for use in all capacity-intensive applications in every area of a com-munication network, from classical, meshed backbone networks, through highly-effi-cient ring structures (in Metropolitan networks for example) to corporate networks.

For optical networks too Multiplexer SL64 is an optimum feeder, interoperating with theDWDM units from Siemens to establish a future-proof infrastructure offering flexiblegrowth to accommodate the very highest capacity demand. This allows transmission ca-pacities of up to 2 x 3.2 Tbit/s on a single fiber optic pair.

Depending on the application, SL64 offers complete configuration flexibility for use asan add/drop multiplexer, a terminal multiplexer or a local cross-connect. Because of theextremely compact design (2 SL64 NEs in one ETSI rack), all these applications can becatered for using a single subrack (see 6.3). Reconfiguration during operation is possi-ble. Likewise the tributary interfaces – available for electrical 140-Mbit/s and STM-1 sig-nals as well as optical STM-16, STM-4 and STM-1 signals – can be mixed at any timeand replaced at any time.

Protection against device or line failures is of great importance, in particular for networkswith the highest capacities.

SL64 supports ”state-of-the-art” protection switching mechanisms to enable an optimumnetwork with the very highest reliability to be realized – depending on the relevant net-work topology and the requirements of the network operator (see 5.2).

Fig. 3.1 shows an overview of the hardware and software components which can beused.

Page 21: Technical Description Stm64

A42022-L5907-B51-2-7618 21

InformationSL64-3.3

Technical Description (TED)

Fig. 3.1 Overview of the System Components

SCU-R2/SCU-R2ESW R3.3

SCU-R2/SCU-R2E

OIS64/-2/-3

SL64 Hardware SL64 Software LCT/NCT

SL64 Synchronous STM-64 Line System

ETS System Rack

Fan Shelf

DCM Shelf

SL64 Subrack

SCU SW

PCU-SW

OIS64 PCU-ASW

SNL64-3 PCU-ASW

CLL64 PCU-ASW

OP/OP64 PCU-ASW

OIS16 PCU-ASW

OB PCU-ASW

EIPS1 PCU-ASW

OHA PCU-ASW

LCT/NCT-SW

LCT/NCT-HW

OIS4 PCU-ASW

OIS1 PCU-ASW

ETH100 PCU-ASW

ETH1000 PCU-ASW

OIS16/OIS16-2

OIS4/OIS4-2

OIS1

OP64

OP

OB

ETH1000

EIPS1

ETH100

LTU64

LTU-ETH

TIF

EBSL64

PSUTP64

OHA

2WHS

SNL64-3

CLL64/CLL64-2

Page 22: Technical Description Stm64

22 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

3.1 Feature Overview

Category / Feature Remarks

1. Transmission Functions

1.1. Equipment Types

TMX type with integrated HPC function, acc. G.782.

LXC Type with HPC function (VC-4 granularity)

ADMX Type with HPC function, acc. G.782 (VC-4

granularity).

SL64 in terminal application.

SL64 as local cross connect.

SL64 in ADM application.

1.2. Network Element Applications

DWDM operation for n x STM-64 on one single fiber

pair.

Terminal-to-terminal topologies.

Linear topologies with add/drop or cross-connect

function (chains).

Support of single ring closure.

Support of multiple ring closures.

Compatible transmitter at SL64.

Possible on all optical - trib/line - ports, for OIS16 tribs.

1.3. Switching Matrix Functions

1.3.1. Capacity of Switching Matrix

256 x STM-1 equivalents.

1.3.2. Granularity

Broadband switching granularity: VC-4.

1.3.3. Connectivity

Unidirectional connection.

Bi-directional connection.

Broadcast connection (1->m with m ≤ 256).

Drop & continue connection (1-> 2 broadcast).

1.4. Multiplexing & Mapping Functions

1.4.1. SDH Multiplexing Structure

ITU-T/ETSI multiplex structure via AU-4. ETSI/ETS 300 147.

1.5. Concatenation

STM-4: contiguous / virtual concatenation of

VC-4-4v/c.

STM-16: contiguous / virtual concatenation of

VC-4-4v/c and VC-4-16v/c.

STM-64: virtual concatenation of VC-4-4v and

VC-4-16v.

Via OIS4-2.

Via OIS16-2.

Via OIS-64.

1.6. Electrical Traffic Interfaces

1.6.1. 140 Mb/s Electrical Traffic Interfaces

Unstructured, asynchronous mode (VC-4).

Structured asynchronous mode (VC-4).

1.6.2. STM-1 Electrical Traffic Interfaces

STM-1 CMI coded.

Tab. 3.1 Transmission Functions

Page 23: Technical Description Stm64

A42022-L5907-B51-2-7618 23

InformationSL64-3.3

Technical Description (TED)

1.7. Optical Traffic Interfaces

1.7.1. SONET Interworking

OC-3c (STS-3c).

OC-12 (STS-3c, STS-12v/c); OC-12c (STS-12c).

OC-48 (STS-3c, STS-12v/c, STS-48v/c); OC-48c

(STS-48c).

OC-192 (STS-3c or STS-12v or STS-48v).

IR-1 i/f ac. Draft American National Standard

T1.105.06-199x.

LR-1 i/f ac. Draft American National Standard

T1.105.06-199x.

LR-2, LR-3 i/f ac. Draft American National Standard

T1.105.06-199x.

Via OIS1, OIS4-2, OIS16-2, OIS64-2 module, only transparently.

Via OIS4-2, OIS16-2 module.

Via OIS16-2 module.

Via OIS64-2 module.

1.7.2. STM-1 Optical Traffic Interfaces

S-1.1, L-1.1, 1300 nm acc. G.957.

L-1.2, L-1.3, 1550 nm acc. G.957.

Section attenuation : 0 dB to 30 dB, local loopback capable.

Section attenuation : 0 dB to 30 dB.

1.7.3. STM-4 Optical Traffic Interfaces

L-4.1, 1300 nm acc. G.957.

L-4.2, L-4.3, 1550 nm acc. G.957.

JE-4.2, JE-4.3, 1550 nm with high power laser

and high sensitivity receiver acc. G.957.

JE-G.scs-4.2, JE-G.scs-4.3, 1550 nm with high power

booster acc. ITU-T G.scs.

JE-G.scs4.2, JE-G.scs4.3, 1550 nm with high power

booster and pre-amplifier acc. G.957, G.scs.

Section attenuation : 0 dB to 24 dB.

Section attenuation : 0 dB to 24 dB.

Section attenuation : 13 dB to 37 dB.

Section attenuation : 24 dB to 47 dB.laser type: U-4.2, U-4.3.

Section attenuation : 31 dB to 56 dB.laser type: U-4.2, U-4.3.

1.7.4. STM-16 Optical Traffic Interfaces

S-16.1, 1300 nm with low power laser acc. G.957.

L-16.1, 1300 nm acc. G.957.

L-16.2, L-16.3, 1550 nm acc. G.957.

JE-16.2, JE-16.3, 1550 nm with high power laser.

JE-G.scs-16.2, JE-G.scs16.3, 1550 nm with high

power booster for STM-16 OB/OP.

JE-G.scs-16.2, JE-G.scs-16.3, 1550 nm with high

power booster and preamplifier for STM-16 OB/OP.

Section attenuation : 0 dB to 12 dB.

Section attenuation : 8 dB to 25 dB.

Section attenuation : L-16.2: 8 dB to 25 dB, L-16.3: 8 dB to 26 dB.

Section attenuation : 14 dB to 31 dB.

Section attenuation : 22 dB to 39 dB.

Section attenuation : 31 dB to 51 dB.

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 24: Technical Description Stm64

24 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

1.7.5. STM-16 Optical Traffic Interfaces for WDM Applications

G.692, 1550 nm for DWDM applications, WL passive

(8 dBm), 100 GHz spacing.

G.692, 1550 nm for DWDM applications, WLS

(23 dBm), 100 GHz spacing.

G.692, 1550 nm for DWDM applications, MTS,WL

(8 dBm), 100 GHz spacing.

Section attenuation : 13 dB to 29.5 dB, max. 100km, 16 channels.

Section attenuation : n.a., 16 channels.

Section attenuation : n.a., max. 600km, 33 channels.

1.7.6. STM-64 Optical Traffic Interfaces

S-64.2/3, 1550 nm acc. G.691 (draft).

L-64.2, 1550 nm acc. G.691 (draft).

L-64.3, 1550 nm acc. G.691 (draft).

V-64.2, 1550 nm acc. G.691 (draft).

V-64.3, 1550 nm acc. G.691 (draft).

JE-64.2/3, 1550 nm acc. G.961 (draft).

I-64.1, 1310 nm acc G.691 (draft)

For short-haul applications, via OIS64, section attenuation :

G.652 fiber: w/o attenuation 8...13 dB, 5 dB attenuation 3...8 dB;

G.653, G.655 fiber: w/o attenuation 8...14 dB,

5 dB attenuation 3...9 dB.

For long-haul applications,standard fiber, via OIS64 and OB, sec-

tion attenuation :

G.652 fiber: 9...22 dB; G.653, G.655 fiber: n. a.

For long-haul applications, dispersion shifted fiber, via OIS64, sec-

tion attenuation :

G.652 fiber: n.a.;

G.653 fiber: w/o attenuation 21...28 dB,

5 dB attenuation 16...23 dB;

G.655 fiber: w/o attenuation 21...27 dB,

5 dB attenuation 16...22 dB.

For very-long-haul applications, via OIS64, OB and OP64, section

attenuation :

G.652 fiber: 22...36 dB; G.653 fiber: 22...37 dB;

G.655 fiber: 22...36 dB.

For very-long-haul applications, section attenuation :

G.652 fiber: 22...36 dB; G.653 fiber: 22...37 dB;

G.655 fiber: 22...36 dB.

For ultra long haul applications, section attenuation :

G.652, G.653 fiber: 25...44 dB, G.655 fiber, max. 160 km.

Intra office interface with SLM section attenuation:

G.652 fiber: 0...4 dB, G.653, G.655 fibers: n. a.

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 25: Technical Description Stm64

A42022-L5907-B51-2-7618 25

InformationSL64-3.3

Technical Description (TED)

1.7.7. STM-64 Optical Traffic Interfaces for WDM Applications

G.692, 1550 nm for DWDM applications, WLS

(23 dBm), 100 GHz spacing.

G.692, 1550 nm for DWDM applications, WL passive

(8 dBm), 100 GHz spacing.

G.692, 1550 nm for DWDM applications, MTS,WL

(8 dBm), 100 GHz spacing.

G.692, 1550 nm for DWDM applications, MTS 2.0,

50 GHz spacing.

Section attenuation : n.a., 16 channels.

Section attenuation : 13 dB to 29.5 dB, max. 100 km, 16 channels.

Section attenuation : n.a., max. 600 km, 33 channels.

1550 nm for multi-wavelength applications, 160 channels.

1.8. LAN/WAN Interfaces

1000Base-LX Gigabit Ethernet port with SDH

converter acc. to IEEE 802.3.

1000Base-SX Gigabit Ethernet port with SDH

converter acc. to IEEE 802.3.

100Base-TX Ethernet port with SDH converter (VC4)

acc. to IEEE 802.3.

1310 nm, (n * VC4 => VC4-4cv, n = 1, 4), single AU4-mode or quad

AU4-mode; HDLC-like framing.

850 nm, (n * VC4 => VC4-4cv, n = 1, 4), single AU4-mode or quad

AU4-mode; HDLC-like framing.

VC-4 capacity; HDLC-like framing.

1.9. Forward Error Correction (FEC)

FEC for STM-16 optical (proprietary algorithm).

FEC for STM-64 optical (proprietary algorithm).

FEC code BCH (1944,1922,2) is used.either FEC or Concatena-

tion Conversion practicable at the same time for the same port.

FEC code BCH (1944,1922,2) is used.

1.10. Specific Optical Solutions

Integrated dispersion compensation.

Integrated optical amplifier (Tx site) for STM-4,

STM-16, STM-64.

Integrated optical preamplifier (Rx site) for STM-4,

STM-16, STM-64.

STM-1, STM-4, STM-16, and STM-64 single fiber

operation with optical splitter

Via Dispersion Compensation Module in same rack.

15 dBm high power booster in front of STM-4, STM-16, STM-64.

Preamplifier in front of STM-4, STM-16, for STM-64 its a OP64-

card.

1.11. Overhead Access

Switching of OH bytes within OH-function

(OHX-function).

OH access to all and processing of all SOH/POH

Bytes (of STM-N - SOH number 1).

Switching level: 64 kbit/s; Maximum capacity per OHA card or MCF

function: 64 OH bytes unidirectional (i.e. max 32 bidirectional

cross connections).

DCCR (D1-D3); DCCM(D4-D12), E1, F1, NUbyte (2,8,1), Unused

byte (3,8,1), remaining NU of STM-N#1: see TD, remaining Un-

used bytes of STM-N#1: see TD, E2, Unused bytes: see TD, all

NU bytes of STM-N#1: see TD, Z1 bytes of STM-N#1: see TD, Z2

bytes of STM-N#1: see TD, remaining Unused bytes of STM-N#1:

see TD, F2, F3(Z3),

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 26: Technical Description Stm64

26 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

1.12. Auxiliary Channels

Multiple V.11 synchronous data channels 64 kbit/s.

Multiple G.703 synchronous data channels 64 kbit/s.

Per OHA card: · 4 x V.11 interfaces with 64 Kb/s

Per OHA card: · 2 x G.703 interfaces with 64 Kb/s,

1.13. Engineering Order Wire (EOW)

Support of orderwire MSOH (E2).

Support of orderwire RSOH (E1).

Ringer.

Analogue 2-wire telephone I/F.

Analogue 4-wire telephone I/F.

Selective calling.

Group calling.

Omnibus calling (collective).

Support of one conference or two conferences.

Conference status signalling.

LED signalling for incoming calls on all connected

conferences.

Ring and chain operation of EOW.

Off-the shelf DTMF handset.

External signalling interface (PABX access).

Installed in NE; independent of handset provisioning/connection.

With optional E&M.

E1 or E2, E1 and E2.

1.14. Traffic Protection

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 27: Technical Description Stm64

A42022-L5907-B51-2-7618 27

InformationSL64-3.3

Technical Description (TED)

1.14.1. Multiplex Section Protection (MSP)

G.783, STM-64 opt. Linear MSP (1+1).

G.783, STM-64 opt. Linear MSP (1:1).

G.783, STM-16 opt. Linear MSP (1+1).

G.783, STM-16 opt. Linear MSP (1:1),

G.783, STM-4 opt. Linear MSP (1+1).

G.783, STM-1 opt. Linear MSP (1+1).

G.783, STM-16 single ended 1+1 MSP.

Dual ended 1+1 MSP protocol.

External switch requests.

Non-revertive operation.

Revertive operation with user configurable wait to

restore periods.

Switching time <= 50 ms

with low-priority traffic

with low-priority traffic

Acc. G.783/841 and relevant ETSI standards,evolving multi-ven-

dor standards.

Lockout of protection, Forced switch, Manual switch, Clear, Exer-

ciser switch(for ring).

Configurable from 1 to 12 minutes in steps of 1 minute.

1.14.2. Bidirectional Self Healing Ring Protection (BSHR)

G.783/G.841 2-Fiber shared ring protection for

STM-64 optical signals (BSHR/2).

G.783/G.841 4 * 2-Fiber shared ring protection for

STM-16 optical signals (4*BSHR/2).

G.783/G.841 Support of low priority traffic on 2-fiber

STM-16 rings

G.783/G.841 Support of low priority traffic on 2-fiber

STM-64 rings

SHR protection with protocol acc. to ITU-T G.841.

Configurable Squelch Tables in case of ring

segmentation acc. ITU-T (G.841) for STM-16 and

STM-64 (VC-4).

Switching time <= 50 ms

.

The operator can configure in 'squelch tables' the information nec-

essary to avoid misconnections (traffic routed to the wrong desti-

nation) in case of ring segmentation (possible in case of multiple

span failures or nodal failures). Squelch tables provide information

concerning the nodes where traffic channel enters and exits the

ring and based on this information, undeliverable traffic will be

squelched (AIS is inserted instead).

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 28: Technical Description Stm64

28 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

1.14.3. Subnetwork-Connection Protection (SNCP)

G.783 VC 4 HO path protection (1+1).

G.783, Line/line path protection.

G.783, Line/trib path protection.

G.783, Trib/trib path protection.

G.783 Single ended SNCP.

G.783, Non-revertive SNCP operation.

G.783, SNCP monitoring mode configurable

(SNCP/N,SNCP/I): non intrusive, inherent.

G.783, Path protection mechanism for drop & continue

signals.

Switching time <= 50 ms

(G.841)

(G.841)

(G.841)

(G.841)

Single ended switching: 50 ms after SF persistence check

The operator can configure the criteria for SNCP switching as: B3

signal degrade (TSD), trace mismatch, VC4 unequipped, SSF or

AIS detection (TSF).

1.15. Card & Equipment Protection

1+1 card protection for STM-64/16/4/1 optical.

1+1 protection of main switching matrix.

1+1 synchronous equipment timing source (SETS)

protection.

1:N card protection for 140 M / STM-1 electrical.

Distributed power supply.

Configuration data (MIB) redundancy.

Switchover time: OIS-N Card Release Switch <= 1 s (not defined

in ITU-T) after detection of an internal request.

Switchover time: <= 10 ms after detection of switching criteria (not

defined in ITU-T).

Switchover time: <= 10 ms (not defined in ITU-T).

Switchover time: < 7 s after detection of internal switching criteria.

(N = 1 ... 8).

1.16. Timing & Synchronisation

1.16.1. Timing Sources

Any STM-N port.

External reference source.

Internal clock with holdover acc. to G.813.

2*T3.

1.16.2. Timing Interfaces

T3 input / T4 output used with 2048 kHz external

synchronisation.

T3 input / T4 output used with 2048 kbit/s external

synchronisation.

Possibility to syncronize the NE signals to an external signal, also

possible to output such syncronization signals.

Includes line coding and SSMB processing in T3 and T4,possibility

to syncronize the NE signals to an external signal, also possible to

output such syncronization signals.

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Page 29: Technical Description Stm64

A42022-L5907-B51-2-7618 29

InformationSL64-3.3

Technical Description (TED)

1.16.3. Timing Source Selection

Automatic timing source selection out of a user

configurable priority list acc. to timing quality levels.

Manual timing selection of another source instead of

the automatically selected one.

Automatic supervision of timing source quality of the

selected line signals by use of quality level (SSMB).

Manual / Automatic squelching of timing output I/F.

Revertive restoration of timing source.

User configurable wait to restore periods for

restoration of timing source.

SSMB (timing marker) Force/Release "Do Not Use" in

transmit direction.

The NE T0 selection algorithm can be configured to automatically

select from a user configurable list of timing references the one

with the most quality or, in case of even qualities, the one with the

highest priority. The priority list can be configured by the operator.

The operator can override the automatic selection of timing sourc-

es based on quality and priority selecting a specific timing source.

If this fixed timing source becomes unavailable, the internal clock

will be selected instead (holdover mode).

The NE T0 selection algorithm can be configured to automatically

select from a user configurable list of timing references the one

with the most quality or, in case of even qualities, the one with the

highest priority. The priority list can be configured by the operator.

Automatic selection algorithm is based on the timing reference

qualities. The qualities are determined by the received SSM (S1

byte of the STM overhead).

The T4 (timing output interface) can be manually switched OFF by

the operator (squelched) or it will be automatically switched OFF

when it is not possible to generate a correct clock signal with the

actual configuration (the reference source is not available).

With unequal priority.

T0,T4: 1...900 s in ajustable times of 500ms,

0,1,2,3,4,5,6,8,10,20,30,60,180,480,900 seconds.

The operator can manually insert/deinsert a "Do not Use" indica-

tion in an outgoing signal so that the remote equipment does not

select that signal as a reference timing source.

Category / Feature Remarks

Tab. 3.1 Transmission Functions (Cont.)

Category / Feature Remarks

2. Management & Control

2.1. Backward Compatibility

all SL64 3.3 Hardware can be used with previous SW. Exception SNL64-3 and depending on new features.

2.2. TMN Embedding

Element management by LCT.

Network level management by NCT

(Network Craft Terminal).

Element management by ENMS/TNMS.

2.3. Management Interfaces

2.3.1. F-Interface Transport Protocol Layer 1&2

F-I/F as RS-232 computer interface. With 9.6 kbit/s transmission speed

Tab. 3.2 Management & Control

Page 30: Technical Description Stm64

30 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

2.3.2. Q-Interface Transport Protocol Stack Layer 1&2

Supervision of Reachable Address Prefixes (RAP)

enable/disable.

2.3.3. Q.ecc Transport Protocol Stack Layer 1&2

Signal coding configurable for NRZ or NRZI. For DCCr

2.3.4. Layer 3 Routing Algorithms Supported by MCF

Table based - static (G.784).

Table based - dynamic IS-IS (ISO 10589).

Table based - dynamic ES-IS (ISO 9542).

Static IP routing protocol.

Including pseudo network interface and IP/OSI adapter for IP tun-

nelling over OSI.

2.3.5. HTTP Service Interface

HTTP service interface over TCP/IP.

2.4. Configuration & Operation of Management Interfaces

(MCF Routing, DCC)

Support of up to 24 DCCs.

Access of DCCR / DCCM on all STM-N interfaces.

Selection of DCC channels to be processed by MCF.

Routing between DCCs <-> Q-IF <-> MCF <-> SEMF.

Configurable MAC-address for Q interface.

A maximum of 12 DCCR / 12 DCCM.

24 DCC with max. 12 DCCR (192 kbit/s) and max. 12 DCCM

(576 kbit/s) bidirectional for terminal, add drop or cross-connect

multiplexer.

2.5. Fault Management

Category / Feature Remarks

Tab. 3.2 Management & Control (Cont.)

Page 31: Technical Description Stm64

A42022-L5907-B51-2-7618 31

InformationSL64-3.3

Technical Description (TED)

2.5.1. Traffic Related Fault Types

Alarm events of TTF-64 and related consequent

actions.

Alarm events of TTF-16 and related consequent

actions.

Alarm events of TTF-4 and related consequent

actions.

Alarm events of TTF-1 and related consequent

actions.

Alarm events of VC-4 and related consequent actions.

Alarm events of PPI and related consequent actions.

Mismatch of trail signal label and related consequent

actions (TSL, C2 ).

Mismatch of trail trace identifier and related

consequent actions (TTI, J1).

Mismatch of trail trace identifier and related

consequent actions (TTI, J0).

Autonomous suppression of subsequent alarm events

acc. ETSI 1015.

Per NE set global alarm mask (complete alarm

supression).

Automatic alarm masking.

Trail Status Alarm Supervision - Report Control of RDI,

AIS, SSF.

J0: Regenerator section trace.

For unequipped I/Fs or paths via port mode/TP/connection super-

vision mode.

2.5.2. Alarm Events of HPOM & LPOM Function

Alarm events of HSUG / HSUM.

Alarm events of higher order path overhead monitoring

function (HPOM).

HPOM function available for all connectable HO paths.

Category / Feature Remarks

Tab. 3.2 Management & Control (Cont.)

Page 32: Technical Description Stm64

32 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

2.5.3. Equipment Related Fault Types

Hardware fault indication down to individual

card/element/module.

Software fault diagnosis to individual package/module.

Signalling of fan unit alarms via Q interface.

2.5.4. Fault Log

Retrieval of all current transmission/equipment alarm

entries.

Retrieval of all historical alarm log entries.

Manual reset of entire historical alarm log.

100 entries.

2.6. Configuration Management

2.6.1. Laser Configuration

Enable/disable automatic laser restart in ALS function.

Manual laser restart.

Default: enabled.

In ALS function.

2.6.2. Card Equipping Configuration

Configure module/card equipping during equipment

installation.

Configure additional module/card equipping

configuration w/o interruption of life traffic.

2.6.3. Traffic Protection Configuration

Facility to nest protection schemes.

Add/remove protection to unprotected life traffic

connections w/o traffic interruption.

Configurable hold-off-time of path protection.

Superposition of different protection mechanisms and alignment of

persistency time.

Configurable between 0 and 20 s in steps of 10 ms. Hold-off

time = delay time before SNC/P action.

2.7. Performance Management

Category / Feature Remarks

Tab. 3.2 Management & Control (Cont.)

Page 33: Technical Description Stm64

A42022-L5907-B51-2-7618 33

InformationSL64-3.3

Technical Description (TED)

2.7.1. Monitoring & Handling

Performance monitoring acc. ITU G.774.01

Performance monitoring acc. ITU G.826.

Performance monitoring intervals 15 min. and 24h.

Monitoring functions acc. ITU G.784.

Simultaneous performance report generation for all

monitoring points.

Configurable performance thresholds for TCN

threshold crossing notification.

For all monitoring points. Support of near end and far end perfor-

mance monitoring generating 15 min and 24 hour performance

records. It is possible to configure low and high TCN thresholds for

15 min records and high TCN thresholds for 24 h records. Thresh-

olds can be configured for Errored Seconds (ES), Severly Errored

Seconds (SES) and Bit Block Errors (BBE).

2.7.2. Near-End Performance Monitoring

Near end STM-N performance data generation at

TTF-64, TTF-16, TTF-4, TTF-1, HPT.

Near end VC-4 performance data generation at

HSUM/HPOM.

2.7.3. Far-End Performance Monitoring

Far end STM-N performance data generation at

TTF-64, TTF-16, TTF-4, TTF-1, HPT.

Far end VC-4 performance data generation at

HSUM/HPOM.

2.7.4. Performance Log

Retrieval of current configuration status.

Performance log size using FIFO principle.

Retrieval of all performance log entries.

Manual reset of performance log.

<= 16 x 15 min entries and 3 x 24 h entries.

2.8. Security Management

Improved security concept with password stored in-

side

the network element.

LCT restricted to read-only whilst Element Manager

active.

Category / Feature Remarks

Tab. 3.2 Management & Control (Cont.)

Page 34: Technical Description Stm64

34 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Category / Feature Remarks

3. System Architecture

3.1. Equipment Modularity

NE type not determined by mechanical subrack. e.g. TMX<->ADMX<->CC function possible in the same subrack.

3.2. Equipment Design

3.2.1. Mechanical Design

Mechanical rack design acc. ETS 300 119.

Mechanical subrack design acc. ETS 300 119.

Rack capacity: 1 double row subrack.

Rack capacity: 2 double row subracks.

Insertion/extraction of modules/cards w/o special

tools.

Insertion/extraction of modules/cards w/o removal of

any other (working) modules/cards or external

connections.

Insertion/extraction of modules/cards w/o powering

down of the equipment.

All external connectors front access.

Direct optical connections to modules/cards.

Can be fitted with Dispersion Compensation Module (DCM) and

Clock Adapter Unit (CLA).

Note: extra rack for DCM module and CLA unit, refer to TD.

Hot insertion/extraction.

3.2.2. Power Supply Design

Power supply voltage specification acc. ETSI.

Duplicated power supply feed.

48/60 V-, range 40,5...75 V; ETS 300132-2 issue Dec. 1996 [60].

3.2.3. Safety Design

ETSI equipment safety specifications.

CE label.

Automatic laser shutdown, ALS (acc. ITU G.958).

Automatic laser shutdown, ALS (acc. ITU G.lon).

Automatic laser shutdown, ALS.

EN 60950, EN41003.

EMV-Requirement 89/336/EWG 176/1993.

Restart time = 2 sec.

Restart time = 9 sec.

Restart time = 100 sec.

3.2.4. Connectors & Port Capacities

3.2.4.1. Electrical Connectors

Asymmetrical coax connectors for 140/155M

el. 1.6/5.6 type.

Tab. 3.3 System Architecture

Page 35: Technical Description Stm64

A42022-L5907-B51-2-7618 35

InformationSL64-3.3

Technical Description (TED)

3.2.4.2. Optical Connectors

DIN-connectors.

FC/PC-connectors.

SC-connectors.

E2000-connectors.

Via adapter connector.

Via adapter connector.

Via adapter connector.

E2000 and E2000HRL(for booster).

3.2.4.3. Port Capacity of Electrical Traffic Interface Modules

Port capacity per 140 Mbit/s / STM-1el. card:

4 x 140 Mbit/s / STM-1el.

Configurable on a per port basis.

3.2.4.4. Port Capacity of Optical Interface Modules

Port capacity per STM-64 opt. card: 1 x STM-64 opt.

Port capacity per STM-16 opt. card: 1 x STM-16 opt.

Port capacity per STM-4 opt. card: 1 x STM-4 opt.

Port capacity per STM-1 opt. card: 4 x STM-1 opt.

3.2.4.5. Port Capacity of Integrated Optical (Pre)Amplifiers & Modules

Integrated optical booster amplifier: 1 x per card.

Integrated optical preamplifier: 1 x per card.

3.2.4.6. Port Capacity of LAN/WAN Interfaces Modules

1 x GbE port per card.

1 x 100BaseT port per card.

3.3. Environmental Conditions

ETSI EMC requirement (class B).

ETSI ESD requirement.

ETSI class 3.1e conditions.

Temperature conditions fulfilled with forced convection

(with fan).

ETS 300 386-1, -2, EN 55 022 Class B, EN 50 082 -2, IEC 801,

ITU-T K.15draft/K.20/K.22.

IEC 801-2.

Operation ETSI ETS 300 019 class 3.1e (-5 to + 45 Celsius)storage

ETSI ETS 300 012 class 1.2transport ETSI ETS 300 019 class 2.3.

Operation ETSI ETS 300 019 class 3.1e (-5 to + 45 Celsius), stor-

age ETSI ETS 300 012 class 1.2, transport ETSI ETS 300 019

class 2.3.

Category / Feature Remarks

Tab. 3.3 System Architecture (Cont.)

Page 36: Technical Description Stm64

36 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

3.4. Reliability

Calculated service life time design target:

typically 15 years.

Calculated MTBF for fully equipped subrack:

>= 5 years.

Calculated MTBF for traffic signal failure: >= 25 years.

Calculated mean in-station repair time for traffic

modules/cards: <= 30 min.

Calculated mean in-station repair time for the

equipment controller: <= 60 min.

Calculated overall system mean to repair time (MTTR).

acc. IEC50(191), CEI/IEC 61709, actual service life time: prepara-

tion of phaseout(B800) + 5 years.

acc. IEC50(191), CEI/IEC 61709.

w/o HW protection; acc. IEC50(191), CEI/IEC 61709.

Including fault localization, acc. IEC50(191), CEI/IEC 61709.

Including data restauration, acc. IEC50(191), CEI/IEC 61709.

Field replaceable unit: 4h, non field replaceable unit: 48 h. acc.

IEC50(191), CEI/IEC 61709.

3.5. System Performance

Jitter and wander acc. to G.703, G.783, G.824, G.958.

Transit delay acc. to G.783.

Frame alignment acc. to G.783.

Cold start up time of main system controller:

less than 15 min.

Warm start up time after main controller reset:

less than 10 min.

Protection switching time of path protection: <=50ms.

Protection switching time of MSP / BSHR: <=50ms.

Category / Feature Remarks

Tab. 3.3 System Architecture (Cont.)

Category / Feature Remarks

4. Maintenance, Supervision & Diagnostics

4.1. Transmission Diagnostics

4.1.1. Monitor Points

Electrical monitor points for electrical STM-1

interfaces.

Electrical monitor points for PDH interfaces.

4 output monitoring points per card.

4 output monitoring points per card.

4.1.2. Test Loops

User configurable loops via switching network. A cross connection must be configured (on ETH cards, test loops

are available without the need of a cross connection).

Tab. 3.4 Maintenance, Supervision & Diagnostics

Page 37: Technical Description Stm64

A42022-L5907-B51-2-7618 37

InformationSL64-3.3

Technical Description (TED)

4.1.3. AIS Injection

Manual AIS injection for PDH signals.

4.1.4. Local Card Supervision

LED indication for modules/cards taken out of

operation.

LED indication for fault indication on modules/cards.

LED indication for fault indication on subrack(s).

4.1.5. Self Monitoring/Diagnostic Functions

Internal bus and signal checksum tests during normal

operation.

Card software self check.

Installation test routines executed by main system's

controller.

Main controller software self check.

Watch dog function for autonomous software reset.

Also used after hardware extension.

4.2. Equipment Diagnostics

Monitoring of laser parameter.

Monitoring of -Ubat1 and -Ubat2.

Fault indication in case of Ubat shut down.

PCU: red LED on some cards.

Get tx power/bias current/modulation current/receive power.

Red LED blinks during SW download.

4.3. External Alarm Interface

Bw7R alarm interface.

Configurable alarm table for external alarm interface.

Up to 16 digital alarm inputs for customer use.

Up to 16 digital alarm outputs for customer use.

Support of alarms by Q-/F-interface and Q.ecc

message set.

Allowing for system compound alarm.

Requires TIF module and OHA card option.

Requires TIF module and OHA card option.

Category / Feature Remarks

Tab. 3.4 Maintenance, Supervision & Diagnostics (Cont.)

Page 38: Technical Description Stm64

38 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

3.2 Operating Terminals LCT and NCTNetwork elements can be both operated and monitored via an operating terminal(TransXpress Local Craft Terminal LCT – or TransXpress Network Craft Terminal NCT)and a network management system (see figures 3.2 and 3.3).

The Local Craft Terminal LCT is the preferred option for mobile operation and the oper-ating terminal NCT for stationary operation. In principle, the same hardware can be usedfor both computers, but because of the different applications, we recommend a note-book for the LCT and a desktop PC for the NCT.

Two software variants matching the hardware types are available – LCT software andNCT software.

4.4. Equipment Inventory

User configurable card/module label in non-volatile

memory.

Factory card /module label in non-volatile memory.

Inquire card S/W version.

Inquire main controller S/W version.

Inquire factory ASIC label.

Read/write.

Customer read access.

4.5. Hardware Change/Upgrade

New traffic modules/cards added w/o distortion of

existing, unaffected traffic.

HW protection modules/cards added w/o distortion of

existing, unaffected traffic.

In-service reconfiguration of NE type w/o distortion of

existing, unaffected traffic.

Terminal application ↔ add drop application ↔ cross-connect ap-

plication.

4.6. Software Change/Upgrade

Software download into modules/cards.

Software download into main NE controller.

Isolated MIB download.

Isolated MIB upload for backup purposes.

MIB data conversion for reuse in new S/W version.

Automatic swap to backup SW (non volatile) in case of

download failure.

Manual switch over to new SW.

w/o distortion of existing traffic on this module.

w/o corruption of existing SEMF/MCF parameters.

Loaded SW package remains unaffected.

Category / Feature Remarks

Tab. 3.4 Maintenance, Supervision & Diagnostics (Cont.)

Page 39: Technical Description Stm64

A42022-L5907-B51-2-7618 39

InformationSL64-3.3

Technical Description (TED)

The decision between LCT and NCT is made by installing the corresponding variant ofthat gateway software NE-UniGATE (see corresponding documentation).

The LCT software variant allows access to the local network element when it is connect-ed via the QST/F interface. When connecting via the QST/B3 interface up to 50 networkelements of a given address range can be called up at the same time (without the pos-sibility of a graphical network view).

The NCT software variant (connecting via the QST/B3 interface) allows all alarms to bemonitored which were reported by the network element to be reached in each case. Abackground bitmap can be allocated to each communication channel (preferably a map)which allows the network elements to be positioned according to their geographical po-sition.

Fig. 3.2 Interface Associations of a local / remote LCT, NCT andTMN Transmission System Configuration

3.3 Connection to Network Management SystemsThe telecommunications management network integration of SL64 network elements isrealized via QST/B3 (direct access) and QST/ECC (via dedicated OH channels withintraffic links – DCCM and DCCR). ECC routing is also possible via non-SL64 network el-ements (see Fig. 3.3).

The NE is equipped with a QST interface, which enables a managing system (EM, NCT,LCT) to control and to monitor the NE and to receive spontaneous messages createdby the NE.

LCT/NCT

NE-UniGATE

A local NE

Q-B3Q-F

NE-UniGATEwith local access with network access

LCT/NCT

RS232 Ethernet-LANEthernet,

DCC

Q-B3Q-B3

Ethernet,e.g. 10Base2 *) e.g. 10Base2

Traffic Link **)

*) LAN Link Control if left part is local

**) Traffic Link if left part is remote

Single NE with/without LAN Multiple NEs with LAN and TMN

TMN - System

Transmission - Systemfor Link to TMN

Multiple NEsvia DCC

Multiple NEsvia DCC

Page 40: Technical Description Stm64

40 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 3.3 Embedding of SL64 NEs in a TMN System

TMN

DCN

EMEM

QST/B3

Q3/B

SL64

SM1/4

SL64 SL16ECC

QST/B3

SL64SL64SLAECC

LCT

QST/F

Q3/B

LCT

QST/B3

Q3/B

Page 41: Technical Description Stm64

A42022-L5907-B51-2-7618 41

InformationSL64-3.3

Technical Description (TED)

4 Network Elements, Configuration TypesThe configuration types (SL64 network elements) described in Chapters 4.1 and 4.2 canbe realized with the universally-equippable subrack for SL64 (see 6.3). The MIB mod-ules and the SCU-R2 / SCU-R2E module of the device hold information on the NE type.This data can be read out with the aid of a craft terminal or a network management sys-tem.

4.1 Terminal MultiplexerThe SL64 terminal multiplexer provides multiplex-functionality for the tributary traffic tothe aggregate line signal in chain applications (Fig. 4.1).

Fig. 4.1 SL64 Terminal Multiplexer

The SL64 terminal multiplexer is equipped with a switching network and thus providescross-connectivity between the line and tributary interfaces at VC-4 level. On the tribu-tary side, a maximum capacity of 128 VC-4 equivalents may be mapped arbitrarily to theworking line interfaces.

The Fast/Gigabit Ethernet modules works at MAC sublayer level, i.e. they are fully trans-parent for different upper protocols like LLC and IP, IPX etc. running on the connectedIP equipment. ETH100/ETH1000 devices acts as remote bridge effectively convertingthe MAC protocol to SDH using LAPS encapsulation and mapping, allowing two ETHdevices to be connected together via SDH networks, capable of achieving far greaterdistances than those possible with conventional 802.3 LAN technology. The electricalETH100 acts via the ETH-LTU module; the ETH1000 has an optical interface.

SL64

2,5 Gbit/s (STM-16 optical)622 Mbit/s (STM-4 optical)155 Mbit/s (STM-1 optical)155 Mbit/s (STM-1 electrical)140 Mbit/s (PDH-E4)100 Mbit/s (Fast Ethernet over VC4, electrical)1000 Mbit/s (Gigabit Ethernet over VC4 / VC4-4, optical)

10 Gbit/s (STM-64)

working

protection/working

Page 42: Technical Description Stm64

42 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

4.2 Add/Drop MultiplexerThe SL64 add/drop multiplexer can be used in ring and chain applications. It providesadd- and drop functionality for the tributary traffic to the aggregate STM-64 line side(Fig. 4.2).

Fig. 4.2 SL64 Add/Drop Multiplexer

SL64 add/drop multiplexer has two line interfaces for optical 10-Gbit/s signals (STM-64 /OC192) for which protection switching is optionally offered. At tributary side, a maximumcapacity of 128 VC-4 equivalents may be mapped arbitrarily to the west and east lineinterfaces.

The Fast/Gigabit Ethernet modules works at MAC sublayer level, i.e. they are fully trans-parent for different upper protocols like LLC and IP, IPX etc. running on the connectedIP equipment. ETH100/ETH1000 devices acts as remote bridge effectively convertingthe MAC protocol to SDH using LAPS encapsulation and mapping, allowing two ETHdevices to be connected together via SDH networks, capable of achieving far greaterdistances than those possible with conventional 802.3 LAN technology. The electricalETH100 acts via the ETH-LTU module; the ETH1000 has an optical interface.

4.3 Local Cross-Connect MultiplexerThe SL64 local cross-connect (LXC) multiplexer (Fig. 4.3) can be used as small net-work nodes with tributary-tributary connections or, for example, for interconnecting sev-eral SDH rings.

Fig. 4.3 SL64 Cross-Connect Multiplexer

The SL64 cross-connect multiplexer provides full, non-blocking cross-connectivity be-tween all available line/line, line/trib and trib/trib, with 256 x 256 switching network ca-pacity. Unidirectional or bidirectional cross-connections can be configured with orwithout SNCP.

SL6410 Gbit/s (STM-64)10 Gbit/s (STM-64)

west east

2,5 Gbit/s (STM-16 optical)622 Mbit/s (STM-4 optical)155 Mbit/s (STM-1 optical)155 Mbit/s (STM-1 electrical)140 Mbit/s (PDH-E4)100 Mbit/s (Fast Ethernet over VC4, elecrtical)1000 Mbit/s (Gigabit Ethernet over VC4 / VC4-4, optical)

SL64 10 Gbit/s (STM-64)10 Gbit/s (STM-64)

2,5 Gbit/s (STM-16 optical)622 Mbit/s (STM-4 optical)155 Mbit/s (STM-1 optical)155 Mbit/s (STM-1 electrical)140 Mbit/s (PDH-E4)100 Mbit/s (Fast Ethernet over VC4, elecrtical)1000 Mbit/s (Gigabit Ethernet over VC4 / VC4-4, optical)

Page 43: Technical Description Stm64

A42022-L5907-B51-2-7618 43

InformationSL64-3.3

Technical Description (TED)

4.4 Functional Overview of MultiplexersFig. 4.4 shows the basic functional structure (shown without line protection switching)of SL64 with the cross-connect-matrix for the VC-4 connection possibility between theline and tributary interfaces in a typical equipment.

In addition to the modules for the transmission of payload signals (line and tributarymodules, switching network module SNL64-3), the clock pulse supply module ClockUnit Line module CLL64 / CLL64-2, in which the clock pulse module is housed, the cen-tral control and monitoring module SCU-R2 / SCU-R2E and the overhead access mod-ule OHA are shown.

The telemetry interface TIF represents an interface for external signaling.

Conversion to optical/electrical signals (and vice versa) is taken over by the optical in-terface module OIS64 / OIS64-2 in the STM-64 transmission route.

The optical receiver of the bi-directional, optical interface module OIS64 / OIS64-2 con-verts the incoming STM-64 signal to an electrical signal by using a photodiode.

If required, optical preamplifiers OP and optical boosters OB can be used.

The electrical STM-64 signal is regenerated and converted to an internal ISDH signal onthe VC-4 plane (64 x STM-1). The VC-4 signals are relayed to the switching unit moduleSNL64-3 of the systems which forms the central element for the interconnection of theline and tributary signals in the VC-4 plane. The SNL64-3 allows connections betweenline and line, line and tributary and between two tributaries.

In the OIS64 / OIS64-2 module, the Section Overhead (SOH) is decoupled and writtento the internal OH bus of the system to allow an OH access of the relevant modules inthis way. DCC communicates via a separate internal bus system, the DCC bus.

In the tributary area a typical interface module is shown in each case along with its ports.There is a choice of tributary interface module with either four electrical STM-1 /140-Mbit/s interfaces, one optical STM-16 interface, four optical STM-1 interfaces, oneoptical STM-4 interface, one ETH100 interface, or one ETH1000 interafce:– EIPS1, STM-1el/140 Mbit/s: Each module has four bidirectional STM-1el/140-Mbit/s

interfaces which can be programmed individually for the desired bit rate.– ETH100, The Fast Ethernet Interface provides a full duplex transparent two-port

MAC level bridge. It connects together two physical seperated 802.3 LANs (e.g.campus) point-to-point via SDH network (WAN) at MAC sublayer level (remotebridge) with VC-4 capacity.

– ETH1000, the Gigabit Ethernet Interface provides a full duplex transparent two-portMAC level bridge. It connects together two physical seperated 802.3 LANs (e.g.campus) point-to-point via SDH network (WAN) at MAC sublayer level (remotebridge) with either VC-4 or VC-4-4v capacity.

– OIS16 / OIS16-2, STM-16 optical / OC48: Each module has one optical interface.– OIS4 / OIS4-2, STM-4 optical / OC12: Each module has one optical interface.– OIS1, STM-1 optical / OC3: Each module has four optical interfaces.

The incoming signal is regenerated in the tributary interface module (with optical tribu-tary signals optical/electrical conversion is undertaken first), the overhead is decoupledand the signal is converted into an internal ISDH signal (VC4) (Optical STM-16 tributarysignals are initially demultiplexed from the STM-16 level to the STM-1 level, optical

iFor conversion of the T3/T4 clock signal from 2048 kbit/s to 2048 kHz and vice versa anexternal Clock Line Adapter CLA can be used. In this case the SL64 device must beequipped with Clock Unit Line CLL64-2 instead of CLL64.

Page 44: Technical Description Stm64

44 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

STM-4 tributary signals are initially demultiplexed from the STM-4 level to the STM-1level). The VC-4 containers are transferred to the SNL64-3, from where they are passedon to a line interface module OIS64 / OIS64-2 or to a further tributary module.

In the send direction the VC-4 signals selected by the SNL64-3 are scrambled after in-clusion of the section overhead. Where the STM-4/16/64 is involved, the signals areconverted at the STM-4/16/64 level. In the optical modules this is followed by electri-cal/optical conversion; for the electrical tributary modules CMI scrambling is performed.

For the line and tributary interface modules, the system can be configured in such a waythat the different ring and line protection switchings are supported. This takes place byallocating two interfaces which are housed on various modules and therefore functionas working and protection interface. To increase the availability of equipment, somemodules (OIS64, OIS64-2, OIS16, OIS16-2, OIS4, OIS4-2, OIS1, SNL64-3, and CLL64/ CLL64-2) can also have card protection facilities (see also Chapter 5.2).

SL64 provides concatenationconversion of contiguous concatenated VC-4-4c’s andVC-4-16c’s in virtual concatenated VC-4-4v’s and VC-4-16v’s and vice versa acc. G.707(10/00) via OIS4-2 / OIS16-2 modules.

Concatenated VC-4’s can be used for “high Bandwidth Streams” (> VC-4) establishedby IP Core Routers, ATM Core Switches etc. Because of the better performance (datathroughput), Clear Channel interfaces (contiguous concatenated signals) are generallypreferred by IP and ATM vendors. With Concatenation Conversion supported by SL64also Clear Channels resp. contiguous concatenated signals can be transported via es-tablished Multi-Carrier topologies even if they don’t support contiguous concatenation.– Contiguous Concatenation: Concatenated VC-4’s are treated as one single VC-4-Xc

(X = 4 ,16) with one common pointer and one POH.– Virtual Concatenation: Concatenated VC-4’s are treated as N individual VC-4’s (like

non-concatenated signals), each VC-4 having a valid POH. The POH byte H4 of ev-ery virtually concatenated VC-4 provides concatenation information: sequencenumber and multiframe number.

For fault supervision on conversion from virtual to contiguous concatenation, the alarmsLOM (loss of multiframe), SQM (Sequence mismatch) and LOA (loss of alignment) aresupported.

There are two models available for the configuration of concatenation:– Configuration via simple switch:

For each OIS4-2 and OIS16-2 module contained in the required equipping, the op-erator can easily enable / disable the concatenation conversion functionality via asimple switch (software “Simple Model”).

– Configuration via C-GTPs / V-GTPs:The operator can create contiguous (OIS4-2 / OIS16-2) or virtual (OIS4-2 / OIS16-2/ OIS64-2) Group TPs (C-GTPs / V-GTPs) which represents data relevant to the con-verter functionality (in case of C-GTPs) and data which has to be handled commonlyfor all CTPs concatenated by the C-GTP or V-GTP (bundles of 16 VC-4’s or 4VC-4’s).

Page 45: Technical Description Stm64

A42022-L5907-B51-2-7618 45

InformationSL64-3.3

Technical Description (TED)

Fig. 4.4 Block Diagram of SL64(Equipping Example; without Line Protection Switching)

AUXBw7RC-ALCLL64 /CLL64-2EIPS1

EOWOBOHAOISNOIS64 /OIS64-2

Auxiliary ChannelStyle 7RCustomer-specific Alarms (Custom Alarms)Clock Unit Line Module

Electrical Interface Plesiochronous/Synchronous 140 Mbit/s/STM-1 ModuleEngineering Order WireOptical Booster Module (optional)Overhead Processing ModuleOptical Interface Synchronous STM-N moduleOptical Interface Synchronous STM-64 module

OP64QST/FQST/B3SCU-R2 /SCU-R2ESNL64-3SONETSRAP-PISTM-NT3, T4TIF

Optical Preamplifier (optional) ModuleOperating Terminal InterfaceTMN InterfaceSynchronous Control Unit module

Switching Network for Line Systems ModuleSynchronous Optical NetworkSubrack Alarm Panel / Phone IndicationMultiplex Signal with Bit Rate N x 155.520 Mbit/sClock Pulse SignalTelemetry Interface Module

Lineinter-facesEast

Lineinter-facesWest

Service / operatinginterfaces

Tributary interfaces

electrical signalsoptical signals

OB

OP64

SCU-R2 /SCU-R2E

SL64

OB

OP64

OIS64 /OIS64-2

STM-64(OC192)

add/dropapplication only

SRAP-PI

Bw7R signalingQST/B3 QST/F

SNL64-3

64

64

64

64

16

STM-16(OC48)

OIS16 /OIS16-2

OB

EIPS1

4

STM-1and/or

140 Mbit/s

4

4

OHA

T3 T4 AUX C-AL

TIFCLL64 /CLL64-2

G.703EOW

OPLTU64

4

STM-4(OC12)

4

STM-1(OC3)

OIS4 /OIS4-2

ETH1000

OB

STM-64(OC192)

ETH100

100 Mbit/sFast

Ethernet

LTU-ETH4

OIS1

4

1000 Mbit/sGigabit

Ethernet

OIS64 /OIS64-2

Page 46: Technical Description Stm64

46 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

4.5 Functional Overview of the Modules

4.5.1 List of Modules UsedTab. 4.1 is an overview of the modules used (see also Chapter 3.1 for performance fea-tures).

4.5.2 Power Supply of the ModulesEach module has its own voltage converter supplying it with the required voltage. Thevoltage converter is fed from two independent batteries. To suppress noise voltages andinterferences, each module is equipped with a filter. To protect the other modulesagainst noise pulses when a module is inserted and extracted, each module is providedwith a slow start device.

Short description Module

OIS64 Optical Interface Synchronous STM-64

OIS64-2 Optical Interface Synchronous STM-64 with FEC / OC192

OIS16 Optical Interface Synchronous STM-16

OIS16-2 Optical Interface Synchronous STM-16 with FEC and with concatenation converter

/ OC48, OC48c

OIS4 Optical Interface Synchronous STM-4

OIS4-2 Optical Interface Synchronous STM-4 with FEC and with concatenation converter /

OC16

OIS1 Optical Interface Synchronous STM-1 / OC3 (transparently)

OP64 Optical Preamplifier for line signal STM-64

OP Optical Preamplifier for tributary signal STM-16

OB Optical Booster

EIPS1 + LTU64 Electrical Interface Plesiochronous/Synchronous 140 Mbit/s/STM-1 and "Line Ter-

mination Unit" interface module

ETH100 + LTU-ETH Electrical interface (twisted pair) for 100BASE-TX networks

ETH1000 Optical interface for 1000BASE-SX/-LX networks

EBSL64 + PSUTP64 EIPS Backup Switch Line and “Power Supply Unit Tributary Protection” interface

module

SNL64-3 Switching Network for Line Systems

OHA + TIF + 2WHS Overhead Access with "Telemetry Interface" interface module and engineering or-

der wire for two-wire interface

CLL64 Clock Unit Line

CLL64-2 Clock Unit Line in concern with Clock Line Adapter CLA

CLA Clock Line Adapter CLA

SCU-R2 / SCU-R2E Synchronous Control Unit

Tab. 4.1 Module Overview

Page 47: Technical Description Stm64

A42022-L5907-B51-2-7618 47

InformationSL64-3.3

Technical Description (TED)

4.5.3 Modules for Main Signal Transmission

4.5.3.1 Optical Interface Synchronous STM-64 Modules(OIS64 / OIS64-2)The OIS64 / OIS64-2 modules have been designed according to the requirements ofITU-T Recommendations G.691/G.692 (draft).

Short functional overview:– STM-64 multiplexing and demultiplexing of the VC-4 signal (payload signal and over-

head) in conformity with ITU-T G.70x and ETSI DETM1015.– Conversion of the optical signal with 1550-nm interfaces according to ITU-T Recom-

mendations G.691/G.692 (draft) with laser safety shutdown.– Signal protection switching for multiplex section, card protection switching.– Preparing the T1 clock pulse signal for the MTS (Multiplexer Timing Source).– Monitoring and controlling the complete module by integrated PCU.– Converting the input voltage from nominal 48 V/60 V to the voltages needed by the

module by means of Power Supply Unit PSU.– Software download– Management of configuration settings, fault analysis and recording the performance

and quality data of the transmission signal.– Support of virtual concatenated signals VC-4-4v and VC-4-16v via group TPs.– OIS64-2 only:

• Encoding and decoding of in-band Forward Error Correction (FEC).• SONET interworking, (see Tab. 3.1).

– The OIS64-2 module is also able to run with the software of any former SL64 version(without support of the OIS64-2 specific features listed above).

Fig. 4.5 shows the basic operating mode of the OIS64 module in a block diagram.

Functionally the OIS64 module subdivides into the optical front-end and SDH process-ing parts.

The optical front-end includes the optical/electrical conversion (photodiode), optical re-ceiver, data and clock recovery, bit-demultiplexing, framing, parity evaluation, bit multi-plexing, laser driver and control and electrical/optical conversion (laser). The ByteDemultiplexer or Byte Multiplexer provides the necessary speed matching from/to theCMOS level. Each MX/DMX is able to operate half the STM-64 line signal.

SDH processing takes place in 16 ASICs of type S6MD64FEC and comprises most ofthe SDH functions like HPOM, HSUM, MSA, MSP, RST, MST (with exception of the SPIblock) and FEC. Each ASIC operates 4 STM-1 equivalents in receive and transmit di-rection.

Page 48: Technical Description Stm64

48 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.5 Block Diagram of Modules OIS64 / OIS64-2

4.5.3.2 Optical Interface Synchronous STM-16 Module (OIS16 / OIS16-2)The OIS16 / OIS16-2 modules have been designed according to the requirements ofITU-T Recommendation G.957.

Short functional overview:– STM-16 multiplexing and demultiplexing of the VC-4 signal (payload signal and

Overhead) in conformity with ITU-T G.70x and ETSI DETM1015.– Conversion of the optical signal with 1300/1500-nm interfaces according to ITU-T

Recommendations G.957 and G.958 with laser safety shutdown.– Signal protection switching for multiplex section, card protection switching (see also

Tab. 4.2.)– Preparing the T1 clock pulse signal for the MTS (Multiplexer Timing Source).– Administrative functions with status alarms (LEDs), slot checking and electronic

memory for data maintenance

STM-64(OC192)line

STM-1 #15,31,47,63STM-1 #13,29,45,61

STM-1 #11,27,43,59STM-1 #9,25,41,57

STM-1 #7,23,39,55STM-1 #5,21,37,53

STM-1 #3,19,35,51

Bit-DemuxRecoveryData/Clock

Optical Transmitter Module

PCU

PSU

T0155X/Y

ICB

UBAT

ULED

O

E

PBus

ADC

IMTS

4 x T1OHB

Optical Front-end SDH processing

STM-64(OC192)line

Analog Digital ConverterData Communication ChannelInternal Control BusInternal Multiplex Clock SourceK-Byte Bus for MSP-ControllingConverter Optical/ElectricalOverhead Channel BusPeripheral Control Unit

Peripheral Control UnitPower Supply UnitSynchronous Digital HierarchyMultiplex Signal with Bit Rate NSystem ClockClock Reference from Line SignalBattery VoltageSignaling Voltage

PCUPSUSDHSTM-NT0x/T0yT1UBATULED

Optical Receiver Module

ADCDCCICBIMTSKBusO/EOHBPBus

Byte-DMX

OpticalReceiver

B1 ParityFraming

byte:2n

byte:2n+1

O

E

STM-1 #1,17,33,49

Byte-MX

SERVICE

FAULT

STM-1 #16,32,48,64STM-1 #14,30,46,62

STM-1 #12,28,44,60STM-1 #10,26,42,58

STM-1 #8,24,40,56STM-1 #6,22,38,54

STM-1 #4,20,36,52STM-1 #2,18,34,50

Bit-Mux

8 x

ISDH-X

ISDH-Y

ISDH-P

ISDH-X

ISDH-Y

ISDH-P

8 x

T0busX/Y

DCCB2DCCB

SMABus

SMABus

KBus

byte:2n

byte:2n+1

Page 49: Technical Description Stm64

A42022-L5907-B51-2-7618 49

InformationSL64-3.3

Technical Description (TED)

– Monitoring and controlling the complete module by integrated PCU.– Converting the input voltage from nominal 48 V/60 V to the voltages needed by the

module by means of Power Supply Unit PSU.– Software download– Management of configuration settings, fault analysis and recording the performance

and quality data of the transmission signal.– OIS16-2 only (see also Tab. 4.2.):

• Encoding and decoding of in-band Forward Error Correction (FEC).• Conversion from contiguous concatenated signals (VC4-4c) to virtualconcatenated signals (VC-4-4v) and vice versa.• Conversion from contiguous concatenated signals (VC4-16c) to virtualconcatenated signals (VC4-16v) and vice versa.• SONET interworking (STS-48/3c, STS-48/12c, STS-48/48c), (see Tab. 3.1).

– The OIS16-2 module is also able to run with the software of any former SL64 version(without support of the OIS16-2 specific features listed above).

Fig. 4.6 shows the basic operating mode of the OIS16 / OIS16-2 module in a block di-agram.

Fig. 4.6 Block Diagram of Modules OIS16 / OIS16-2

4 x

4 S

TM

-1,

(Wor

king

, Pro

tect

ion,

MS

-Pro

tect

., 2-

Fib

er-R

ing-

Pro

tect

ion)

Data-/ClockRecovery

OpticalTransmitter

PCUPSUT0x/T0y

ICBUBAT ULED

Ser

ies-

Par

alle

l Con

vert

erP

aral

lel-S

erie

s-C

onve

rter

O

E

O

E

PBus

ADC

OH-/DCC-Bus

SDH Processing

STM-16(OC48)Line

Analog Digital ConverterData Communication ChannelInterner Control BusInternal Multiplex Clock SourceK-Byte Bus for MSP-ControllingConverter Optical/ElectricalOverhead ChannelPeripheral Control Unit

Peripheral Control UnitPower Supply UnitSynchronous Digital HierarchyMultiplex Signal with Bit Rate NSystem ClockClock Reference from Line SignalBattery VoltageSignaling Voltage

PCUPSUSDHSTM-NT0x/T0yT1UBATULED

Optical Receiver

Peltier

ADCDCCICBIMTSKBusO/EOHPBus

IMTS

IMTS

IMTS

IMTS

T1K-Bus

Optical Front-end

Page 50: Technical Description Stm64

50 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Functionally the OIS16 / OIS16-2 modules subdivide into the optical front-end and SDHprocessing parts.

The optical front-end includes the optical/electrical conversion (photodiode), optical re-ceiver, data and clock recovery, laser driver and control and electrical/optical conversion(laser). The SP/PS converter provides the necessary speed matching from/to the CMOSlevel.

SDH processing takes place in 4 ASICs of type S6MD and comprises most of the SDHfunctions (with exception of the SPI block). Each ASIC operates 4 STM-1 equivalents inreceive and transmit direction.

Tab. 4.2 gives an overview of some special features supported by the OIS16 / OIS16-2modules.

4.5.3.3 Forward Error Correction FECFEC is a function of the optical STM-64 or STM-16 interfaces (only OIS64-2 andOIS16-2 modules) to considerably reduce the bit error rate, by correcting bit errorswhich may arise during the optical-electrical conversion at the receive side of the trans-mission line. This improvement can also be utilized to reduce the necessary optical pow-er of the transmitter.

The inband FEC applied utilizes the otherwise unused space within the SOH to transmitFEC parity bytes to the receive side. Thus the signal bit rate remains unchanged.

As FEC is a Siemens proprietary procedure, it is not useful in combination with NEs ofother manufacturers.

The FEC hardware functions are implemented in the ASICs S6MD-2 and S6MD64FEC.

Transmit Side

Fig. 4.7 shows the principle transmit-side functions.

The STM-64 and STM-16 signals can be seen as byte interleaved STM-4 part signals.The arithmetic-logic unit calculates the FEC parity bytes from the four STM-1 signals #1

No MSP 1+1 MSP 1:1 MSP 2-fiber

BSHR

FEC SDH

concat.

SONET

concat.

STM-16 OIS16 /

OIS16-2

OIS16 /

OIS16-2

OIS16 /

OIS16-2

OIS16 /

OIS16-2

OIS16-2 - -

STM-16 / VC-4-4c OIS16-2 OIS16-2 OIS16-2 OIS16-2 - OIS16-2 -

STM-16 / VC-4-16c OIS16-2 OIS16-2 OIS16-2 - - OIS16-2 -

OC-48 (SONET) - - - - - - -

OC-48 / STS-3c

(SONET)

OIS16-2 OIS16-2 - - - - -

OC-48 / STS-12c

(SONET)

OIS16-2 OIS16-2 - - - - OIS16-2

OC-48 / STS-48c

(SONET)

OIS16-2 OIS16-2 - - - - OIS16-2

Tab. 4.2 Special Functions Supported by OIS16 / OIS16-2

Page 51: Technical Description Stm64

A42022-L5907-B51-2-7618 51

InformationSL64-3.3

Technical Description (TED)

to #4 (including AU-4 pointers and MSOH). For this calculation all RSOH bytes are setto “0” (the RSOH bytes sent remain unchanged).

These FEC parity bytes are inserted into the SOH of the STM-1 signals #2 to #4 of theSTM-4 part signal. Both SOH areas, RSOH and MSOH, are used for the transmissionof the FEC parity bytes. The SOH of the STM-1 signal #1 is not used for transmission ofFEC parity bytes, so there are no restrictions in the use of that SOH.

If the Enable/disable software switch is open, the SOH of the STM-1 signals remain un-changed.

Fig. 4.7 Principle FEC Functions at the Transmit Side

Receive Side

Fig. 4.8 shows the principle receive-side functions.

The received STM-4 part signal is applied to a delay unit and to an arithmetic-logic unitwhich calculates the correction information from the received STM-4 part signal andFEC parity bytes. By means of this correction information, bit errors of the received, de-layed STM-4 part signal are corrected by inverting the defective bits.

Fig. 4.8 Principle FEC Functions at the Receive Side

Embedding within the System

Fig. 4.9 shows the location where the FEC function is embedded in the OIS16-2 orOIS64-2 module data processing.

Insertion ofFEC bytes in SOH

#2, #3 and #4

Arithmetic-logic unitfor calculation of

FEC bytes

Enable / disable FEC

STM-4 part signals Signal to be transmitted

Arithmetic-logic unitfor calculation of

correction information

Delay of STM-4part signals

Correction of errors(inversion of bits)

Enable /

Error corrected signal

disableFECReceived

STM-4 partsignals

Page 52: Technical Description Stm64

52 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.9 FEC Embedding within the System

4.5.3.4 Optical Interface Synchronous STM-4 Module (OIS4 / OIS4-2)The OIS4 / OIS4-2 modules are designed to meet the requirements of ITU-T Recom-mendation G.957.

Functional overview:– STM-4 multiplexing and demultiplexing of the VC-4 signals (payload signal and over-

head) in compliance with ITU-T G.70x and ETSI DETM1015.– Conversion of the optical signal with 1300/1500-nm interfaces in compliance with

ITU-T Recommendation G.957 and G.958 laser safety cutout.– Signal protection switching for multiplex section, module protection switching.– Provision of the T1 clock signal for MTS (Multiplexer Timing Source).– Monitoring and control of the complete module by integrated PCU.– Conversion of the input voltage from nominal 48 V/60 V to the voltages required by

the module by Power Supply Unit PSU.– Software download– Management of configuration settings, fault analysis and recording the performance

and quality data for transmission signal.– OIS4-2 only :

• Conversion from contiguous concatenated signals (VC4-4c) to virtual concatenat-ed signals (VC-4-4v) and vice versa.• SONET interworking, (see Tab. 3.1).

– The OIS4-2 module is also able to run with the software of any former SL64 version(without support of the OIS4-2 specific features listed above).

The module OIS4 / OIS4-2 will be used as tributary interface modules. Fig. 4.10 usesan overview plan to show the basic mode of operation.

From the functional standpoint the OIS4 / OIS4-2 module is divided into the optical pre-processing and SDH processing parts.

The optical front-end consists of optical/electrical conversion (avalanche photodiode),optical receiver, data and clock recovery, laser driver and control as well as electri-cal/optical conversion (laser). Series/parallel or parallel/series converters establish therequired speed matching from/to the CMOS level.

SDH processing is undertaken in the ASIC S6MD. Here, the STM-4 signal is decodedand converted in the demultiplexer to the VC-4 level (4 x STM-1). The overhead is then

OS

OS

/RS

FE

C

FE

C/M

S

MS

MS

/MS

P

RS

RS

/FE

C

Module OIS16-2 or OIS64-2

STM-16STM-4

iB2 is corrected by the FEC function after insertion of the FEC parity bytes.

iFEC only improves B2 (MS) but not B1(RS).

Page 53: Technical Description Stm64

A42022-L5907-B51-2-7618 53

InformationSL64-3.3

Technical Description (TED)

extracted and passed on to the bus systems (OH-Bus/DCC), the VC-4 signals are trans-ferred as ISDH to module SNL64-3.

In the send direction the VC-4 signals (ISDH) coming from SNL64-3 are received by theASIC S6MD / S6MD2, subsequently the section overhead from the OH bus is coupledin, the signals are converted in the multiplexer to the STM-4 level and transferred to thelaser module in the optical transmitter.

Fig. 4.10 Block Diagram of Modules OIS4 / OIS4-2

4.5.3.5 Optical Interface Synchronous STM-1 (OIS1) ModuleBrief overview of functions:– STM-1 mapping and demapping of the VC-4 signal (user signal and overhead) in

compliance with ITU-T G.70x and ETSI DETM1015.– Conversion of the optical signal with 1300/1500-nm interfaces in accordance with

ITU-T Recommendations G.957 and G.958 with laser safety shutdown.– Signal protection switching for multiplex section, module protection switching.– Provision of the T1 clock signal for MTS (Multiplexer Timing Source).

STM-4(OC12)link

4 x 4 STM-1,(Working,Protection,MS-Protect,2-Fiber-Ring-Protection)

Data/clockretrieval

Opt.transmitter

PCUPSU

T0x/T0yICBUBAT ULED

Ser

ial-p

aral

lel c

onve

rter

Par

alle

l-ser

ial c

onve

rter

O

E

O

E

Peltierelem.

ASICS6MD

PBus

ADC

T1OH-/DCC-/KBus

8

8

4 2

4

4

4

4

Analog Digital ConverterApplication-Specific Integrated CircuitData Communication ChannelInternal Control BusInternal Multiplex Clock SourceK-Byte Bus for MSP ControlLaser DiodeMultiplex SectionMultiplex Section ProtectionOptical/Electrical converterOverhead channel

Bus for protection switchingPeripheral Control UnitPower SupplySynchronous Digital HierarchyMultiplex signal with bit rate NSTM-1 processingSystem clockClock reference from line signalSupply voltageSignaling voltage

ADCASICDCCICBIMTSKBusLDMSMSPO/EOH

PBusPCUPSUSDHSTM-NS6MDT0x/T0yT1UBATULED

IMTS

Optical receiver

Optical front-end SDH-Processing

Page 54: Technical Description Stm64

54 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

– Supervision and control of the complete module by integrated PCU.– Conversion of the input voltage from the nominal 48 V/60 V to the voltages needed

by the module by the Power Supply Unit PSU.– Software download– Management of configuration settings, fault analysis and recording of performance

and quality data of the transmission signal.– SONET interworking (STS-3c transparently)

Module OIS1 is used as a tributary interface module, it contains interfaces for 4 bidirec-tional STM-1 signals in each case. Fig. 4.11 uses an overview plan to show the basicmode of operation.

Fig. 4.11 Overview Circuit Diagram of Module OIS1

Functionally the OIS1 module subdivides into the optical front-end and SDH processingparts.

STM-1(OC3)link

PCUPSU

T0x/T0yICBUBAT ULED

ASICS4MDO

PBus

ADC

IMTS

T1OH-/DCC-/K bus

4

4

4 2

4

4

4

4

4

3 x 4 STM-1,Working,Protection,MS-Protect.

Optical front-end SDH processing

ADC Analog-Digital converterASIC Application-specific integrated circuitDCC Data communication channelICB Internal control busIMTS Internal multiplex clock sourceKBus K-Byte bus for MSP controllerMS Multiplex sectionO/E Optical/electrical converterOH Overhead channelPBus Bus for protection switching

PCU Peripheral Control UnitPSU Power Supply UnitSDH Synchronous Digital HierarchySTM-N Multiplex signal with bit rate NS4MDO STM-1 processingT0x/T0y System clockT1 Clock reference from line signalUBAT Supply voltageULED Signaling voltage

ST

M-1

-Loo

p

Data/clockrecovery

O

E

Optical receiver

Optical transmitter

O

E

Page 55: Technical Description Stm64

A42022-L5907-B51-2-7618 55

InformationSL64-3.3

Technical Description (TED)

The optical front-end consists of optical/electrical conversion (avalanche photodiode),optical receiver, data and clock recovery, laser driver and control and electrical/opticalconversion (laser). The series/parallel or parallel/series converter provides the neces-sary speed matching from/to the CMOS level.

SDH processing is undertaken in ASIC S4MDO. Here, the STM-1 signals are convertedto the VC-4 level. The overhead is decoupled and passed on to the bus system (OH-Bus/DCC), the VC-4 signals are transmitted as ISDH to module SNL64-3.

In the send direction the VC-4 signals (ISDH) coming from SNL64-3 are received by theASIC S6MD, subsequently the section overhead from the OH bus is coupled in, the sig-nals are converted in the multiplexer to the STM-1 level and transferred to the laser mod-ule in the optical transmitter.

4.5.3.6 Optical Preamplifier (OP/OP64) ModuleThe Optical Preamplifier module performs the low-noise optical preamplification of thelight input signal in front of the optical receiver. The optical preamplification is transpar-ent to the signal content and optical signal parameters other than added noise power.The Optical Preamplifier works in the wavelength range between 1530 nm and 1560 nmand requires high-return loss (HRL) connectors. To reduce preamplifier inherent noise(amplified spontaneous emission) adaptive narrow-band optical filtering is implemented.

The OP and OP64 modules differ in their output power level. The OP64 is to be usedexclusively in conjunction with dispersion compensation modules.

Fig. 4.12 shows the basic operating mode of the Optical Preamplifier module using ablock diagram.

Fig. 4.12 Block Diagram of Optical Preamplifier

Optical amplification is achieved by an optical fiber amplifier (erbium-doped fiber ampli-fier EDFA) which works with a pump light in the wavelength range of 980 nm. The am-

Closed-loop controlcircuit

PSU IMTS clockpulse

ADC PCU

Optical fiber amplifier

UBAT ULED T0x/T0y

ADCIMTSPCUPSUT0x/T0yUBATULED

Analog Digital ConverterInternal Time Reference for Multiplex FormationPeripheral Control UnitPower SupplySystem Clock of the CLL64 Module (x working or y protection)Supply VoltageSignaling Voltage

Page 56: Technical Description Stm64

56 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

plifier circuit contains the sensors needed to monitor the input and output signal and thepump diode parameters.

A closed-loop control circuit on the module allows the following functions:– Stabilizing the laser output performance by amplification control,– Pump laser safety shutdown in case of hardware faults– Monitoring functions within the ADC interface for the module-internal “peripheral

control unit PCU”.

The PCU (Peripheral Control Unit) is appropriate for module management functionssuch as start procedures, disconnecting in the case of module faults and maintenancealarms.

The system clock pulses 6.48 MHz, 2 kHz and 1Hz as well as a 15-min time signal arerelayed to the PCU via the T0 interface IMTS.

4.5.3.7 Optical Booster (OB) ModuleThe Optical Booster is an optical amplifier which transparently amplifies the light outputsignal, i.e. without changing the signal contents and optical parameters. It works in thewavelength range between 1530 nm and 1560 nm.

Fig. 4.13 shows the basic operating mode of the Optical Booster module using a blockdiagram.

Fig. 4.13 Block Diagram of Optical Booster

The transmission properties of the optical line are determined by the output performanceof the optical booster together with the properties of the optical transmission signal.Therefore, using the OB requires the selection of optical interface modules suitable forthis purpose.

Optical amplification is achieved by an optical fiber amplifier (erbium-doped fiber ampli-fier EDFA) which works with a pump light in the wavelength range of 980 nm. The am-

Closed-loop controlcircuit

PSU IMTS Clockpulse

ADC PCU

Optical fiber amplifier

UBAT ULED T0x/T0y

ADCIMTSPCUPSUT0x/T0yUBATULED

Analog Digital ConverterInternal Time Reference for Multiplex FormationPeripheral Control UnitPower SupplySystem Clock Pulse of the CLL64 (x working or y protection)Supply VoltageSignaling Voltage

Page 57: Technical Description Stm64

A42022-L5907-B51-2-7618 57

InformationSL64-3.3

Technical Description (TED)

plifier circuit contains the sensors needed to monitor the input and output signal and thepump diode parameters.

A closed-loop control circuit on the module allows the following functions:– Stabilizing the laser output performance by amplification control,– Pump laser safety shutdown is case of hardware faults– Monitoring functions within the ADC interface for the module-internal “peripheral

control unit PCU”.

The PCU (Peripheral Control Unit) switching unit has the capacity for module manage-ment functions such as start procedures, disconnecting in the case of module faults andmaintenance alarms.

The system clock pulses 6.48 MHz, 2 kHz and 1Hz as well as a 15-min time signal arerelayed to the PCU via the T0 interface IMTS.

4.5.3.8 Switching Network for Line Systems (SNL64-3) ModuleThe VC-4 switching unit module Switching Network for Line Systems (SNL64-3) carriesout the switching functions on the VC-4 plane between the payload signal interfaces.

It allows connections between:– line and line,– line and tributary– as well as between tributaries.

Unidirectional and bidirectional connections are also supported such as drop and con-tinue traffic.

The integrated PCU takes over monitoring and control of the complete module.

Two SNL64-3 modules can be equipped for protection switching purposes. They areconnected with the optical interface modules on the West and East line sides, the tribu-tary interface modules, the two CLL64 modules for the T0 system clock pulse and theSCU-R2 for control. In the case of failure, the working SNL64-3 automatically changesover to the protection SNL64-3.

Fig. 4.14 shows the basic operating mode of the SNL64-3 module using a block dia-gram.

Page 58: Technical Description Stm64

58 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.14 Block Diagram of SNL64-3 Module

The SNL64-3 module contains three important groups with the following functions:– The Switching Matrix interconnects the ISDHS signals for point-to-point and point-

to-multipoint connections. The non-blocking, full 256 x 256 cross-connectivity makesthe SL64-3.3 an adequate VC-4 cross-connect multiplexer.

– The Peripheral Control Unit PCU sends commands coming from the SCU-R2 /SCU-R2E to the Switching Matrix and vice versa module alarms to the SCU-R2 /SCU-R2E.

– The Power Supply Unit PSU converts the input voltage from nominal 48 V / 60 V tothe voltages needed on the module.

4.5.3.9 Electrical Interface Plesiochronous/Synchronous140 Mbit/s/STM-1 (EIPS1) ModuleThe EIPS1 module is an interface module for electrical tributaries. An LTU64 (Line Ter-mination Unit) interface module is allocated to each EIPS1 which contains the externalinterface connections.

EIPS1 module protection switching can be configured in the SL64. This will also requirethe modules EIPS Backup Switch Line (EBSL64) and interface module Power SupplyUnit Tributary Protection (PSUTP64).

Fig. 4.15 shows a possible protection switching configuration as an example. Up toeight EIPS1 modules with a transmission capacity of 4 x STM-1 / 140 Mbit/s in eachcase can be equipped here, in which case four EIPS1 modules are sufficient to utilizethe transmission capacity of the line side.

UBAT

ULED

SCU andModule-PCUs

ICSPCU PSU

256 x ISDH

T0xT0y

PCUPSUSMAT0x/T0yUBATULED

Peripheral Control UnitPower SupplySynchronous Multiplexer ASIC BusSystem Clock of the CLL64 Module (x working or y protection)Supply VoltageSignaling Voltage

Switching Matrix

Page 59: Technical Description Stm64

A42022-L5907-B51-2-7618 59

InformationSL64-3.3

Technical Description (TED)

An EIPS1 module equipped in tributary slot #9 operates as an EIPS1 protection modulefor 1:n protection switching (where n = 1...8). In the case of a fault, this EIPS1 takes overtransmission from a faulty EIPS1 working module in one of the slots #1 to #8.

The PCU of the EIPS1 protection module controls the switch settings of the interfacemodules LTU64 and of module EBSL64. On lines X (see Fig. 4.15) the signals of fourtributary ports are transmitted between the LTUs and the EIPS1 modules in each case.If there is a fault on an EIPS1 working module (#1 to #8) its signals will be diverted usingswitch A of the LTU64 to line Y.

Page 60: Technical Description Stm64

60 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.15 Possible Environment of EIPS1 Modules in SL64

Page 61: Technical Description Stm64

A42022-L5907-B51-2-7618 61

InformationSL64-3.3

Technical Description (TED)

The EIPS1 module contains 4 bidirectional interfaces (port 1 to 4). These can operateindependently in both the SDH (STM-1) and PDH mode (140 Mbit/s). The selectedmode for a port always applies to both signal directions.

Fig. 4.16 shows the basic mode of operation of the EIPS1 module using a block dia-gram.

The symmetrical signals supplied by the LTU64 module to the four independent tributaryports of module EIPS1 are processed further in different ways depending on the soft-ware configuration (STM-1 or 140 Mbit/s):• STM-1

– Signal conversion between external STM-1 signals (LTU64) and internal ISDHS(SNL64-3)

– Identifying fault conditions during signal conversion (Fault Management)– Forming quality data (Performance Management)– Processing defined OH bytes from RSOH and MSOH– Relaying clock pulse information from the incoming STM-1 signal

• 140 Mbit/s– Signal conversion between external 140 Mbit/s signal (LTU64) and

internal ISDHS (SNL64-3)– Identifying fault conditions during signal conversion (Fault Management)– Forming quality data (Performance Management)– Processing defined OH bytes from the POH

The four ports are configured (Configuration Management) via the Peripheral ControlUnit PCU on EIPS1. Incoming alarm and quality data is evaluated and relayed by thePCU. The PCU communicates with the SCU-R2 / SCU-R2E and other modules via thebus connections (PBUS/ICB).

The Power Supply Unit PSU converts the input voltage from nominal 48 V/60 V to thevoltages needed on the module.

Page 62: Technical Description Stm64

62 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.16 Block Diagram of Module EIPS1

Port 1

S4TR(1)

UBAT

Port 1from/to LTU64

2

2

Port 2

S4TR(2)

Port 2from/to LTU64

2

2

Port 3

S4TR(3)

Port 3from/to LTU64

2

2

Port 4

S4TR(4)

Port 4from/to LTU64

2

2

Port 1

Port 2

Port 3

Port 4

PLL 280

PLL 280

PLL 280

PLL 280

PLL 311

PCUPSU

IMT

S

Operating voltages

ISDHS Port 1from/to SNL64-3

T0x

XY

XY

ISDHS Port 2from/to SNL64-3

XY

XY

ISDHS Port 3from/to SNL64-3

XY

XY

ISDHS Port 4from/to SNL64-3

XY

XY

OHBDCCB

T1 Bus

ICS

RS-232 LEDs

ULTUXULED

S4MD

Monitor M1

Monitor M2

Monitor M3

Monitor M4

DCCBICSIMTSISDHSLTU64OHBPCUPLLPSU

Data Communication Channel BusInternal Communication ChannelInternal Time Reference for Multiplex FormationInternal Signal of SDH for SwitchLine Terminating Unit Interface ModuleOverhead BusPeripheral Control UnitPhase Locked LoopPower Supply

SNL64-3

S4MDS4TRT0x/T0y

UBATULEDULTUX

Switching Network for Line SystemsModuleMultiplexer/Demultiplexer ModuleTransmitter/Receiver ModuleSystem Clock of the CLL64 Module(x working or y protection)Supply VoltageSignaling VoltageSupply Voltage for LTU64

T0y

Page 63: Technical Description Stm64

A42022-L5907-B51-2-7618 63

InformationSL64-3.3

Technical Description (TED)

4.5.3.10 Line Terminating Unit (LTU64) Interface ModuleThe LTU64 interface module is required for each EIPS1 module. It contains neither aPCU nor a PSU. The voltage is supplied via the PSU of the appropriate EIPS1 module(ULTUX) or via the PSUTP64 module (ULTUY) (if available).

Tasks of the LTU64:– Supplying external port connections– Converting tributary signals at the inputs of unsymmetrical external interfaces to

symmetrical internal signals for the 4 EIPS ports in the receiving direction.– Converting symmetrical signals of the 4 EIPS ports in transmission direction to un-

symmetrical external interface signals at the tributary outputs.– Safeguarding the electrical requirements at the external tributary input and output

interfaces.– Monitoring the level of external tributary input interface signals referring to the mini-

mum values for LOS identification.

The block diagram (Fig. 4.17) shows the functional blocks on the LTU64 module.

Fig. 4.17 Block Diagram of Module LTU64

Page 64: Technical Description Stm64

64 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The incoming signals (port 1 to 4) from the trib-in connectors on the LTU64 are convert-ed in block IN from 75 Ω unbalanced signals to internal balanced signals. Block IN fulfillsall electrical requirements for the tributary interface.

The ASIC S4PS1 contains the switches A and B for balanced signals for one port. Thestate of the switch control input SCLA controls the position of the 8 switches A togetherfor 4 ports in receive and transmit direction.

The internal balanced signals are converted in block OUT to the outgoing 75 Ω unbal-anced signals (port 1 to 4). This block as well fulfills all electrical requirements for thetributary interface.

4.5.3.11 Fast Ethernet Interface Module (ETH100)The ETH100 card is a plug-in module for the SL64 NE on tributary side. In order to pro-vide the required transparent MAC-bridge functionality an ETHn counterpart at the re-mote end of an SDH path is required.

It is possible to plug in up to 16 ETH100 cards into one SL64 NE.

The ETH100 is managed by the board controller PCUD which connects to the SCU-R2/SCU-R2E System Controller via the Internal Communication Bus ICB.

The Ethernet interface allows direct interaction with the IP world.

The ETH100 design provides 4 LEDs for status indication. The LEDs H1-H4 are locatedat the front panel and are dedicated to service technicians.Tab. 4.3 lists the functional assignment of the LEDs. The LEDs H3-H4 are of smallersize (SMD type) and for debugging purposes only. H3-H4 display the status of the inter-nal link (ETH100 ↔ LTU-ETH).

The ETH100 does not contain the 100MB connector for EMI and ESD reasons. The FastEthernet signal lines (one differential signal pair for transmit and one for receive direc-tion) and the FE management bus are routed through the SIPAC connector to the back-plane where the LTU-ETH (serving as a repeater) connects to them. The LTU-ETHhosts the standard FE connector of the type RJ45 wired in DCE fashion.

Position Name Color Description

H1 Failure Red Driven by PCUD, ON signals severe failure

H2 Service Green Driven by PCUD, different meaning during power-up and runtime

H3 Internal

Link

Status

Green Driven by local PHY device; ON if a valid internal link is established between

ETH100 and LTU

(must be ON when LTU-ETH is plugged).

H4 Activity Yellow Driven by PHY device; flashes whenever an Ethernet packet is received or

transmitted. If it is ON continuously there is heavy traffic.

1) The external link status can be retrieved from the two LEDs at the LTU-ETH.

Tab. 4.3 ETH100, LED Assignement

Page 65: Technical Description Stm64

A42022-L5907-B51-2-7618 65

InformationSL64-3.3

Technical Description (TED)

Fig. 4.18 Block Diagram of Module ETH100

ETH100 capabilities:– Ethernet traffic is mapped using POS (according to ITU-T X.86, TD 2046/Rev2 -

SG7) in one VC4 payload which means that about 150 Mbit/s are available to carrythis traffic.

– 802.3x flow-control (PAUSE frames) support by the link partner (a router or switchdevice) is not mandatory.

– Full-duplex operation must be supported by the Fast Ethernet link partner.– Auto-negotiation is supported by the ETH100 interface module to advertise its

modes of operation (speed, full/half duplex, flow control) but can be switched OFF ifthe link partner does not support this negotiation process. In this case the link part-ner must be manually configured for full-duplex operation and 100 Mbit/s speed.10 Mbit/s speed is not supported by the ETH100 interface.

– MTU (maximum transfer unit) for ETH100 is 1818 Bytes.– fLinkDown communication alarm will be raised when no signal is detected (LOS) at

the FE port, synchronization is not possible or the auto-negotiation process hasfailed / timed-out.

– fRemote communication alarm will be raised when the link-partner (router/switch) in-dicates a failure condition during the auto-negotiation process such as capabilitymismatch between the two link partners (full-duplex / speed mismatch).fRemote can also be raised if the link-partner is in offline condition.

– fLTU equipment alarm will be raised when no corresponding LTU-ETH module ispresent or no communication is possible with it.

– HDLC-like framing is supported.

4.5.3.12 Gigabit Ethernet Interface Module (ETH1000)The ETH1000 card is a plug-in module for the SL64 NE on tributary side. In order to pro-vide the required transparent MAC-bridge functionality an ETHn counterpart at the re-mote end of an SDH path is required.

It is possible to plug in up to 16 ETH1000 cards into one SL64 NE.

The ETH1000 is managed by the board controller PCUD which connects to theSCU-R2/ SCU-R2E System Controller via the Internal Communication Bus ICB.

SIPAC connector

Page 66: Technical Description Stm64

66 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The Ethernet interface allows direct interaction with the IP world.

The ETH1000 provides 6 LEDs for status indication. The LEDs H1-H4 are located at thefront panel and are dedicated to service technicians. Tab. 4.4 lists the functional assign-ment of the LEDs. The LEDs H5-H6 are for debugging purposes during the developmentprocess.

The ETH1000 cards ship in two versions.

The SX version comes with a short wave (850nm) fiber optic transceiver and supportsshort-haul (<500m) multi mode fibers.

The LX version provides a long wave (1310nm) fiber optic transceiver and supportslong-haul (<10km) single mode fibers.

Fig. 4.19 Block Diagram of Module ETH1000

Position Name Color Description

H1 Failure Red Driven by PCUD, ON signals severe failure

H2 Service Green Driven by PCUD, different meaning during power-up and runtime

H3 Activity Yellow Driven by MAC device; flashes whenever a Ethernet packet is received or

transmitted. If it is ON continuously there is heavy traffic.

H4 Link

Status

Green Driven by MAC device; ON if a valid link is established (light &

AN_completed) between two link partners (i.e. between ETH1000 and rout-

er/switch).

H5 SerDes Green Driven by SerDes device; ON if the SerDes is working

H6 Transcv

SigDet

Green Driven by optical transceiver; ON if the transceiver detects light, corre-

sponding with LoS

Tab. 4.4 ETH1000, LED Assignement

SIPAC connector

Page 67: Technical Description Stm64

A42022-L5907-B51-2-7618 67

InformationSL64-3.3

Technical Description (TED)

ETH1000 capabilities:– Ethernet traffic is mapped using POS (according to ITU-T X.86, TD 2046/Rev2 -

SG7). The operator can configure the amount of SDH capacity that the ETH1000module will use to transport the Ethernet traffic.Two options are available:The Ethernet traffic is mapped in one VC4 only, which means that about 150 Mbit/sare available to carry the traffic.Or the Ethernet traffic is mapped in one concatenated VC4-4 payload, which meansthat about 600 Mbit/s are available to carry the traffic.

– This speed Ethernet - SDH adaptation will be done using 802.3x flow-control(PAUSE frames) and therefore the Gigabit Ethernet link partner (a router or switchdevice) must support 802.3x flow-control otherwise Ethernet packets will bedropped when the maximum SDH capacity is reached (150 Mbit/s / 600 Mbit/s).

– Full-duplex operation must be supported by the Gigabit Ethernet link partner.– Auto-negotiation is supported by the ETH1000 interface module (only in full-duplex

mode) to advertise its modes of operation (full duplex, flow control) but can beswitched OFF if the link partner does not support it. In this case the link partner mustbe manually configured for full-duplex operation and flow control enabled.

– MTU (maximum transfer unit) of ETH1000 is 1818 Bytes.– fLinkDown communication alarm will be raised when no signal is detected (LOS) at

the GE port, synchronization is not possible or the auto-negotiation process hasfailed / timed-out.

– fRemote communication alarm will be raised when the link-partner (router/switch) in-dicates a failure condition during the auto-negotiation process such as capabilitymismatch between the two link partners (flow-control / full-duplex / speed mis-match). fRemote can also be raised if the link-partner is in offline condition.

– HDLC-like framing is supported.

4.5.3.13 Line Terminating Unit Ethernet (LTU-ETH) Interface ModuleThis module is the companion for the ETH100 module for solving the external signal ac-cess.

Due to ESD reasons the 100MB cable shield has to be connected to chassis frameground. This is not feasible on the ETH100 board so that the cable attachment on a LTUslot is preferred. This board is called LTU-ETH and contains a standard 8-pin RJ-45Ethernet connector as well as a link LED (green) and an activity LED (yellow). Datatransfer to the ETH100 card is performed using internal transmission lines on the SL64back plane.

The Fast Ethernet signal lines (one differential signal pair for transmit and one for re-ceive direction) and the FE management bus are routed through the SIPAC connectorto the backplane where the LTU-ETH (serving as a repeater) connects to them. TheLTU-ETH hosts the standard FE connector of the type RJ45 wired in DCE fashion.

Page 68: Technical Description Stm64

68 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.20 Block Diagram of Module LTU-ETH

4.5.4 Modules for Central Tasks

4.5.4.1 Clock Unit Line (CLL64 / CLL64-2) ModuleThe clock pulse module of the system is housed in module CLL64 / CLL64-2.

The clock pulse module synchronizes the system either from an STM-N line signal or atributary signal or from one of the two external 2048-kHz clock pulses. The clock pulseoscillator of the system can be used in the following modes of operation with corre-sponding accuracy: “Synchronized”, “Hold-Over” or “Free-Running”.

In the standard case, the CLL64 selects the clock pulse source on the basis of a priorityspecified by the user. However, the selection can also be made by remote control via anLCT or TMN. The synchronization status report (“Timing Marker”) is supported.

Status, alarm and control information are transmitted via the integrated microprocessorunit PCU from/to the module.

Fig. 4.21 shows the clock pulse generation on the Clock Unit Line using a block dia-gram.

The input resistance of external synchronization input T3 can be configured via a switchon the connection board of the subrack (75 Ω unsymmetrical/120 Ω symmetrical).

The T3 Interface has overvoltage disconnection and amplitude monitoring.

The synchronization status message (SSM) of the OH bus is evaluated and the newSSM is inserted in the OH bus. The Timing Reference Selection identifies a possiblefault confirmation in the received SSM or a T3 signal failure and takes care of convertingto a new source (forced mode or automatic selection can be configured).

In the T0 Distribution switching unit, four different clock pulse frequencies and a 15-minute pulse are generated and distributed via the T0 bus or T0155 bus. T0155 is dis-tributed directly as T0 Traffic Processing Clock to the transmission modules OIS64 /OIS64-2, SNL64-3 and EIPS1. The four different clock pulses of the T0Bus are neededfor OH/DCC processing, internal system communication as well as for time information.

Page 69: Technical Description Stm64

A42022-L5907-B51-2-7618 69

InformationSL64-3.3

Technical Description (TED)

The external synchronization output T4 Interface generates a 2048-kHz clock pulse. Ithas an overvoltage protection and a direct voltage decoupling (symmetrical/unsymmet-rical).

The Power Supply Unit PSU converts the input voltage from nominal 48 V/60 V to thevoltages needed on the module.

To increase system availability, module protection switching for the clock pulse moduleCLL64 is also possible.

Fig. 4.21 Block Diagram of Clock Pulse Generation on Clock Unit Line CLL64

The CLL64-2 module differs in relation to its modified input T3, which is able to identifythe quality of the T3 clock signal from the CLA output (see 4.5.4.2).

4.5.4.2 T3/T4 Clock Adapter (CLA)The T3/T4 Clock Adapter is an external module installed in the top of the rack. It containsthree independent and bi-directional clock adaption channels, which serve up to threedifferent subracks within the rack.

Each clock adaption channel is used for the conversion from 2048 kbit/s into 2048 kHzof the T3 clock and from 2048 kHz into 2048 kbit/s of the T4 clock of an NE.

T1

TimingReferenceSelection

ICB PBUS

AddDrop

T3 SelectorB

PLL52

Protec.

T0-Distribu-

tion

PLL155

T0155

T0Bus6.48 MHz, 2 kHz,1 Hz, 15 min

T4Interface

T4Selector

A/CPLL12

6

1OH-Bus

T3Interface

CLL64 Sync.

T0

T1

T3

2

4

PSU

UBAT ULEDICBOHPBUSPLLPSUT0T1T3T4UBATULED

Internal Control BusOverheadBus for Protection SwitchingPhase Locked LoopPower SupplyInternal System Clock PulseClock Pulse Reference Signal from Line SignalExternal Clock Pulse Reference SignalExternal Reference Clock Pulse Output SignalSupply VoltageSignaling Voltage

iThe CLL64-2 card / module is required in combination with the T3/T4 Clock AdapterCLA (e.g. for generating the T3 clock from a 2048-kbit/s signal).

Page 70: Technical Description Stm64

70 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

A 2048 kbit/s timing reference signal T3/T4 carrying SSM/QL information is supportedwith a special common mode DC-transmission superimposed to the 2048 kHz clock sig-nal in balanced mode between CLA and NE.

The CLA operates with an input voltage of 48/60 V from station power supply in the rackand is neither supervised nor controlled by the NE.

A green LED indicates the status of the CLA module. In case of a fault, only the “loss ofsynchronization” message in the dedicated NE using the CLA signals points indirectlyto the CLA which may be faulty.

The block diagram in Fig. 4.22 shows the functional blocks of CLA.

iFor using this feature the following conditions have to be fulfilled:The NE has to be equipped with a compatible CLL64-2 card / module (see Chapter4.5.4.1) and furthermore the T3/T4 connector has to be set to 120 Ω.

Page 71: Technical Description Stm64

A42022-L5907-B51-2-7618 71

InformationSL64-3.3

Technical Description (TED)

Fig. 4.22 Block Diagram of CLA

The tasks of these functional blocks are listed below:

PSU– Operation with input voltage 48/60V from station power supply in the rack– Separation diodes and fuses for two input lines NUBAT1 and NUBAT2 for redundan-

cy– Input filter for noise reduction– DC/DC converter for all internally used operating voltages

NENUBATPUBATPSUSSMT3nLIT3nNOT4nNIT4nLO

Network ElementBattery Voltage (negative)Battery Voltage (positive)Power Supply UnitSynchronization Status MessageT3 input 2048 kbit/s HDB3T3 output 2048 kHzT4 input 2048 kHzT4 output 2048 kbit/s HDB3

Page 72: Technical Description Stm64

72 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Control Logic– Clock generation– Initialization of the internal asics after power up– Conversion from T3 2048 kbit/s SSM/QL into DC-levels for 2048 kHz T3 clock– Conversion from T4 2048 kHz DC levels into SSM/QL for 2048 kbit/s T4 signal

Clock Adaptation Channel

The CLA contains 3 independent bi-directional clock adaptation channels #n (withn=1...3) with the following functions:• T3 clock from LINE#n to NE #n

– 2048-kbit/s HDB3 input interface (T3nLI)– 2048-kbit/s regeneration and SSM/QL extraction– 2048-kHz clock recovery– Output T3 2048-kHz clock with superimposed DC levels (T3nNO)– Squelching of T3 2048-kHz clock in case of 2048 kbit/s input defects LOS, LOF

and NCM• T4 clock from NE#n to LINE#n

– Input T4 2048-kHz from NE with superimposed DC levels (T4nNI)– Synchronization of 2048-kbit/s frame generator– Insertion of SSM/QL in 2048-kbit/s data frame– 2048-kbit/s HDB3 output interface (T4nLO)– In case of squelched 2048-kHz T4 clock the corresponding 2048-kbit/s T4 signal

is also squelched.

4.5.4.3 System Control Unit (SCU-R2 / SCU-R2E) ModuleThe SCU-R2 / SCU-R2E is the central processing unit of the SL equipment and here thesoftware functions SEMF (Synchronous Equipment Management Function) and MCF(Management Communication Function) are processed. On the one hand, it controlsand monitors the transmission system modules and, on the other hand, it forms the in-terface to the LCT/NCT or a management system. In addition, interferences occurringin the SL equipment (including interferences of the SCU-R2 / SCU-R2E itself) are report-ed via the local alarm signaling according to the signaling diagram of Bw7R both at theSubrack Alarm Panel SRAP-PI and the higher-level monitoring devices.

Internal control takes place via the ICB bus system which connects the SCU-R2 /SCU-R2E processor to the PCU processors of the other modules. A second bus systemwith the designation PBUS (Protection Bus) connects the SCU-R2 / SCU-R2E to themain signal modules. This bus is used as “Express channel” to process communicationtogether with the protection switching measures and this way takes care of a quick con-version. Both buses form part of the internal communication system ICS.

The SCU-R2 / SCU-R2E system control communicates• with the other modules (via the internal ICS communication system),• with the ECC, QST/B3 and QST/F interfaces (via the MCF function),• with the rack alarm lines and the alarm bus of the operating point via the relay con-

tacts (see also Fig. 4.27).

The SCU-R2 / SCU-R2E carries out the following functions:• It monitors all alarms of the equipment and relays the alarm conditions to the net-

work system, the rack alarm bus and a LCT/NCT terminal.• It relays the operating data of the synchronous line equipment to the network man-

agement system and a LCT/NCT terminal.

Page 73: Technical Description Stm64

A42022-L5907-B51-2-7618 73

InformationSL64-3.3

Technical Description (TED)

• It configures the synchronous line equipment according to the settings which weretransmitted by the network management system or the LCT/NCT terminal. The set-tings used last are stored non-volatile in the flash EPROM of the SCU-R2 /SCU-R2E and in the PCUs of the modules.

• It identifies each module within the synchronous line equipment.

Functional Description of the SCU-R2 / SCU-R2E

Fig. 4.23 shows the basic mode of operation of the SCU-R2 / SCU-R2E module usinga block diagram.

In the SCU-R2 / SCU-R2E module, a RISC processor is employed as CPU (main pro-cessor ), and three additional CISC processors (peripheral processors ) extend theCPU interfaces as slaves.

A supervision module (T0 Supervision ) ensures automatic changeover to the standbyclock in the event of a fault.

The RTC module (real time clock) contains a NVRAM (non-volatile random accessmemory) with 8 kilobytes memory capacity. It is battery buffered to supply time informa-tion and store the test results and status information of the boot software. During shut-down, the clock pulse oscillator automatically switches OFF to protect the battery. Whenthe system is installed for the first time, the time and the date have to be set.

The Program Memory with a maximum capacity of 32 Mbyte (flash PROM) is used forstoring the operating software, basic software and application software.

The Main Memor y can be equipped with EDO DRAM up to 64 Mbyte memory capacity.

The Boot-EPROM with a capacity of 512 kilobytes stores the boot software for initiatingstartup of the operating software. The boot software only loads a specific portion of theoperating software from the flash memory which in turn starts up the remaining part ofthe operating software. Prior to loading of the operating software, the boot software per-forms a complete hardware test.

The Card Label Memory is designed as serial EEPROM and is used to store the mod-ule-specific data.

The Power Supply Unit converts the input voltage from nominally 48 V / 60 V to the volt-ages required on the module. The input voltage supply is duplicated to provide en-hanced reliability. The voltage is monitored: a red LED on the module lights up in theevent of a fault.

Page 74: Technical Description Stm64

74 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 4.23 Block Diagram of the SCU-R2 / SCU-R2E

Interfaces

AUXRS232 is a simple RS232 interface.

BDM (Background Debug Interface) is used for troubleshooting.

MMI (Man-Machine-Interface) comprises two LEDs (red and green) and a pushbutton.

Bw7R is used to control the subrack alarm panel SRAP, the light signal equipment LZEand the Central Service Observation Equipment ZBBeo (see also Fig. 4.27)

MainProcessor

(CPU)

PowerSupply

PeripheralProcessor

(Slave)

PeripheralProcessor

(Slave)

PeripheralProcessor

(Slave)

T0Supervision

ULED

AUXRS232

BDMMMIBw7RIDI

DCCB1DCCB2

VICB1/2PBus

LCTSDI

USI

EDI

T0x

T0y

Card LabelMemory

(EEPROM)

BootMemory(EPROM)

RTCNVRAM

Bat

tery

Sys

tem

bus

Main Memory(DRAM)

ProgramMemory Flash

(PROM)

T0int

Memory bus

AUXBDMBw7RCPUDCCBDRAM

EDI

EEPROM

EPROM

ICBIDI

Auxiliary ChannelsBackground Debug Mode InterfaceStyle 7RCentral Processing UnitData Communication Channel BusDynamic RandomAccess MemoryCommunication with backplane flashPROMElectrical Erasable ProgrammableRead-Only MemoryErasableProgrammable Read-Only MemoryInternal Control BusInitial Domain Identifier

LCTMMINVRAM

PBUSPROMQB3RTCSDIT0x/T0y

UBATULEDUSI

Local Craft TerminalMan-Machine-InterfaceNon-VolatileRead Access MemoryProtection BusProgrammable Read-only MemoryTMN interfaceReal Time ClockService and Diagnostic InterfaceSystem clock from clock supply-module CLL64 (x working or y protection)Supply voltageLED supply voltageUser Interface

UBAT1/UBAT2

QB3

Page 75: Technical Description Stm64

A42022-L5907-B51-2-7618 75

InformationSL64-3.3

Technical Description (TED)

IDI is used to determine the mounting slot, module and backplane coding.

DCCB1/2 is used to transmit the DCC channels between the main signal modules andthe SCU-R2 / SCU-R2E.

QB3 is used for remote access (e.g. from a TMN or NCT) via the QST/B3 interface of theSL equipment.

V is an RS485 interface and can be used between two SCU-R2 / SCU-R2E modules ifoperation has been split between two modules (not used in SL64).

ICB and PBus are used for communication between the PCUs of the other modules andthe SCU-R2 / SCU-R2E.

LCT allow an LCT terminal to be connected (via the QST/F interface of the SL equip-ment).

SDI is a service and diagnostic interface.

USI provides two inputs and two outputs (TTL in each case).

EDI (External Database Interface) provides access to the MIB modules which store im-portant network element data.

T0 system clock of clock supply module CLL64 / CLL64-2 (x working or y protection).

4.5.5 Modules for Supplementary Services

4.5.5.1 Overhead Access Unit (OHA) ModuleThe OHA module makes it possible for the user to access the Overhead Bytes of theline and tributary interfaces for speech and data communication. The module receivesthese bytes via the internal OH bus of the system. This bus transmits all the OverheadBytes except the DCC bytes; these are transmitted in a special bus (DCCB).

The integrated Overhead Processing Facility (OHP) allows bidirectional Cross-Connec-tions between selectable Overhead Bytes from each STM-N interface on the line or trib-utary side. It is also possible to relay the Overhead Bytes to the user interfaces of theoverhead channel. These channels are accessed via the terminal panel at the top of thesubrack.

With the OHA module, the following overhead channel interfaces are available:– two 64-kbit/s data channels with an interface according to ITU-T Recommendation

G.703– four data channels with an interface according to ITU-T Recommendation V.11– a 2-wire interface for an engineering order wire (2-wire Handset)– a PBX-Interface– two 4-wire-E&M-interfaces (only transparent mode)

In the case of synchronous failure, an AIS signal is inserted in all G.703 outputs accord-ing to the G.703 guideline.

The integrated PCU takes over monitoring and control of the complete module.

Fig. 4.24 shows the basic mode of operation of the OHA module using a block diagram.

The Power Supply Unit PSU converts the input voltage from nominal 48 V/60 V to thevoltages needed on the module.

Page 76: Technical Description Stm64

76 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The Peripheral Control Unit PCU communicates with other modules and the SCU-R2 /SCU-R2E via the bus connections (PBUS/ICB). The PCU controls the internal hardwarevia the SMA bus.

The analog 2-wire Interface (2 wire a/b) allows an engineering order wire and an exter-nal ringer to be connected for the DTMF calling method.

The PBX Interface with its analog 2-wire a/b interface for tone dialing or pulse dialing isused to connect a private branch exchange or a public exchange.

The analog 4-wire Interfaces are used to connect external equipment.

The bidirectional 64-kbit/s interfaces, G.703 Interface, are used to connect multiplexequipment for interconnecting.

The bidirectional data interfaces, sV.11 Interface, are used for the adaptation of dataequipment and for interconnection. The bit rate is 64 kbit/s.

The 2048-kbit/s CAS Interface is used for cascading up to four OHA modules (not usedin SL64).

The OHP-ASIC contains the functionalities OH Call Control, OH Cross-Connect, Tele-phone Conference, Telephone Call Manager, Telephone Monitoring, Overhead Bus andIMTS function.

The Signal Processor consists of a digital DTMF transmitter/receiver and a tone gen-erator.

Fig. 4.24 Block Diagram of Overhead Access Unit

2-Wire-Interf.

4-Wire-Interf.

Signal-Proc.

G.703-Interf.

1,2

CAS-Interf.OHP

OH call controlOH Cross-Connect

Tel. ConferenceTel. Call manager

Tel. Monitoring

sV.11-Interf.

1...4

IMTS PSU

Operating voltages

PCU

sV.11Port 1...4

T0x T0y

OHB

ULED

UBAT

ICB-XICB-Y

PBUS-XPBUS-Y

CAS

2-WireHandset

Ext. bell

LEDs

4-Wire E&MPort 1,2

2-Mbit/s-Bus

G. 703Port 1,2 TIF

CAS

ICBIMTSLEDOHOHBOHPPBus

Interface for cascading from up to fourOHA ModulesInternal Control BusInternal Time Reference for Multiplex FormationLight Emitting DiodeOverheadOverhead BusOverhead ProcessingProtection Bus

PCUPSUTIFT0x/T0y

UBATULED

Peripheral Control UnitPower SupplyTelemetry Interface ModuleSystem Clock Pulse of the CLL64 Module(x working or y protection)Supply VoltageSignaling Voltage

PBX-Interf.

PBX

1,2

Page 77: Technical Description Stm64

A42022-L5907-B51-2-7618 77

InformationSL64-3.3

Technical Description (TED)

The OHB Interface consists of two 6.48-Mbit/s interfaces for “Add” and “Drop” to trans-mit the OH bytes between OIS1, OIS4, OIS64 / OIS64-2, EIPS1, CLL64 / CLL64-2 andOHA. The OH bytes can be configured freely.

4.5.5.2 Telemetry Interface (TIF) ModuleThe telemetry interface module, TIF, represents an external signaling interface.

The module supports two groups each with 8 input ports (sensors) and 8 output ports(actors).

The two groups are selected via hardware switches on the TIF module. In addition to thehardware setting, the TIF interface must also be activated per software via the OHAmodule and management interfaces for LCT or TMN.

For data exchange between TIF and OHA, two serial 64-kbit/s channels with G.703 in-terface are used. If the TIF function is active, these may not be used for other purposes.

Fig. 4.25 shows the basic mode of operation of the TIF module using a block diagram.

Fig. 4.25 Block Diagram of Telemetry Interface TIF

Switches 1 and 2 specify how many and which 64-kbit/s channels can be used by theTIF (neither of the two; channel 1; channel 2 or both channels).

The internal timing generator generates the clock pulses needed for the Controller andthe ASIC module DC64.

The Controller has the task of resetting the ASIC module DC64 and generating the64-kbit/s signal.

The Serial/Parallel converter S/P converts the serial output signal to an 8-bit parallel sig-nal or the 8-bit input signal to a serial signal.

iThe TIF module is not shown in equipping representations, because it has no access tothe internal ICS communication system, but is controlled via the OHA module.

Channel 164 kbit/s

2048 kHz

Channel 264 kbit/s

Switch 1DC64

Switch 2

Controller

Timinggenerator

4096 kHz

SP

SP

SP

SP

Driver andprotectionswitching

PSU UBAT

Driver andprotectionswitching

G.703 interface

SignalgeneratorCUST-CTSensorCUST-AL

G.703 interface

8

8

SignalgeneratorCUST-CTSensorCUST-AL

8

8

Customer-specific Alarm and Control IndicationG.703 Interface and Symmetrical AdapterPower SupplySerial/Parallel ConverterSupply Voltage

CUST-AL/CTDC64PSUS/PUBAT

Page 78: Technical Description Stm64

78 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The Power Supply Unit PSU converts the input voltage from nominal 48 V / 60 V to thevoltages needed on the module.

The input and output drivers convert the signal from/to the E&M signaling level. The in-puts and outputs are protected against overvoltage.

4.6 Subrack Alarm Panel / Phone Indication (SRAP-PI)The SRAP-PI consisting of the subrack alarm panel SRAP and the telephone indicationpanel PI form a fixed part of the subrack.

Fig. 4.26 shows the front view of the SRAP-PI. In the version described here, not all theLED displays are used (see Chapter 4.6.2).

Fig. 4.26 Front View of the SRAP-PI

4.6.1 Subrack Alarm Panel SRAPThe subrack alarm panel SRAP is used to display a defective subrack in the rack. It con-tains the LED displays A, B and EL as well as the RT reset key. The LEDs are suppliedwith a constant current derived from the signaling voltage +S/–S and the SCU-R2 /SCU-R2E module. The signaling voltages +S and –S are insulated electrically by thecentral supply voltage and the module supply voltages in which case the display ofalarms is also ensured should the equipment supply voltage fail.

Tab. 4.5 shows the importance of SRAP alarm displays.

Fig. 4.27 shows the principle of local alarm signaling for the subrack signal panel andexternal signaling equipment via the SCU-R2 / SCU-R2E module in a block diagram.

A EL RT

B

ALARM

#1

#2

Name Element Color Alarm type Remarks

A LED Red Urgent alarm Can generally be released with the RT key.

Function is automatically reactivated.

Should the two power supplies be absent, acknowl-

edgment with RT is impossible.

B LED Yellow Non-urgent alarm Can generally be released with the RT key.

Function is automatically reactivated.

RT Key Release control By activating, alarms can be acknowledged.

EL LED Yellow Reminder for oc-

curred alarm

Cannot go out until all the acknowledged alarms have

been eliminated.

Tab. 4.5 Alarm Displays of the SRAP

Page 79: Technical Description Stm64

A42022-L5907-B51-2-7618 79

InformationSL64-3.3

Technical Description (TED)

Fig. 4.27 Local Alarm Signaling for SRAP and forExternal Signaling Equipment via the SCU-R2 / SCU-R2E Module

RT1

+SRT2

A LED

B LED

EL LED

B

A

AZ

A

BBZ

SEMF

ICS

Uc

SCU

a1

b1

el

RT key

–S+SLZE-aLZE-bLZE-el

ZA(A)ZA(B)

GND

a2b2el2

Terminal Panel 301Plug Connector E1 “Bw7R”

Light Signal Equip-ment LZE

CentralService ObservationEquipmentZBBeo

za(a)za(b)

ZA(A)

ZA(B)

za(a)

za(b)

a

b

elEL

Sel

ectio

n Lo

gic

A

B

EL

Bw7RGNDICSLEDLZESCU

Style 7REarthInternal Communication ChannelLight Emitting DiodeLight Signal EquipmentSynchronousControl Unit (Module)

RTSEMFSRAPUcZA(A)ZA(B)ZBBeo

Reset KeySynchronous Equipment Management FunctionSignal PanelOperating VoltageUrgent AlarmNon-urgent AlarmCentral Service Observation Equipment

Subrack Alarm PanelSRAP

Page 80: Technical Description Stm64

80 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

4.6.2 Phone Indication PI

Fig. 4.28 Display LEDs of the Phone Indication Panel PI

The phone indication PI of the SRAP-PI contains four LEDs for the signaling of servicechannel connections.

The LEDs of group Ι on the Phone Indication Panel PI (Fig. 4.28) are controlled by mod-ule OHA1, those of group ΙΙ when a second OHA module is used by module OHA2 (notin this software version). An incoming call will be indicated by the corresponding LEDflashing (e.g. Ι #1), after the call is connected the indicator LED is lit continuously. Twoindependent EOW conference calls #1 and #2 (express and omnibus channel) can bedisplayed.

4.7 Fan ShelfFor forced cooling, a fan shelf with one slot for a slide-in fan unit (with 5 fans) is installedbelow the SL64 subrack.

The fault LED will light and an alarm for the SCU-R2 / SCU-R2E will be created if:– the revolution of at least one fan module has decreased to half of its nominal value,– the power supply for at least one fan unit has failed.

4.8 DCMTransmission on optical fiber links is limited by dispersion at high bit rates. To compen-sate for this effect, the Dispersion Compensation Module DCM is used for SynchronousMultiplexer SL64.

DCM is used to compensate part of the accommodated line dispersion in the very longhaul application according to ITU-T G.691 V-64.2a (see Fig. 9.1).

GN #1

#2

#1

#2

OHA1

GNOHAΙΙΙ#1#2

GreenOverhead Access Unit moduleFirst display group for OHA module 1Second display groups only for a second OHA moduleConference 1Conference 2

LEDs not supported by the software version described here

Phone IndicationPI

OHA2

GN

GN

GN

!Use of the fan shelf is a mandatory requirement for operating the SL64!Loss of speed is supervised and an alarm is raised when it falls beyond the threshold.

Page 81: Technical Description Stm64

A42022-L5907-B51-2-7618 81

InformationSL64-3.3

Technical Description (TED)

V-64-2a requires a compensation length of approximate 120 km. Typically dispersionvalues for these distances are –2400 ps/nm (see 9.2.1).

Page 82: Technical Description Stm64

82 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

5 Functional Features

5.1 Operation, Control and MonitoringThe payload signals are transmitted on the path as STM-64 signals. It is possible to in-sert and decouple plesiochronous 140-Mbit/s signals and/or synchronous STM-1,STM-4, STM-16 (or SONET) signals on the tributary side. In addition to the payload sig-nal, control, monitoring, customer-specific data signals and service telephone signalscan be transferred in the section overhead of the STM signals.

To ensure high operational safety, ongoing operation is continuously monitored by usinga network management system or by operating terminals.

Network elements to which no special operating terminal has been connected, give in-formation about the operational state for support in the case of maintenance work viabuilt-in display elements (see Chapter 5.1.1).

The controlling network management system or a local operating terminal LCT, commu-nicates with synchronous line equipment via its SCU-R2 / SCU-R2E control module(Master). This is connected with the peripheral computers, PCUs (Slaves) of all modulesof the specific line equipment via an internal communication system.

The core piece of the PCUs is a microcontroller which processes the alarm, status andcontrol information of the module.

The SCU-R2 / SCU-R2E control module not only establishes the connection to the localand remote control equipment (MCF function), but also monitors all internal functions ofthe synchronous line equipment (SEMF function). The flexible monitoring concept ofsynchronous line equipment based on software control can easily and quickly be adapt-ed to various user requests and offers optimum requirements for future changes.

The following alarm and error messages are given:– Optical messages via LEDs (module, subrack),– Bw7R alarm messages,– Messages via the QST/F interface,– Messages via the QST/B3 interface.

The synchronous line equipment is integrated in the following management functions inconformity with the corresponding ITU-T Recommendations and ETS standards:– Fault Management– Configuration Management– Performance Management

The following are of particular importance:– Alarm processing (e.g. AIS) for localizing faulty equipment in the transmission net-

work.– Fault diagnosis at module level (e.g. localizing a faulty module).– Specifying and storing configuration data; the data can be entered and requested by

the network management system or the LCT.– Determining the quality parameters according to the ITU-T Recommendation

G.826.– Administration of the access authorization in the LCT for various user classes with

passwords.

Page 83: Technical Description Stm64

A42022-L5907-B51-2-7618 83

InformationSL64-3.3

Technical Description (TED)

5.1.1 Display and Operating Elements of the Network ElementThe display elements (LEDs) at the subracks (see Chapter 4.6.1) and on the modules(see Fig. 6.4) are a useful aid particularly if neither a Local Craft Terminal, LCT, nor anetwork management system have been connected to the SL equipment when an alarmoccurs. The LEDs signal alarms at subrack and module level.

5.1.1.1 Display and Operating Elements of the Plug-in ModulesEach plug-in module has two LEDs on the front which are used for information in thecase of maintenance work:– A red error LED to display module-internal alarms. It is fed from an externally sup-

plied voltage (ULED) so that it can also illuminate when the module power supplyfails.

– A green Service Status LED to display that the module has been put out of opera-tion.

5.1.2 Control and Monitoring by the LCTThe Local Craft Terminal, LCT, is a Management PC for TransXpress network elementsof the second SDH generation. It is suitable for both communication with a directly con-nected, local network element and remote network elements which have been connect-ed via data connections.

With the LCT, simple and quick access to the parameters of the network elements (NE)which can be set in a transmission range is possible. The following basic functions be-long to this: addressing, configuring, alarm monitoring and display of performance data.

The LCT therefore offers the following network management functions according toITU-T M.3010:– Fault Management– Configuration Management– Performance Management

To allocate an equipment address (initial commissioning), the LCT is connected locallyto the QST/F interface of the NEs (see Fig. 5.1). The LCT can then be operated locallyat a specific NE or centrally for all NEs of a partial or total network depending on the ap-plication.

In local operation (e.g. for initial installation), connection takes place via the QST/F inter-face (ITU-T V.24) and in central operation via the QST/B3 interface (via a Medium At-tachment Unit MAU). The last mode of operation allows an accelerated data transferwith an effective bit rate of approximately 2 Mbit/s via the Ethernet.

The increased data rate of the QST/B3 interface is particularly advantageous for shorttransmission times for file transfer (software download) and access to remote networkelements (remote login). Remote Login is only possible via the QST/B3 interface.

The interfaces at the synchronous line equipment have been designed as D subminia-ture connectors; they are in the connector panel of the application (see Chapter 6.3).

Page 84: Technical Description Stm64

84 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 5.1 Application Example for the Local Craft Terminal LCTin a Transmission Network

If required, several decentralized monitoring terminals can be used at the same time ina network. When changing the alarm interrogation operation to the interactive operation(configuring), the user logging in first secures write access rights.

5.1.2.1 System RequirementsAs Local Craft Terminal LCT, a notebook e.g. SCENIC Mobile 510, with the followingminimum configuration is suitable:

Further LCTs can be con-nected to the network

QST/B3

LCT accesses net-work elements 1and 3 via LAN andthe others via theembedded DCCdata communica-tion channel

QST/B3

Possible connection to theTMN

NE n

LCT in local service

NE 5NE 4

NE 6 NE 7

NE 3

QST/B3

QST/B3

LAN

Only the directly connected net-work element 2 can be reachedvia the QST/F interface

LCT in centralized service

Data Communication ChannelLocal Area NetworkOperating terminal (Local Craft Terminal)Network ElementTMN interfaceOperating Terminal InterfaceTelecommunications Management Network

DCCLANLCTNEQST/B3QST/FTMN

QST/FNE 2NE 1

DCC

DCC DCC DCC

DCC

DCC

(e.g. initial commissioning)

Processor . . . . . . . . . . . . . . . . . PentiumOperating system . . . . . . . . . . . Microsoft Windows NT4.0 with Service Pack 4Main memory . . . . . . . . . . . . . . 64 Mbyte RAMFree hard disc capacity . . . . . . Approximately 200 Mbyte (depending on the number of

application software packages)Graphics board . . . . . . . . . . . . . VGA Color, 800 x 600, 256 colors (recommended for

correct color reproduction)External interfaces . . . . . . . . . . COM interface for local operation and Ethernet inter-

face (3Com Ethernet Adapter) for network operation

Page 85: Technical Description Stm64

A42022-L5907-B51-2-7618 85

InformationSL64-3.3

Technical Description (TED)

5.1.2.2 Access ControlThe LCT software is protected by a password against the unauthorized reading out ofconfiguration data and unauthorized controlling interventions.

A specific user class is permanently allocated to each user identification (Name/pass-word combination). On logging in, access rights applicable to the operator are displayedon the LCT.

5.1.2.3 User Interface

The LCT offers a menu-controlled, graphical color user interface.

The user interface shows a physical view (Module View) of the network element (displayof the modules in the subrack).

Fig. 5.2 User Interface for SL64 (Sample)

Menus and windows are basically handled the same way as in MS-Windows.

Help The individual menus and windows are described in detail in the On-line Help.

Page 86: Technical Description Stm64

86 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

5.1.3 Control and Monitoring by the NCTThe Network Craft Terminal NCT carries out all the functions of the Local Craft TerminalLCT (see Chapter 5.1.2). In addition, the NCT is used for alarm monitoring in networkswith up to 50 network elements.

For a better overview, a map can be displayed on the screen of the NCT as backgroundbitmap on which the relevant network element symbols (icons) can be positioned ac-cording to the geographical locations of the network elements. Interconnections of net-work elements can also be displayed.

Arranged at central points, the stationary NCT is suitable for communicating with all net-work elements (NE) of the monitoring range (see Fig. 5.3) and allows simple and quickaccess to the parameters which can be set. The following basic functions belong to this:addressing, configuring and alarm monitoring.

The NCT therefore offers the following network functions according to ITU-T M.3010:– Fault Management– Configuration Management– Performance Management

Using the NCT represents a practical solution for management tasks (Telecommunica-tions Management Network TMN) in smaller to medium networks as well as for existingnetworks with expansion stages staggered with respect to time. It is particularly suitablefor modern SDH transmission networks with high availability and correspondingly fewalarms.

Fig. 5.3 Application Example for NCT and LCT in a Transmission Network

NCT

QST/B3

QST/B3(LAN)

NE 8

QST/F

NE 2

NE 3

NE 7

NE 5

NE 6

NE 1

LCT

LCT

Possible connection tothe TMN

NE 11

NE 4

LCT monitoring areas(NCT monitors all NEs)DCC

DCC

DCCDCC DCC

DCC

DCC DCC

DCC

DCC

DCCLANLCTNCTNEQST/B3QST/FTMN

Data Communication ChannelLocal Area NetworkLocal Craft TerminalNetwork Craft TerminalNetwork ElementTMN interfaceOperating terminal interfaceTelecommunications ManagementNetwork

NE 9

NE 10

Page 87: Technical Description Stm64

A42022-L5907-B51-2-7618 87

InformationSL64-3.3

Technical Description (TED)

If requested, several NCTs can also be operated at the same time in a network withoutdata collision. When changing the alarm monitoring operation to the interactive opera-tion (configuring), the user logging in first secures the write access rights.

5.1.3.1 System RequirementsAs operating terminal NCT, a desktop PC e.g. SCENIC Pro C5 with the following mini-mum configuration is suitable:

5.1.4 Control and Monitoring by a Network Management SystemFor central control of all synchronous line units of a network, a network managementsystem can be used.

It communicates with the SCU-R2 / SCU-R2E system control of the synchronous lineequipment like the local operating terminal LCT. However, the two control possibilitiescan be used independently.

5.1.4.1 Access ControlAccess control for reading configuration and operation data as well as for controlling in-terventions in the synchronous line equipment is provided by the network managementsystem.

Processor . . . . . . . . . . . . . . . . . PentiumOperating system . . . . . . . . . . . Microsoft Windows NT4.0 with Service-Pack 4Main memory . . . . . . . . . . . . . . 64 Mbyte RAMFree hard disc capacity . . . . . . Approximately 500 Mbyte (depending on the number of

application software packages)Graphics board . . . . . . . . . . . . VGA Color, 1024 x 768,

256 colors (recommended for correct color reproduc-tion)

External interfaces . . . . . . . . . . COM interface for local operation and Ethernet inter-face (3Com Ethernet Adapter) for network operation

Page 88: Technical Description Stm64

88 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

5.2 Protection SwitchingThe protection switching options realized for SL64 networks currently are as follows:• Linear Multiplex Section Protection: STM-64 Linear-MSP (1+1 or 1:1), STM-16

Linear-MSP (1+1 or 1:1), STM-4 Linear-MSP (1+1), STM-1 Linear-MSP (1+1)• Self-Healing Ring Protection: STM-64 (BSHR-2 combined with MSP), STM-16

(BSHR-2 combined with MSP)• Extra traffic is supported in Linear MSP and MS-BSHR-2 protection schemes.• Path Protection (SNCP)• Card Protection for some modules• Squelch tables for HO squelching in BSHRs according to ITU-T G.841

The following paragraphs give more detailed descriptions of the different types of pro-tection switching with their relevant functionalities.

5.2.1 Module Protection SwitchingTo increase system availability, the following possibilities exist for module protectionswitching:– (1+1) protection switching for the switching network module SNL64-3 and for the

clock pulse supply module CLL64,– (1+1) protection switching for optical modules OIS64 / OIS64-2 (combined with

MSP)– (1+1) protection switching for optical modules OIS16 / OIS16-2 (combined with

MSP)– (1+1) protection switching for optical modules OIS4 / OIS4-2 (combined with MSP)– (1+1) protection switching for optical modules OIS1 (combined with MSP)– (1:n)-protection switching for electrical interface modules EIPS1

(STM-1 / 140 Mbit/s). Example see Fig. 4.15.

Over and above that, the supply voltage feed to the line equipment can be duplicated.

5.2.1.1 Criteria for Initiating the Protection Switching ProcessThe working-protection changeover is triggered automatically by monitoring circuits, butit can also be controlled by the operating terminal or operations system.

Criteria for initiating module protection switching are as follows (for OIS modules seealso 5.2.2.3):• Internal initiation

– Card Failure, CF (module failures: fault in the module power supply, PCU fault,fault in the ASICs, module not plugged in, clock not present)

– Errors in internal signals ISDH, ISU• External initiation

– Forced Switch (changeover via operating terminal/OS)

5.2.2 Linear Multiplex Section Protection (Linear MSP)

5.2.2.1 Linear (1+1) MSPIn the case of (1+1) protection switching, the same data signal is transmitted to two sep-arate lines. One of the two data signals is selected on the receiver side. External protec-

Page 89: Technical Description Stm64

A42022-L5907-B51-2-7618 89

InformationSL64-3.3

Technical Description (TED)

tion switching requirements (from the Operations System or LCT, not the remotenetwork element) are possible.

The following pictures show the traffic signal flow in some typical steady states of theMSP switch control. Fig. 5.4 shows the fault-free case.

Fig. 5.4 Linear (1+1) MSP, Fault-Free Case

Fig. 5.5 shows the signal path after the switchover to the protection line (e.g. becauseof “signal fail” on the working line).

STM-N

OIS(N) SNL64-3

STM-N

OIS(N)

(workingtraffic)

(protection)

(working)

A B Principle diagram

working

protection

HPC

Page 90: Technical Description Stm64

90 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 5.5 Linear (1+1)-MSP, Switch to Protection Line

5.2.2.2 Linear (1:1) MSP with Extra TrafficIn the case of (1:1) protection switching with extra traffic, the main traffic data signal istransmitted via the working line, and a (less important) extra traffic data signal can betransmitted via the protection line. Both data signals are simultaneously available on thereceiver side. External protection switching requirements (from the Operations Systemor LCT, not the remote network element) are possible.

The following pictures show the traffic signal flow in some typical steady states of theMSP switch control. Fig. 5.6 shows the fault-free case.

OIS(N) SNL64-3

STM-N

OIS(N)

(protection)

(working)

A B Principle diagramw

p

(workingtraffic)

HPC

Page 91: Technical Description Stm64

A42022-L5907-B51-2-7618 91

InformationSL64-3.3

Technical Description (TED)

Fig. 5.6 Linear (1:1) MSP, Fault-Free Case

Fig. 5.7 shows the signal path after the switchover to the protection line (e.g. becauseof “signal fail” on the working line). The extra traffic data signal can no longer be trans-mitted.

Fig. 5.7 Linear (1:1) MSP, Switch to Protection Line

STM-N

OIS(N) SNL64-3

STM-N

OIS(N)

(main traffic)

(protection)

(working)

A B Principle diagram

working

protection

HPC

(extra traffic)

OIS(N) SNL64-3

STM-N

OIS(N)

(main traffic)

(protection)

(working)

HPC

A B Principle diagramw

p

Page 92: Technical Description Stm64

92 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

5.2.2.3 Criteria for Initiating the Protection Switching ProcessLinear MSP can either be initiated manually using the operating terminal/OS or automat-ically under the control of the SCU-R2 / SCU-R2E. According to ITU-T RecommendationG.783 there is a hierarchy of priorities in accordance with which the protection switchingprocess will be initiated.

The criteria for protection switching are listed below, starting with the highest priority:• Local initiation

– Forced Switch (switch via operating terminal/OS)– Signal Fail (SF), corresponding to the following error states, e.g.:

Loss of Signal LOS,Loss of Frame LOF,Section-AIS received

– Signal degrade, SD (the threshold bit error rate is configurable; proper configura-tion allows protection switching at bit error rates below 10-6)

• Remote initiation– Changeover of other network elements by remote requests via bytes K1/K2

5.2.3 Bidirectional Self Healing Ring Protection Switching (BSHR)In rings, the same protection switching measures as for line and path protection switch-ing are possible including also bidirectional, self-healing ring protection switching(BSHR). In the case of interference in a multiplex section, the data signal is looped backat the two ends of the disturbed section via the protection line. Protection switchingmechanisms for 2-fiber rings (BSHR-2) have been implemented.

5.2.3.1 2-Fiber Ring Protection Switching (BSHR-2)The BSHR-2 consists of a number of network elements (synchronous line units) forwhich the line interfaces are connected to each other in the form of a ring, with or withoutextra traffic.

Since each line interface is connected to an optical fiber for incoming signals and opticalfiber for outgoing signals, this virtual produces one optical fiber running in the clockwisedirection and one optical fiber running in the anticlockwise direction (“2-fiber ring”).

A path is generally switched in normal mode using the shortest route or so that it willpass through as few network elements as possible. In contrast to other ring protectionswitching mechanisms no transmission capacity is required on the other ring segments.

In the event of a ring segment being interrupted or a fault occurring in a segment theneighboring network elements switch the entire payload signal via the protection path ofthe other segments. In this way the “Working” path of each segment is protected.

To do this half the capacity of the ring must be provided for the protection path.

All segments of the BSHR-2 have the same priority as regards switching over the ring.The switchover mode is revertive and it is possible for the user to configure the wait-to-restore time.

In fault-free state, the protection channels can be used to transmit extra traffic VC-4s. Incase of protection switching, this extra traffic transmission is interrupted.

The figures below show the signal flow for the transmission signal in typical states of theMSP switch control in each case.

Fig. 5.8 shows an example of a 2-fiber ring in fault-free operation.

Page 93: Technical Description Stm64

A42022-L5907-B51-2-7618 93

InformationSL64-3.3

Technical Description (TED)

Fig. 5.8 Example of BSHR-2 in a Fault-Free State

The diagram in Fig. 5.9 shows the signal path when a fault occurs (e.g. “signal fail”) online “West” of network element “F” as seen from the principle diagram (line G-F).

The working channels of line “East” (line F-E in the principle diagram) were switchedover to the protection channels of the same line.

As seen from network element G the information given here is also applicable to line“East”.

STM-N

OIS64

SNL64-3

West

STM-N

OIS64

East

Principle diagram

HPC

remote loop

remote loop

F

A B C

D

G E

w

w

pp

w

w

pp

Page 94: Technical Description Stm64

94 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 5.9 Example of BSHR-2 in the Event of a Line Interruption

5.2.4 Card Release Switching (CRS)With Multiplex Section Protection without CRS the data signal of the protection path willbe routed to the SNL64-3 via the working OIS module if a fault occurs (see Fig. 5.5). If,in the worst case, the working OIS module is faulty, this can however lead to signal fail-ure.

Card Release Switching enables expanded Multiplex Section Protection which takes ac-count not only of faults on the transmission line but also of faults on the optical interfacemodules OIS. CRS becomes active when the working OIS module reports a hardwarefault; module SNL64-3 then selects the protection OIS module.

Card Release Switching can be used in combination with (1+1) or (1:1) MSP and withBSHR-2.

Fig. 5.10 shows an example of (1+1) multiplex section protection in “Protection” statewithout effective CRS. The transmission signal was diverted to the protection line, theOIS working module is operating fault-free.

F

OIS64

West

A B C

D

G E

STM-N

OIS64 East

Principle diagram

1) Channels STM-64 # 1 to 32: Main Traffic (working)2) Channels STM-64 # 33 to 64: Main Traffic (protection)

1)

2)

1)

HPC

remote loop

remote loop

SNL64-3

w

w

pp

w

w

pp

Page 95: Technical Description Stm64

A42022-L5907-B51-2-7618 95

InformationSL64-3.3

Technical Description (TED)

Fig. 5.10 Example of (1+1)-MSP Connection Setup(Status: Protection Switched), CRS not Effective

Fig. 5.11 shows an example of a (1+1) multiplex section protection in “Protection” statuswith effective CRS. The transmission signal here was diverted on both the transmissionline and on the working OIS module to the “Protection Line”/”OIS protection card”.

Fig. 5.11 Example of (1+1) MSP Connection Setup(Status: Protection Switched), CRS Effective

5.2.5 (1+1) Path Protection Switching(Subnetwork Connection Protection, SNCP)SNCP is provided with the aid of the SNL64-3 modules.

The data signal is transmitted in a ring structure via two different paths and can be im-plemented in line or ring structures (Fig. 5.12). The changeover criteria (evaluation ofthe Path Overhead) are specified individually when configuring the line equipment. AProtection Protocol is not required.

The (1+1) protection switching of the VC4 path is undertaken in single-ended operation(unidirectional) without “extra traffic”.

SNL64-3

OIS(N) (protection)

PCU

OIS(N) (working)

SNL64-3

OIS(N) (protection)

PCU

OIS(N) (working)

PCU

Page 96: Technical Description Stm64

96 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The switch over to the protection path occurs in the “non-revertive” mode, i.e if there wasa switchover to the protection path as a result of a transmission fault, there is no auto-matic switch back to the original path once the fault is rectified, but only if there is a faulton this new path.

Fig. 5.12 Example of Path Protection Switching for an STM-1 Line

5.2.5.1 Path Protection Switching Connection Possibilities– Line/line-path-protection switching– Line/tributary-path-protection switching– Tributary/tributary-path-protection switching

5.2.5.2 Criteria for Initiating the Protection Switching Process• External initiation for existing connections (including drop & continue)

– Forced Switch (changeover via operating terminal/OS)• Internal initiation

– Trail signal fail (TSF): This criterion is generated by the HPOM function (High Or-der POH Monitor), e.g. server signal fail (SSF) of the Multiplex Section Adaptionfunction

– Trail signal degraded (TSD): This criterion is generated by the HPOM function(High Order POH Monitor), e.g. Degraded defects (dDEG) as per ETSI

– ISDH signal fail (module SNL64-3)

AU4/VC4

SL device

AU4/VC4

AU4/VC4AU4/VC4

Working line Protection line

SL device

Page 97: Technical Description Stm64

A42022-L5907-B51-2-7618 97

InformationSL64-3.3

Technical Description (TED)

5.3 Supplementary ServicesSignals for supplementary services are transmitted in the Section Overhead. The capac-ity of an Overhead Channel is 64 kbit/s or a multiple thereof. Overhead bytes for user-specific data channels (AUX) and engineering order wire (EOW) channels can be ac-cessed via the Overhead module OHA.

Specific Overhead Bytes can be interconnected via the OHA switching unit by eachSTM-N interface of the line or tributary side to the AUX interfaces. The Local Craft Ter-minal is used for through connection. Telemetry signals (C-AL) can be coupled and de-coupled by using the connector module TIF (via the OHA module).

5.3.1 User-Specific Data ChannelsThe following interfaces are available:• Two bidirectional G.703 interfaces (connected via the OH switching matrix) with er-

ror monitoring for LOS or AIS.

The G.703 interfaces can optionally be used for:– Direct OH access,– Access to telephone conference call or– A TIF interface(These functions are mutually exclusive).

• Four bidirectional data interfaces sV.11 (corresponding to ITU-T V.11, but with otherimpedance) for the connection of data terminals and the through connection of datachannels.

5.3.2 Engineering Order WireThe engineering order wire channels are transmitted via the EOW bytes E1 and E2.

The following interfaces are available:• A 2-wire interface

An analog 2-wire a/b interface to connect a 16-key telephone with DTMF dialing andinternal ringer. Selective, collective and group calls are possible. For selective orgroup call, a three-digit telephone number is allocated to the telephone.Via an external telephone ringer connection, incoming calls (selective call, groupcall) can also be identified if the telephone handset is off-hook or no telephone isconnected.

• Two 4 wire E&M interfaces– for the connection of EOW terminals such as EOW switching, O&M Center

(ZBBeo),– for the transition to other systems such as e.g. Synchronous Multiplexer SMA

(SDH) or OLTS (PDH) in which case the external equipment also has to supportDTMF dialing.

• A PBX interfaceAn analog 2-wire a/b interface for DTMF dialing or pulse dialing is used to connecta private branch exchange or a public exchange.

Telephone Conference Circuit

A maximum of two independent EOW conferences is possible (see On-line Help). Thetelephone conference circuit allows the interconnection of external speech channels

Page 98: Technical Description Stm64

98 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

(e.g. from “East” and “West” line signals as well as tributary signals; 2-wire and 4-wire)so that each subscriber is connected with every other subscriber.

Correct connection of the EOW channels into a conference or in a ring structure is theresponsibility of the system administrator.

Selective Call, Group Call and Collective Call

3-digit selective, group and conference call numbers are supported in which case thedirectory numbers 000, XY0 and X00 are reserved for collective call and group call (seeOn-Line Help).

5.4 Clock Pulse Supply, SynchronizationFrequency synchronous network operation requires synchronization of all equipmentoperating in the network to a central reference clock pulse.

The following reference signals are suitable as clock pulse sources:– An external 2048-kHz / 2048-kbit/s (via CLA) clock pulse signal T3 which can be ap-

plied at a synchronization input of the multiplexer,– The clock pulse derived from a line or tributary signal,– A clock pulse of the internal quartz oscillator (plesiochronous operation).

The clock pulse of each network element can be synchronized with a very precise clockpulse source (Primary Reference Clock, PRC) according to the master-slave principle.The clock pulse information is distributed via the transport network.

5.4.1 Synchronous Equipment Timing Source, SETSWithin each network element (except for regenerators), the SETS (Synchronous Equip-ment Timing Source) function on the Clock Unit Line (CLL64) module takes care of localsynchronizing.

The signals T1 (STM signals) and T3 (2048 kHz) feed the clock pulse information intothe SETS (see Fig. 5.13). One of the two signals is used as the current synchronizingsource. The SETS function derives the clock pulse T0 from this. Each outgoing SDH sig-nal is synchronized from this T0 clock pulse and T0 is also used as the central clockpulse within the network element.

The SETS function does not only supply the synchronous clock pulse to the moduleswithin the network elements, but also via the T4 interface to other equipment. After asynchronization fault in the transmission line, sections of the transmission range are nolonger permanently coupled to the Primary Reference Source PRC. In this case, theclock pulse synchronization has to be configured anew in the network structure. For this,each SETS can be synchronized with different T1 or T3 sources. When configuring inthe course of commissioning the synchronous line equipment, the clock pulse source tobe used is specified.

Page 99: Technical Description Stm64

A42022-L5907-B51-2-7618 99

InformationSL64-3.3

Technical Description (TED)

Fig. 5.13 SETS Function According to ITU-T G.783

If an existing synchronization with a reference clock pulse source is no longer available,the SETS switches from synchronous operation to the holdover mode.

If the SETS cannot be synchronized with an external clock pulse source, it changes tothe free-running Mode.

In both modes, holdover and free-running, the SETS independently supplies clock pulseT0 from Timing Generator SETG, but with reduced frequency and phase quality. In thiscase, clock pulse T4 is no longer made available because of clock pulse suppressionwhich occurs in that instance (Squelch Function).

5.4.2 Timing MarkerBecause it is possible to choose between clock pulse sources of different precision, it isuseful to transmit information about the quality of the clock pulse used. Otherwise, thereference clock pulse used is selected according to a given priority list.

The Synchronization Status Message is contained in the MSOH of the STM-N signal.For information about the precision of the clock pulse of the signal, six quality steps havebeen specified according to ITU-T (see Chapter 9.5).

5.5 Real Time ClockFor time stamps (time and date) in error and operational messages of the SCU-R2 /SCU-R2E and PCUs, a real time clock is available on the SCU-R2 / SCU-R2E module(circuit section RTC).

The real time clock can be set via the LCT/NCT operating terminal or a network man-agement system.

5.6 Laser Safety ShutdownTo prevent possible personal injury by emerging laser light in the case of line interruption(e.g. fiber break), the SL equipment contains a laser safety shutdown ALS (Automatic

SelectionA

SelectionB

Clockpulsesuppres-

sion

Osc.

SETG

Clock pulsesuppression

SelectionC

T1

T3

T4

T0

4

2

Osc.SETGT0T1T3T4

Internal Oscillator FunctionSynchronous Equipment Timing Generator FunctionInternal System Clock PulseSynchronizing STM PortSynchronizing External 2048-kHz Clock PulseOutgoing, External Synchronous Clock Pulse 2048 kHz

Page 100: Technical Description Stm64

100 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Laser Shutdown) which automatically takes the laser transmitter of the disturbed sectionout of operation according to ITU-T Recommendation G.958.

In the case of signal failure exceeding 500 ms at the optical receiver of an SL networkelement, the laser transmitter is switched OFF in this equipment for the opposite direc-tion and thereby the disturbed field is taken out of operation. Then the laser transmittercan be switched on periodically every 70 s (for 2 s or 9 s restart pulse length) or for 2 s,9 s or 100 s (configurable). If the receiver of the device concerned again receives a validsignal, the laser transmitter of the opposite direction is again immediately put into con-tinuous operation.

When switching on internal power supplies or after a laser switch-OFF caused by totalfailure of the power supply in the telecommunications center, the laser transmitter(s)must be forced switched ON for approximately 2 s, 9 s or 100 s after the permissibleoperating conditions have been reached.

In the case of line interruption or for maintenance work, the laser transmitter must beswitched ON manually for approximately 2 s or approximately 90 s (test purposes). Thetransmitter is switched back ON via the operating terminal.

5.7 Single-Fiber OperationIt is also possible to operate the SL64 in single-fiber mode with STM-1, STM-4, STM-16,and STM-64 signals. For this purpose, a separate optical splitter is required; however,this increases the attenuation.

To enable the ALS function (see Chapter 5.6) to shut down the laser safely − for exam-ple after a fiber breakage − even in single-fiber mode (rather than being forced into amalfunction state by its own transmit signal) the optical interface must be capable of dis-tinguishing between its own transmit signal and the signal received from the far-end sys-tem. The J0 byte is used for this purpose.

The ALS function should always be enabled in single-fiber mode.

Page 101: Technical Description Stm64

A42022-L5907-B51-2-7618 101

InformationSL64-3.3

Technical Description (TED)

6 Mechanical Design

6.1 RacksThe racks used should comply with the dimensions recommended by ETSI (EuropeanTelecommunications Standards Institute): W = 600 mm, H = 2200 mm and D = 200 mm(empty), 300 mm (equipped) (ETS 300 119-3). Fig. 6.1 and Fig. 6.2 show typical equip-ping examples.

The SL64 subrack is secured on the front of the rack. To make fitting easier, there aretwo support lugs in each case which have to be fitted in the points on the front of therack where the subracks have to be installed. The space provided at both sides betweenthe subracks and the rack wall is available for cabling the subracks with one another andthe copper connecting cable of the telecommunications center and the point behind thesubracks is reserved for the FO cables. Each connecting point (connector) can also beaccessed for a cabled rack, e.g. for subsequent equipping without interrupting the line.

The top-most rack slot is used for fitting a terminal panel with the connecting elementsfor the operating point. The terminal panel contains the fuse panels with up to six linecircuit breakers each as well as a module for signaling according to construction practice7R.

The bottom of the rack is open so as to let in fresh air; likewise the top of the rack is openas an air outlet and cable feed-through. Heat is dissipated from the modules by forcedconvection with the aid of a fan shelf.

The rack is secured to a floor rail with pins. Height-adjustable feet can compensate forfloor unevenness of up to 25 mm. Fastening sets are available for fitting under a planarcable shelf. Doors have not been provided for the racks.

Page 102: Technical Description Stm64

102 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 6.1 Equipping Configuration with two SL64 in one ETSI Rack

Page 103: Technical Description Stm64

A42022-L5907-B51-2-7618 103

InformationSL64-3.3

Technical Description (TED)

Fig. 6.2 Typical Equipping Configuration with one SL64 togetherwith a DCM Shelf and a SL16 Subrack in an ETSI Rack

Big panel is used

Page 104: Technical Description Stm64

104 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

6.2 Rack Terminal PanelThe rack terminal panel is fitted in the slot of the top-most rack. It contains a fuse panel(different versions, see Fig. 6.1 and Fig. 6.2), equipped with circuit breakers and a sig-nal distributor with connectors for connecting the signaling lines (Bw7R signaling).

The battery voltage (Nominal value –48 V or –60 V) is distributed via the circuit breakersto the power supply connections of the subracks.

For every SL device in the rack, a Medium Attachment Unit MAU can be installed in therack terminal panel if required. This allows the symmetrical QST/B3 interface of the SLequipment to be adapted to the coaxial Ethernet interface of an LAN network for remoteaccess of an LCT/NCT or TMN. The SL equipment can be connected with coaxial cablesvia the MAU (also via several racks).

6.3 Subracks and Equipping

6.3.1 Subrack SL64The double-row subrack SL64 (Fig. 6.3) is the universal subrack for equipping as syn-chronous add/drop multiplexer, synchronous line terminal or local cross-connect. Re-configuration is possible at any time by simply exchanging modules, even subsequentlyduring operation.

The subrack contains, from top to bottom:– a connector array for the power supply (working/reserve) of subrack and Fan-shelf;– slots for 142 mm high interface modules;– an alarm panel with LED displays and connector panel for service/operating inter-

faces;– slots (single row and double row) for 565 mm and 265 mm high transmission mod-

ules plus control and clock modules.

The SL64 subrack has the following plug-in slots:– 16 tributary (OIS(N), OIS(N)-2, EIPS1, ETH100/1000) and/or booster and/or pream-

plifier cards– 2 tributary protection and/or booster and/or preamplifier cards– 2 x CLL64 / CLL64-2– 2 x SNL64-3 (double height card)– 2 x OIS64 / OIS64-2 (double height card)– 1 x OHA– 1 x SCU-R2 / SCU-R2E

The subrack is basically intended for fitting in an ETS rack, it cannot be mounted in a19-inch rack.

Heat is dissipated by forced convection with the aid of a fan shelf built into the rack.

The cable connections for internal rack and telecommunications center cabling are ar-ranged on a terminal panel in the middle of the subrack and can be accessed from thefront (see manual ITMN).

The rack cabling needed for commissioning the rack is described in the Instal-lation and Test Manual, ITMN.

Page 105: Technical Description Stm64

A42022-L5907-B51-2-7618 105

InformationSL64-3.3

Technical Description (TED)

The FO connections are positioned on the front of the optical modules as a manual con-nector with a special jack for:– DIN 47 256 or– FC PC or– E2000 or– SC connector– Duplex-SC, for ETH1000 module

Page 106: Technical Description Stm64

106 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 6.3 Structure of Subrack SL64 with Possible Equipping

If no module isplugged in, use ablanking plate!

SRAP-PI

1) In case of ETH100 card,the LTU-ETH is used instead ofLTU64

Page 107: Technical Description Stm64

A42022-L5907-B51-2-7618 107

InformationSL64-3.3

Technical Description (TED)

6.3.2 ModulesPlug-in modules are functional elements which can be exchanged independently ofeach other with special, decentralized power supply (except for the LTU64, LTU-ETH).

SL64 can be adapted to the desired tasks (add/drop, terminal or cross-connect functionwith the number of optical and electrical interfaces needed in each case) by simply add-ing or replacing modules. In synchronous add/drop multiplexers, synchronous terminalsand cross-connects, modules of the same type are used.

Fig. 6.4 shows a standard module/card of SL64.

Fig. 6.4 Mechanical Design of the Interface Modules

6.3.3 Insertion and Extraction AidsThe module insertion and extraction aids (see Fig. 6.4) basically make it easier to pull-the modules out of the inset. When the modules are plugged in, the insertion and extrac-

Mechanicalcoding

Mechanicalcoding

Insertion andextraction aid

Error LED, INT (red)Service Status LED, ID (green)

SIP

AC

-S s

prin

g co

ntac

t str

ip

Outer grounding edge

Outer grounding edge

RS-232 connector

Insertion andextraction aid

Page 108: Technical Description Stm64

108 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

tion aids engage at the top and the bottom in the inset, so that the modules can be me-chanically secured during operation.

Identification labels are applied to the plug-in and pull-out aids so that the modules canimmediately be identified after the subrack cover has been opened.

6.3.4 Coding the Module Backplane ConnectorA mechanical SIPAC-S coding device on the module backplane connector(see Fig. 6.4) and the backplane printed circuit board of the inset ensures that eachmodule in the inset can only be inserted into one slot which is permissible for the rele-vant module type.

Page 109: Technical Description Stm64

A42022-L5907-B51-2-7618 109

InformationSL64-3.3

Technical Description (TED)

7 Software and Firmware

7.1 GeneralEach SL64 synchronous add/drop multiplexer, synchronous line terminal and cross-connect has an “embedded” operating system with UNIX mechanisms in the SCU-R2 /SCU-R2E (see Chapter 4.5.4.3) to monitor and control the other modules and to storedevice-specific status information.

The boot firmware is stored in the Boot EPROM of the SCU-R2 / SCU-R2E module aswell as in the FEPROMs of the individual Peripheral Control Unit (PCU) (see Fig. 7.1).The software of the operating system and the configuration data of the SL equipment isstored on a Flash EPROM on the SCU-R2 / SCU-R2E module.

Fig. 7.1 Overview Data Storage

7.2 Software Structure of the SCU-R2 / SCU-R2EThe software of the SCU-R2 / SCU-R2E System Control Unit is divided into three parts:– SCU-R2 / SCU-R2E Base and Application Software BASW– SEMF software– MCF software

7.2.1 SCU-R2 / SCU-R2E Base and Application Software BASW(Base Software)The base software of the SCU-R2 / SCU-R2E is the underlying, universal-design oper-ating system and communication software, which together with the hardware makes itpossible to carry out the various functions of the synchronous line equipment.

RAM

Base and ApplicationSoftware

RAM (depending on the mod. type)

BootFirmware

SCU-R2 / SCU-R2E

EPROM FlashEPROM

Synchronous Control Unit

Startup

Peripheral Control Unit

BootFirmware

BasicSoftware

ApplicationSoftware

SCU-R2/SCU-R2ERAM

FEPROM

OperatingSoftware

FEPROM

PCU

Page 110: Technical Description Stm64

110 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

The base software consists of:• The boot firmware which initiates the start of the operating system and• The operating software as basis for the application software which contains all the

task-specific software sections (it provides the universal user interface between ap-plication software and base software).

The infrastructure needed to start up/shut down the software processes, for download-ing larger data quantities via FTP and for further processes is provided by the base soft-ware.

7.2.2 SEMF SoftwareThe SEMF software is the central software of the network element which is involved inall network element-specific functions.

The SEMF software initiates the processing of all the commands and requests which ar-rive at the network element via the application protocol. It also monitors and controls thePCUs of the individual modules, prepares the PCU messages and, if required, relaysthem to the operating terminal LCT or NCT or to a network management system.

The SEMF software consists of the SEMF application and the SEMF infrastructure.

7.2.3 MCF SoftwareThe MCF software provides the communication function between the SEMF applicationand the network management system. Various channels (DCC, Qx) have been providedfor this.

The MCF software also provides the routing function for network management informa-tion between the network management system and other network elements. The MCFsoftware configures the communication channels and monitors them for errors.

7.3 Software Structure of Peripheral Control Units PCUs

7.3.1 PCU Boot FirmwareThe PCU boot firmware with startup control, the board self-test and a boot firmware taskare the same for all modules which have a Peripheral Control Unit PCU.

7.3.2 PCU Application SoftwareThe PCU application software is module-specific with a basic part (base software) whichis standard for all modules. The base software is used to administer configuration dataand to control the software download for example. The module-specific part of the PCUapplication software mainly performs management tasks.

7.4 Network Addresses of Synchronous Line EquipmentIn the network, each synchronous item of line equipment is a network element. It can beaddressed by the operating terminal LCT or NCT or by the network management systemvia the following addresses:• NSAP Address (Address of the network element)

The NSAP addresses are administered by the system administrator.

Page 111: Technical Description Stm64

A42022-L5907-B51-2-7618 111

InformationSL64-3.3

Technical Description (TED)

• Ethernet Address (Address of the SCU-R2 / SCU-R2E)

These addresses clearly specify the identity of the synchronous line equipment.

7.5 Log RecordsIt is not mandatory for the equipment of the network element SL64 to be permanentlyconnected to an operating terminal or a network management system for continuousalarm monitoring. All currently occurring, urgent and non-urgent alarm messages arestored in the SCU-R2 / SCU-R2E. All the events which have already been acknowl-edged (“acknowledge”) are recorded in log records.

After an operating terminal or a network management system has been connected, theuser can interrogate the stored events or alarms.

The following log records are recorded:• NE logs

The NE stores the last 100 alarm events / History Events and the last 100 configu-ration settings / Configuration Events. New events which occur always overwrite theoldest entries.

• NE startup logContains clear text information to a preceding NE start:Up to ten items of fault information or the note “No faults”.

• Subrack logsHere there are three different Log Record Types which are generated during NEstart and are used only by service personnel of the manufacturer for diagnostic pur-poses.

7.6 Software Download

7.7 Management PC SoftwareSpecial management PC software is available for the operating terminal LCT and NCTrespectively.

7.7.1 LCTThe LCT is a commercial notebook PC (hardware) with an appropriate software pack-age. The entire software package consists of the NE-UniGATE software and networkelement-specific software components as for the SL64 (see Fig. 7.2). For all network el-ements of the second SDH generation there are corresponding SW modules.

This modular software concept makes it possible to integrate the network element-spe-cific software components needed for a specific network configuration into an overallpackage.

For future expansion with additional network elements, further software componentscan be added at any time.

Help The hardware and software requirements as well as the procedure for the soft-ware download for maintenance measures are described in On-Line Help of thesynchronous line equipment.

Page 112: Technical Description Stm64

112 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 7.2 Product Architecture LCT

Features• Each individual network element can be addressed, configured and interrogated lo-

cally.• “Remote” operation makes it possible to access any remote network element in the

transmission network.• Optional display of the performance data of the local or any other network element.• Configuration changes which are easy to make via the LCT at local or remote NEs

facilitate the quick and cost-effective provision of new services.• Standard platform supported by Windows embedded in a Microsoft-based SW en-

vironment.• A common operating software integrates all the network element types of the sec-

ond SDH generation in the management system.• Graphical user interface adapted to other Windows applications and therefore no

computer-specific user training is required.• Five user classes ensure high access security; user identification and password are

used for access control.• Software download and software upgrade can be carried out at any NE in the net-

work.• Fast access of up to 50 NE possible via an address list.• LCT supports the following TransXpress network elements of the second SDH gen-

eration: SLD16 / SLT16, SLD16E / SLT16E, SLR16, SL64, SMA1K, SMA1, SMA4,SMA4C, SMA16, WL.

7.7.1.1 Software for LCTTo allow the notebook to be used as a Local Craft Terminal LCT, the following softwarecomponents have to be installed under MS Windows NT:

a) The LCT Gateway Software (“NE-UniGATE”)This software makes it possible to connect the Local Craft Terminal LCT to the syn-chronous line equipment (network element) in local or remote operation (via theQST/F-(V.24)

SoftwareModules forNetwork Ele-ments

NE-UniGATESoftware

TransXpressLocal CraftTerminal

SMA1K

Windows

File TransferProtocol

(SW download)

Communica-tion protocol

WL

SL64

SLD16E

SLD16

SLR16

SMA16

SMA4C

SMA4

Page 113: Technical Description Stm64

A42022-L5907-B51-2-7618 113

InformationSL64-3.3

Technical Description (TED)

interface or QST/B3 (Ethernet) interface) and starts the application software specificfor the network element (see b) ).

b) LCT application software specific for the specific synchronous line equipmentIt is used to configure and monitor the synchronous line equipment.

Fig. 7.3 gives an overview of the software architecture of the operating terminals LCTand NCT.

Fig. 7.3 Software Architecture of the Operating Terminals LCT and NCT

7.7.2 NCTThe NCT is a standard PC (hardware) with an appropriate software package. The entiresoftware package consists of the NE-UniGATE software and network element-specific

Installation of the software components is explained in the Installation and TestManual, ITMN, of the synchronous line equipment.

GUI(LCT variant)

Application Layer(LCT variant)

Application Layer(NCT variant)

GUI Expansion(NCT variant)

Transport Layer (if provided)

Network Layer

Data Link Layer

Physical Layer

NE-UniGATE

Operating SystemWindows NT

Network element-specific applications

Network Element

e.g.SLD

QST/F

QST/B3

FTP

QST/FFTPGUINE-UniGATE

Operating Terminal InterfaceFile Transfer ProtocolGraphical User InterfaceBase management softwarefor network element

QST/B3SLDLCTNCT

TMN InterfaceSynchronous add/drop line multiplexerLocal Craft TerminalNetwork Craft Terminal

Page 114: Technical Description Stm64

114 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

software components as for SL64 (see Fig. 7.4). For all network elements of the secondSDH generation there are corresponding SW components.

The modular software concept of the NCT makes it possible to integrate the network el-ement-specific software components needed for a specific network configuration into anoverall package.

For future expansion with additional network elements, further software componentscan be added at any time.

Fig. 7.4 Product Architecture of the NCT

Features• Display of all the NEs in the monitoring range and their operating/alarm states as a

graphical network overview.• Separate access to each NE in the monitoring range.• Displaying the performance data of any NE from the monitoring area.• Collecting alarm messages arriving from the NEs (Alarm History).• Fault diagnosis for an NE alarm to be carried out by a central point.• Configuration changes which are easy to make via the NCT at any NE facilitate the

quick and cost-effective provision of new services.• The size of the monitoring range can be adapted flexibly to the requirements of the

network operator.• Standard platform supported by Windows embedded in a Microsoft-based SW en-

vironment.• A common operating software integrates all the network element types of the sec-

ond SDH generation in the management system.• Graphical user interface adapted to other Windows applications and therefore no

computer-specific user training is required.• Five user classes ensure high access security; user identification and password are

used for access control.• Software download and software upgrade can be carried out centrally for any NE in

the network.• Simultaneous monitoring of up to 150 network elements.

SoftwareModules forNetwork Ele-ments

NE-UniGATESoftware

TransXpressNetwork CraftTerminal

SMA1K

Windows

File TransferProtocol

(SW Download)

Communica-tion protocol

WL

SL64

SLD16E

SLD16

SLR16

SMA16

SMA4C

SMA4

Page 115: Technical Description Stm64

A42022-L5907-B51-2-7618 115

InformationSL64-3.3

Technical Description (TED)

• NCT supports the following TransXpress network elements of the second SDH gen-eration: SLD16 / SLT16, SLD16E / SLT16E, SLR16, SL64, SMA1K, SMA1, SMA4,SMA4C, SMA16, WL.

7.7.2.1 Software for NCTThe software requirements for NCT correspond to those of the LCT (see Chapter7.7.1.1 a) ).

Page 116: Technical Description Stm64

116 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

8 Commissioning, Operation and Maintenance

8.1 CommissioningThe synchronous multiplexer SL64 has to be configured on initial commissioning. Forthis purpose, a Local Craft Terminal (LCT) has to be connected to the QST/F interfaceof the SL equipment. The hardware and software requirements at the craft terminal aredescribed in Chapter 5.1.2.1. The craft terminal offers a graphical, menu-driven user in-terface.

8.2 Operation

8.2.1 Operating Devices of the SubrackOn the terminal panel of the subrack there are two switches to configure the impedanceof the system clock pulse (75 Ω unsymmetrical or 120 Ω symmetrical).

In the Subrack Alarm Panel SRAP-PI of the SL64 equipment there is an acknowledgekey RT for manual acknowledgment of the Bw7R alarm messages (see Chapter 4.6).

8.2.2 Operating and Display Elements of the Modules

LED Displays of the Modules

Especially to assist in maintenance work, there is a red fault LED (INT) and (except forLTU module) a green service status LED (ID) on the front of each module which are vis-ible after the subrack cover has been removed (see Fig. 6.4).

The type of display is explained in detail in Chapter 5.1.1.1.

Operating Elements of the Modules

No hardware settings have to be made on the printed circuit boards of the module. Themodules are configured by software commands which are relayed to the relevant mod-ule via the SCU-R2 / SCU-R2E and originate from the operating terminal LCT or NCT(or from a network management system) when commissioning or in the case of laterchanges.

On the front of the TIF module there are two switches to select the 64-kbit/s channels(see Chapter 4.5.5.2).

Detailed information for commissioning the synchronous multiplexer SL64 andthe operating terminals is given in the Installation and Test Manual, ITMN.

Operation of the synchronous multiplexer SL64 is explained in the OperatorGuidelines, OGL.

Setting the switches is described in the Installation and Test Manual, ITMN.

Operation of the Subrack Alarm Panel SRAP is explained in the OperatorGuidelines, OGL.

Help Configuration of the modules using software is explained in the On-Line Help.

Page 117: Technical Description Stm64

A42022-L5907-B51-2-7618 117

InformationSL64-3.3

Technical Description (TED)

8.2.3 Operation with an Operating TerminalFor local or remote control and monitoring of each SL device, a Local Craft TerminalLCT can be connected (see Chapter 5.1.2). It communicates with the system control unitSCU-R2 / SCU-R2E of the synchronous line equipment. It is connected via an internalcommunication system to all the Peripheral Control Units PCU in the SL equipment.

The Local Craft Terminal LCT is permanently allocated to the local network element.

Organizational relationships between the synchronous line equipment in the network(network elements) are only available via the Network Craft Terminal NCT and not viathe Local Craft Terminal LCT (see Chapter 5.1.3).

8.3 Maintenance

The alarm and maintenance concept of the system provides sufficient alarm informationto localize and clear the fault at module level. The equipment has been designed in sucha way that no regular settings are required.

Maintenance measures (e.g. fault localizing) can be carried out locally via the operatingterminal interface QST/F (LCT/NCT) or under remote control via the QST/B3 interface(LCT/NCT or a network management system).

The functioning of the switches is explained in detail in the Installation and TestManual ITMN.

iThe Local Craft Terminal LCT is needed only for commissioning, configuration changesand maintenance of the synchronous line equipment. The LCT is not absolutely neces-sary for ongoing payload data transmission in the synchronous line equipment and canbe removed (provided that it is not to be used for alarm monitoring and quality monitor-ing).

Help

The maintenance of the SL64 is described in the OGL and in the On-Line Help.

Page 118: Technical Description Stm64

118 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9 Technical Data

9.1 Network Applications

9.2 Planning DataThe planning data correspond to the requirements and planning considerations accord-ing to the mentioned ITU-T Recommendations.

9.2.1 STM-64 Port (Line Side)

Maximum number of SL64-NEsin ring structure 60, limitation possible to 16 to-

gether with BSHR protectionswitching algorithms

Maximum number of SL64-NEsin chain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

STM-64 (10 Gbit/s) Unit 1310 nm

intra-office

1550 nm

short haul

1550 nm

long haul via

standard fiber

1550 nm

long haul via

dispersion

shifted fibers

1550 nm

very long haul

Distance variants I-64.1 S-64.2a

S-64.3a

S-64.5

(Siemens)

L-64.2a L-64.3

L-64.5

(Siemens)

V-64.2a

V-64.3

V-64.5

(Siemens)

User class as per draft ITU-T G.691A/B [82b] and G.692 [83c].

Note: All 64.5 variants are not yet subject of ITU G.69,1 except S-64.5a

Nominal Bit rate . . . . . . . . . . . . . . . . . . .

Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kbit/s 9,953,280

Binary Non Return to Zero, STM frame

Optical wavelength range . . . . . . . . . . . . nm 1290 to 1330 1530 to 1565

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . . . . . . . . cw laser with modulator cw laser with modulator

and booster

Spectral width . . . . . . . . . . . . . . . . . . . . . . nm 1 n.a.

.Side mode suppression . . . . . . . . . . . . . dB >30

Extinction ratio . . . . . . . . . . . . . . . . . . . . . dB > 6 > 8.2 > 10 > 8.2 > 10

Transmission level

(Point S acc. to ITU-T G.691A/B [82b],

Point Sn acc. to G.692 [83c]) . . . . . . . . . dBm –6 to –1 –4 to 0 +10 to +13

Receiving side

Receiver type . . . . . . . . . . . . . . . . . . . . . PIN standard APD standard APD standard

+ Opt. Preamp.

APD standard APD standard

+ Opt. Preamp.

Tab. 9.1 STM-64 Port, 1310 nm and 1550 nm

Page 119: Technical Description Stm64

A42022-L5907-B51-2-7618 119

InformationSL64-3.3

Technical Description (TED)

Sensitivity dynamic range

Input level range

for BER ≤ 10–12 (Point MPI-R)

without attenuation. . . . . . . . . . . . . .

with 5 dB attenuation . . . . . . . . . . .

FEC gain. . . . . . . . . . . . . . . . . . . . . . . . .

dBm

dBm

dB

–11 to –1

n.a.

1.5

–19 to –8

–14 to –3

1.5

–28

n.a.

1.5

–19 to –8

–14 to –3

1.5

–28 to –9

n.a.

3.0

Connector . . . . . . . . . . . . . . . . . . . . . E2000-HRL

Regenerator section

Fiber type: Single mode fiber

Max. permissible dispersion

G.652-Fiber . . . . . . . . . . . . . . . . . . . . . . .

G.653-Fiber . . . . . . . . . . . . . . . . . . . . . . .

G.655-Fiber . . . . . . . . . . . . . . . . . . . . . . .

Max. loss by dispersion

G.652-Fiber . . . . . . . . . . . . . . . . . . . . .

G.653-Fiber . . . . . . . . . . . . . . . . . . . . .

G.655-Fiber . . . . . . . . . . . . . . . . . . . . . . .

Passive dispersion compensation

G.652-Fiber . . . . . . . . . . . . . . . . . . . . .

G.653-Fiber . . . . . . . . . . . . . . . . . . . . .

G.655-Fiber . . . . . . . . . . . . . . . . . . . . . . .

Differential group delay. . . . . . .

Section attenuation

(Permissible section attenuation at

maximum dispersion)

G.652-Fiber . . . . . . . . . . . . . . . . . . . . .

without attenuation. . . . . . . . . . . . . .

with 5 dB attenuation . . . . . . . . . . .

G.653-Fiber . . . . . . . . . . . . . . . . . . . . .

without attenuation . . . . . . . . . . . . .

with 5 dB attenuation . . . . . . . . . . .

G.655-Fiber . . . . . . . . . . . . . . . . . . . . . .

without attenuation . . . . . . . . . . . . .

with 5 dB attenuation . . . . . . . . . . .

ps/nm

ps/nm

ps/nm

dB

dB

dB

ps/nm

ps/nm

ps/nm

ps

dB

dB

dB

dB

dB

dB

6.6 @ 1310 nm

n.a.

n.a.

1

n.a.

n.a.

n.a.

n.a.

n.a.

max. 30

0 to 4

n.a.

n.a.

800

130

240

2

1

1

n.a.

n.a.

n.a.

max. 30

8 to 13

3 to 8

8 to 14

3 to 9

8 to 14

3 to 9

1600

n.a.

n.a.

2

n.a.

n.a.

–800

n.a.

n.a.

max. 30

9 to 22

n.a.

n.a.

n.a.

260

480

n.a.

1

2

n.a.

n.a.

n.a.

max. 30

n.a.

21 to 28

16 to 23

21 to 27

16 to 22

2400

390

720

2

1

2

–1600

n.a.

n.a.

max. 30

22 to 36

22 to 37

22 to 36

STM-64 (10 Gbit/s) Unit 1310 nm

intra-office

1550 nm

short haul

1550 nm

long haul via

standard fiber

1550 nm

long haul via

dispersion

shifted fibers

1550 nm

very long haul

Tab. 9.1 STM-64 Port, 1310 nm and 1550 nm (Cont.)

Page 120: Technical Description Stm64

120 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

STM-64 (10 Gbit/s) Unit 1550 nm with high power booster, preamplifier and inband-FEC

(for 160 km span length)

Distance variants JE-G.scs 64.2 JE-G.scs 64.3

User class as per draft ITU-T G.691A/B[82b], G.957 [95] and G.692

[83c]; Note: all 64.5 variants are not yet subject of ITU G.691

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code

kbit/s 9,953,280

Binary Non Return to Zero, STM Frame

FEC BCH (1944,1922,2)

(propriatary binary Bose-Chaudhuri-Hoyquenghem cose)

Transmitting side

Spectral width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Side mode suppression . . . . . . . . . . . . . . . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . . . . . . . . . . . .

Transmission level

(S according to ITU-T G.691A/B [82b]) . . . . . . . . .

nm

dB

dB

dBm

n.a.

>30

>10

+13 to +16

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APD standart version + optical preamp.

Input level range for a BER ≤ 1.10-12 with FEC at

point MPI-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dBm -33 ≤ Pin ≤ -9 -32 ≤ Pin ≤ -9

Overload, max. rating . . . . . . . . . . . . . . . . . . . . . . dBm

Max. input power, without permanent destruction of the opt. receiver:

15

Tab. 9.2 STM-64 Port 1550 nm with Booster, Preamplifier and Inband FEC

Page 121: Technical Description Stm64

A42022-L5907-B51-2-7618 121

InformationSL64-3.3

Technical Description (TED)

STM-64 WDM

(10 Gbit/s WDM)

Unit 1550 nm for

WDM applications

1550 nm for

WLS applications

Distance variants acc. to G.692 [83c]

User class acc. to ITU-T G.957 [95], and G.692 [83c]

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kbit/s 9,953,280

Binary Non Return to Zero, STM Frame

Optical fiber wavelengths

(Center frequencies of laser acc. to ITU-T

G.692 [83c])

160 wavelengths with

OIS64-2

32 wavelengths with OIS64

16 wavelengths

Transmitting side

Spectral width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Side mode suppression . . . . . . . . . . . . . . . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . . . . . . . . . . . .

Transmission level

(S according to ITU-T G.992 [83c]) . . . . . . . . . . .

nm

dB

dB

dBm

n.a.

>30

>10

–3.5 to +2

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maximum bit error rate for a given opt.

signal/noise ratio OSNR in the range

–14 dBm ≤ Pin ≤ ) –2dBm . . . . . . . . . . . . . . . . . . . OSNR/dB*nm

PIN version

13.0 (BER ≤ 10–12)

Regenerator section

Fiber type: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Max. permissible dispersion . . . . . . . . . . . . . . . . .

Loss by dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . .

Passive dispersion compensation. . . . . . . . . . . . .

Differential group delay. . . . . . . . . . . . . . . . . . . . .

Permissible section attenuation . . . . . . . . . . . . . . .

Optical return loss of cable plant

Maximum reflectance of termination

(opt. MUX and Amplifier). . . . . . . . . . . . . . . .

ps/nm

dB

ps

dB

Part of WDM system

800

<2

To be implemented in WDM system

max. 30

To be defined by WDM system

–20

Tab. 9.3 STM-64 Port 1550 nm for Multi-wavelength Applications

Page 122: Technical Description Stm64

122 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.2.2 STM-16 Port (Tributary Side)

STM-16 Unit 1300 nm

with low-power laser

1300 nm

User class

acc. to ITU-T G.957, Gscs, draft

G.mcs (G.692 ) . . . . . . . . . . . . . . . . . .

. . .

S-16.1 L-16.1

Bit rate . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

Code . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optical wavelength range . . . . . . . . . . .

kbit/s

nm

2 488 320

Binary Non Return to Zero, STM Frame

1285 to 1330

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . . . . . . .

Spectral width (–20 dB) . . . . . . . .

Side mode suppression . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . .

Transmitting level

(Point S acc. to ITU-T G.957/G.scs) . .

nm

dB

dB

dBm

1300-nm laser

in Code:

S-16.1

<1

>30

> 8.2

–5 to 0

DFB 1300-nm standard

SLM-Laser

in Code:

L-16.1

<1

>30

> 8,2

–1 to +2

Connectors . . . . . . . . . . . . . . . . . . . . . . . Optional: E2000 or FCPC or SC

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . .

Receiving level for BER ≤ 10-10

(Point R acc. to ITU-T G.957) . . . . . . . . dBm

Short haul receiver

(PIN or APD standard)

–18 to 0

APD standard

–27 to –6

Regenerator section

Fiber type: Single-mode fiber

Permissible dispersion . . . . . . . . .

Loss by dispersion . . . . . . . . . . . .

Permissible section attenuation

(Dispersion at max. section attenua-

tion taken into account) . . . . . . . . . . . . .

ps/nm

dB

dB

300

<1

0 to 12

300

<1

8 to 25

Tab. 9.4 STM-16 Port 1300 nm

Page 123: Technical Description Stm64

A42022-L5907-B51-2-7618 123

InformationSL64-3.3

Technical Description (TED)

STM-16 Unit 1550 nm 1550 nm

with high-

power laser

1550 nm

with High-

power

booster

1550 nm

with high-

power

booster

and pream-

plifier

User class

acc. to ITU-T G.957, Gscs,

draft G.mcs (G.692 ) . . . . . . . . .

. . . . . .

L-16.2

L-16.3

JE-16.2

JE16.3

JE-G.scs16.2

JE-G.scs16.3

Bit rate . . . . . . . . . . . . . . . . . . . . .

Code . . . . . . . . . . . . . . . . . . . . . . .

kbit/s 2 488 320

Binary Non Return to Zero, STM Frame

Optical fiber wavelength . . . . . . . nm 1510 to 1560 1530 to 1560

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . DFB 1550 nm

standard

DFB 1550 nm

standard

DFB with integrated

external modulator

in combination with

Spectral width (–20 dB) . . . . . . . .

Side mode suppression . . . . . . . .

Extinction ratio value . . . . . . . . . .

nm

dB

dB

SLM laser

in Code:

L-16.2

L16.3

<0.6

>30

>8.2

SLM laser

in Code:

JE-16.2

JE16.3

<0.6

>30

>8.2

High-power

booster

in Code:

U-16.2

U-16.3

<0.1

>30

>10

High-power

booster

in Code:

U-16.2

U-16.3

<0.1

>30

>10

Transmission level

(S according to ITU-T G.957) . . . dBm –1 to +2 +2.5 to +5 +13 to +16 +13 to +16

Connectors . . . . . . . . . . . . . . . . . . optional: E2000/FCPC/SC E2000-HRL

Receiving side

Receiver type . . . . . . . . . . . . . . . . APD

Standard

APD

High-

Sensitivity

APD

Standard

APD

Standard

with Optical

Preamplifier

Receiving level for BER ≤ 10 –10

(R according to ITU-T G.957) . . . dBm –28 to –6 –30.5 to –9 –28 to –6 –40 to –15

Regenerator section

Fiber type: Single-mode fiber

Permissible dispersion . . . . . . . .

Loss by dispersion . . . . . . . . . . . .

Permissible section attenuation

(Dispersion at max. section at-

tenuation taken into account) .

ps/nm

dB

dB

1800 (L-16.2)

600 (L-16.3)

<2 (L-16.2)

<1 (L-16.3)

8 to 25 (L-16.2)

8 to 26 (L-16.3)

2400

<2

14 to 31

4500

<2

22 to 39

4500

<2

31 to 51

Tab. 9.5 STM-16 Port 1550 nm

Page 124: Technical Description Stm64

124 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

STM-16 Unit for WDM applica-

tions 100 km

for WDM applica-

tions 240 km

for WDM applica-

tions 600 km

User class

acc. to ITU-T G.957, Gscs, draft G.mcs (G.692 )

.

G.692

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kbit/s 2 488 320

Binary Non Return to Zero, STM Frame

Optical fiber wavelength

(Center frequencies of laser acc. to ITU-T draft

Rec. G.mcs 7/96 based on a channel spacing of

100 GHz anchored at 193.1 THz) . . . . . . . . . . . .

. .

nm 1560.61 (192.1 THz)

1559.79 (192.2 THz)

1558.98 (192.3 THz)

1558.17 (192.4 THz)

1557.36 (192.5 THz)

1556.55 (192.6 THz)

1555.75 (192.7 THz)

1554.94 (192.8 THz)

1554.13 (192.9 THz)

1553.33 (193.0 THz)

1552.52 (193.1 THz)

1551.72 (193.2 THz)

1550.92 (193.3 THz)

1550.12 (193.4 THz)

1549.32 (193.5 THz)

1548.51 (193.6 THz)

1547.72 (193,7 THz)

1542.94 (194,3 THz)

1542.14 (194,4 THz)

1541.35 (194,5 THz)

1540.56 (194,6 THz)

1539.77 (194,7 THz)

1538.98 (194,8 THz)

1538.19 (194,9 THz)

1537.40 (195,0 THz)

1536.609 (195,1 THz)

1535.82 (195,2 THz)

1535.04 (195,3 THz)

1534.25 (195,4 THz)

1533.47 (195,5 THz)

1532.68 (195,6 THz)

1531.90 (195,7 THz)

1531.12 (195,8 THz)

1530.33 (195,9 THz)

Color code:

brown

blue

red

blue

orange

blue

yellow

blue

green

blue

blue

blue

violet

blue

white

blue

Tab. 9.6 STM-16 Port 1550 nm for Multi-wavelength Applications

Page 125: Technical Description Stm64

A42022-L5907-B51-2-7618 125

InformationSL64-3.3

Technical Description (TED)

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spectral width (–20 dB) . . . . . . . . . . . . . . . . . . . . .

Side mode suppression . . . . . . . . . . . . . . . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . . . . . . . . . . . .

Transmission level

(S according to ITU-T G.957, G.scs) . . . . . . . . . . .

nm

dB

dB

dBm

DFB 1550 nm high-

power SLM laser

0.6

>30

>8.2

+1 to +4

DFB 1550 nm SLM la-

ser with integrated

modulator

0.1

>30

>10

–3.5 to –1.5

DFB 1550 nm SLM la-

ser with integrated

modulator

n.a.

>34

>11

–3.5 to –1.5

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maximum bit fault frequency for a given opt.

signal/noise ratio OSNR in the range

–20 dBm ≤ Pin ≤ 6 dBm . . . . . . . . . . . . . . . . . . .

Receiving level for BER ≤ 10-10

(R according to ITU-T G.957) . . . . . . . . . . . . . . . .

OSNR/dB*nm

dBm

APD High Sensitivity

–30.5 to –9

APD Standard

0.8 (BER 10–4)

4.3 (BER 10–10)

5.8 (BER 10–12)

6.8 (BER 10–13)

n.a.

Regenerator section

Fiber type: Single-mode fiber

Permissible dispersion . . . . . . . . . . . . . . . . . . . . . . .

Loss by dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . .

Permissible section attenuation . . . . . . . . . . . . . . .

ps/nm

dB

1800

2

13 to 29.5

4800

2

n.a.

12800

2

n.a.

STM-16 Unit for WDM applica-

tions 100 km

for WDM applica-

tions 240 km

for WDM applica-

tions 600 km

Tab. 9.6 STM-16 Port 1550 nm for Multi-wavelength Applications (Cont.)

Page 126: Technical Description Stm64

126 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.2.3 STM-4 Port (Tributary Side)

Unit Planning data

Optical fiber wavelength . . . . . . . . . . .

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . .

nm

kbit/s

1280 to 1335

622 080

Application class . . . . . . . . . . . . . . . . . . . L-4.1

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . . . . . . .

Spectral width (root mean square) . . .

Side mode suppression . . . . . . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . .

Transmission level

(S according to ITU-T G.957) . . . . . . . .

nm

dB

dB

dBm

DFB standard SLM

in Code:

L-4.1

<1.0

>30

>10

–3 to 0

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . .

Receiving level for BER ≤ 10-10

(R according to ITU-T G.957) . . . . . . . . dBm

PIN

–28 to 0

Regenerator section

Fiber type: Single-mode fiber

Permissible dispersion . . . . . . . . . . . . .

Loss by dispersion . . . . . . . . . . . . . . . . .

Permissible section attenuation

(Dispersion at max. section attenua-

tion taken into account) . . . . . . . . . . . . .

ps/nm

dB

dB

130

<1

0 to 24

Tab. 9.7 STM-4 Port 1300 nm

Page 127: Technical Description Stm64

A42022-L5907-B51-2-7618 127

InformationSL64-3.3

Technical Description (TED)

STM-4

Unit 1550 nm 1550 nm with

high-power laser

and high sensitivity

receiver

1550 nm with

high-power

booster

1550 nm with

high-power

booster and

preamplifier

Optical fiber wavelength . . . . . . . . . . . . . . .

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nm

kbit/s

1480 to 1580

622 080

1530 to 1560

622 080

Application class

according to ITU-T G.957 G.scs . . . . . . . . . L-4.2

L-4.3

JE-4.2

JE-4.3

JE-G.scs4.2

JE-G.scs4.3

JE-G.scs4.2

JE-G.scs4.3

Transmitting side

Laser type . . . . . . . . . . . . . . . . . . . . . . . . . . . . DFB

standard

SLM

laser

in Code:

L-4.2

L-4.3

DFB

standard SLM

laser

in Code:

JE-4.2

JE-4.3

DFB High Power

SLM in combination

with optical amplifier

in Code:

U-4.2

U-4.3

DFB High Power

SLM in combination

with optical amplifier

in Code:

U-4.2

U-4.3

Spectral width (–20 dB) . . . . . . . . . . . . . . . .

Side mode suppression . . . . . . . . . . . . . . .

Extinction ratio value . . . . . . . . . . . . . . . . . .

Transmission level

(S according to ITU-T G.957) . . . . . . . . . . .

nm

dB

dB

dBm

<1

>30

>10

–3 to 0

<0.5

>32.5

>10

2 to 5

<0.5

>32.5

>10

13 to 16

<0.5

>32.5

>10

13 to 16

Receiving side

Receiving diode . . . . . . . . . . . . . . . . . . . . . . PIN APD Standard

Receiving level for BER ≤ 10-10

(R according to ITU-T G.957) . . . . . . . . . . . dBm –28 to 0 –36 to –8 –36 to –8 –45 to –15

Connectors . . . . . . . . . . . . . . . . . . . . . . . . Either DIN LSA or E2000 or FCPC or

SC, controlled by order option

E2000 HRL

Regenerator section

Fiber type: Single-mode fiber

Permissible dispersion . . . . . . . . . . . . . . . . .

Loss by dispersion . . . . . . . . . . . . . . . . . . .

Permissible section attenuation

(Dispersion at max. section attenuation

taken into account) . . . . . . . . . . . . . . . . . . .

ps/nm

dB

dB

2500

<1

0 to 24

3500

<1

13 to 37

3500

<2

24 to 47

3500

<2

31 to 56

Tab. 9.8 STM-4-Port 1550 nm

Page 128: Technical Description Stm64

128 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.2.4 STM-1 Port (Tributary Side)

9.2.5 Ethernet Interfaces (Tributary Side)

9.2.5.1 Fast Ethernet Interface ETH100, electrical

Unit Planning data

Optical fiber wavelength . . . . . . . . . . . .

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . .

nm

kbit/s

1270 to 1360

155 520

1280 to 1335

155 520

1480 to 1580

155 520

Application class . . . . . . . . . . . . . . . . S-1.1 L-1.1 L-1.2

L-1.3

Transmitting side

Laser diode . . . . . . . . . . . . . . . . . . . . . . .

Spectral width

(root mean square) . . . . . . . . . . . .

(measured 20 dB

below max. level) . . . . . . . . . . . . .

Side mode suppression . . . . . . . . . . . .

Extinction factor. . . . . . . . . . . . . . . . . . .

Transmit level

(S according to ITU-T G.957). . . . . . . .

nm

nm

dB

dB

dBm

Fabry Perot

in Code:

S-1.1

<4,0

n.a.

>8.2

–12 to -8

Fabry Perot

in Code:

L-1.1

<4,0

n.a.

>10

–3 to 0

DFB

in Code:

L-1.2, L1.3

<1,0

>30

>10

–3 to 0

Receiving side

Receive diode . . . . . . . . . . . . . . . . . . . .

Receive level for BFH ≤ 10–10

(R according to ITU-T G.957). . . . . . dBm

PIN

–34 to 0

Regenerator section

Fiber type: Single-mode fiber

Permitted dispersion . . . . . . . . . . . . . . .

Loss by dispersion . . . . . . . . . . . . . . . .

Permissible section attenuation

(Dispersion at max. section attenua-

tion taken into account) . . . . . . . . . . . . .

ps/nm

dB

dB

150

<1

0 to 21

250

<1

0 to 30

2500

<1

0 to 30

Tab. 9.9 STM-1 Port 1300 nm / 1550 nm

100BaseTX Fast Ethernet port acc. to IEEE 802.3u

Distance variants 100BASE-TX

User class as per IEEE 802.3u

(ANSI X3T9.5 TP_PMD/312, Rev. 2.1, ANSI X3.263-1995-[TP-PMD])

Nominal bitrate 125.000 kbaud

Frequency tolerance ± 100 ppm

Code 4B/5B, scrambled, MLT3

Transmitter behaviour

Connector receptacle Shielded RJ45

Tab. 9.10 Fast Ethernet Traffic Interface (100BASE-TX)

Page 129: Technical Description Stm64

A42022-L5907-B51-2-7618 129

InformationSL64-3.3

Technical Description (TED)

Output impedance 100 Ω differential

Return loss 2 MHz ≤ f ≤ 30 MHz: >16 dB

30 MHz ≤ f ≤ 60 MHz: [16 - 20 * log(f / 30 MHz)] dB

60 MHz ≤ f ≤ 80 MHz: >10 dB

Level (950...1050) mVp

Signal symmetry (98...102) %

Rise/fall time 3 ns ≤ tr,f ≤ 5 ns

(10/90 % of Upeak)

Duty cycle DCD < 0.5 ns-pp

referred to Uout / 2 and T= 16 ns

0-1-0-bit-sequence

Output jitter < 1.4 ns

use scrambled IDLEs

Overshoot ≤ 0.05 * Uout

Receiver behaviour

Output impedance 100 Ω differential

Return loss 2 MHz ≤ f ≤ 30 MHz: >16 dB

30 MHz ≤ f ≤ 60 MHz: [16 - 20 * log(f / 30 MHz)] dB

60 MHz ≤ f ≤ 80 MHz: >10 dB

Signal detect Assert-Time < 1000 s

Deassert-Time < 350 s

BER < 1E-2

Sensivity n.a.

Jitter characteristics n.a.

Cable behaviour

Connector plug Shielded RJ45

Cable type UTP (S/UTP, FTP) 100 Ω ± 15%,

category 5

ISO/IEC 11801

EMV US: FCC-Class-B

Europe: EN 55022B

Operating distance < 100 m

Insertion loss ≤ 19 dB (12,5 MHz, 100 m)

Tpd ≤ 570 ns

100BaseTX Fast Ethernet port acc. to IEEE 802.3u

Tab. 9.10 Fast Ethernet Traffic Interface (100BASE-TX) (Cont.)

Page 130: Technical Description Stm64

130 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.2.5.2 Gigabit Ethernet Interface ETH1000, optical

1.25 Gbaud 850 nm short haul 1300 nm long haul

Distance variants 1000BASE-SX 1000BASE-LX

User class as per IEEE 802.3z

Nominal bitrate 1.250.000 kbaud

Frequency tolerance ± 100 ppm

Code Binary non return to zero, 8B/10B

Transmitter behaviour

Laser types VCSEL MQW FPL

Optical wavelength

range

770 nm - 860 nm 1270 nm - 1355 nm

Spectral width 0.85 nm 4 nm

Minimum side mode

suppression

n.a. n.a.

Minimum extinction

ratio

9 dB 9 dB

Launched power - 9.5 dBm to 0 dBm - 11.5 dBm to - 3 dBm

At point TP2 as per IEEE 802.3z

Maximum launched

power in fault condi-

tion

The maximum transmit level at point

MDI is accordind laser class 1.

LaserPowerOff: P ≤ 30 dBm

Monitoring of laser

bias current

n.a.

Monitoring of laser

modulation current

n.a.

Monitoring of laser

output power

n.a.

Jitter characteristics Compl. Point

TP1

TP2

TP3

TP4

Total Jitter (ps)

192

345

408

599

Eye pattern mask The eye diagram for the optical transmit signal meets the requirement mask of fig-

ure 38-2 of (IEEE 802.3z) with parameters:

X1=0.22, X2=0.375, X3=0.625, X4=0.78, Y1=0.2, Y2=0.8

Receiver behaviour

Receiver type GaAs PIN GaAs PIN

Sensivity /

Dynamic range

Input level range for a bit error rate BER ≤ 1 x 10-12 at point TP3 is:

- 17 dBm ≤ Pin ≤ - 0 dBm - 19 dBm ≤ Pin ≤ - 3 dBm

Stressed sensivity - 12.5 dBm / - 13.5 dBm

(62.5 m MMF / 50 m MMF)

- 14.4 dBm

Overload maximum

rating

Maximum input power without permanent destruction of the optical receiver:

t.b.d. t.b.d.

Tab. 9.11 Gigabit Ethernet Traffic Interface (1000BASE-SX/-LX)

Page 131: Technical Description Stm64

A42022-L5907-B51-2-7618 131

InformationSL64-3.3

Technical Description (TED)

9.3 Environmental ConditionsThe requirements– for electromagnetic compatibility (EMC) as per ETSI EMC Requirement

(class B),– for electrostatic discharge (ESD) as per ETSI ESD Requirement and– for climate as per ETSI Class 3.1e Conditions

are met.

The requirements for temperature conditions are met by forced convection.

9.4 External Interfaces

9.4.1 Interfaces for the Transmission of the Payload Signal

9.4.1.1 Optical Line Interfaces STM-64For planning data, see Chapter 9.2.1

Fig. 9.1 shows the optical link configuration of the STM-64 interface types.

Maximum reflec-

tance of receiver

Maximum reflectance of receiver, measured at MDI is - 12 dB.

Eye penalty 2.6 dB / 2.2 dB

(62.5 m MMF / 50 m MMF)

2.6 dB

RX 3 dB cutoff-max 1500 MHz 1500 MHz

Jitter characteristics Jitter tolerance

n.a., referred to “stressed sensitivity”

Input signal detect Input_optical_power < 30 dBm : Fail

Input_optical_power ≤ RX-Sens. AND

compl. 1000BASE signal input: OK

ALS criterion n.a. n.a.

Fiber behaviour

Fiber type 62.5 m MMF /

50 m MMF

62.5 m / 50 m MMF

10 m SMF

Operating distance 200 m /

500 m

550 m / 550 m

5000 m

1.25 Gbaud 850 nm short haul 1300 nm long haul

Tab. 9.11 Gigabit Ethernet Traffic Interface (1000BASE-SX/-LX) (Cont.)

Page 132: Technical Description Stm64

132 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Fig. 9.1 Link Configuration of the STM User Classes

9.4.1.2 Optical Tributary Interfaces STM-NFor planning data, see Chapter 9.2.2 and the following.

9.4.1.3 Electrical Tributary InterfacesAll the ports can be changed over independently (jointly for both transmission directions)for 140-Mbit/s or 155-Mbit/s signals.

Short Haul Application 1550 nm ITU G.691

Long Haul Application 1550 nm ITU G.691

Very Long Haul Application 1550 nm ITU G.691

Page 133: Technical Description Stm64

A42022-L5907-B51-2-7618 133

InformationSL64-3.3

Technical Description (TED)

Electrical Tributary Interfaces 140 Mbit/s

Electrical Tributary Interfaces 155 Mbit/s

9.4.2 Interfaces for Network Clock Pulse Synchronization

9.4.2.1 2048-kHz Interfaces

Input Interface T3

Output Interface T4

Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ITU-T G.703Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139.264 kbit/sCode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMINominal voltage of pulse amplitude USS . . . . . . . . . 1 VMaximum permissible drop in level (tributary on) bycable attenuation at 70 MHz. . . . . . . . . . . . . . . . . . . 12 dBNominal resistance. . . . . . . . . . . . . . . . . . . . . . . . . . 75 ΩJitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ITU-T G.823

Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ITU-T G.703Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155.520 kbit/sCode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMINominal voltage of pulse amplitude USS . . . . . . . . . 1 VMaximum permissible drop in level (tributary on) bycable attenuation at 70 MHz. . . . . . . . . . . . . . . . . . . 12.7 dBNominal resistance. . . . . . . . . . . . . . . . . . . . . . . . . . 75 ΩJitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ITU-T G.825

Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ITU-T G.703

Input ports T3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 (T3/1 and T3/2)Input level for CEPT hierarchy . . . . . . . . . . . . . . . . . 2048 kHzSymmetrical mode:Input resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input voltage U0S . . . . . . . . . . . . . . . . . . . . . . . . .120 Ω0.5 V to 1.9 V

Unsymmetrical mode:Input resistance . . . . . . . . . . . . . . . . . . . . . . . . . .Input voltage U0S . . . . . . . . . . . . . . . . . . . . . . . . .

75 Ω0.375 V to 1.5 V

Output ports T4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 (T4/1 and T4/2)Output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048 kHzOutput voltage U0S

With symmetrical load (120 Ω) . . . . . . . . . . . . . . .With unsymmetrical load (75 Ω) . . . . . . . . . . . . . .

1.0 V to 1.9 V0.75 V to 1.5 V

Page 134: Technical Description Stm64

134 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.4.2.2 2048 kbit/s Interfaces (Using CLA / CLL64-2 Module)

Synchronization Input (T3)

Synchronization Output (T4)

9.4.3 Interfaces According to ITU-T Recommendation G.703

9.4.4 Interface Similar to ITU-T Recommendation V.11

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . acc, to ITU-T G703 /41 §6 ex-cept frequency tolerance

Frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CRC-4 multi-frame structureacc, to ITU-T G704 /59 §2.3

Bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048 kbit/sFrequency tolerance . . . . . . . . . . . . . . . . . . . . . . . . . ± 4.6 ppmInput impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Ω balanced

Bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048 kbit/sFrequency tolerance . . . . . . . . . . . . . . . . . . . . . . . . . ± 4.6 ppm

Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 (per OHA module)Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 kbit/sData and clock pulse

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Codirectional (clock and datain)Codirectional (clock and dataout)

Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 (per OHA module)Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 kbit/sData and clock pulse

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contradirectional (data in andclock out)Codirectional (clock and dataout)

Internal impedance of the receiver . . . . . . . . . . . . . . 150 Ω ±10%Connecting line (symmetrical, shielded) . . . . . . . . . . 150 Ω

Page 135: Technical Description Stm64

A42022-L5907-B51-2-7618 135

InformationSL64-3.3

Technical Description (TED)

9.4.5 Interface for Customer-Specific Channels

9.4.6 EOW Interfaces

2-Wire Interface for the Telephone Handset

Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 groups with 8 inputs (sensor)and 8 outputs(actor) each

Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Individually for each group viahardware switch on theTIF module

Input (Sensor)monitors the input voltage to ground

No signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Signal present . . . . . . . . . . . . . . . . . . . . . . . . . . .

Open (U < –10 V)For ground (U > –3 V)

Output (Actor)FET switch to ground

No signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Signal present . . . . . . . . . . . . . . . . . . . . . . . . . . .

Open (> 100 kΩ)For ground (< 50 Ω)

The polarity is reversible for all the inputs and outputs via software settings.

Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Transmission bandwidth. . . . . . . . . . . . . . . . . . . . . . 300 Hz to 3400 HzRelative levels:

Outgoing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Incoming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–12 dBr0 dBr

Impedance (ZL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Ω + (820 Ω parallel 115 nF)Return loss referred to ZL:

500 Hz to 2000 Hz . . . . . . . . . . . . . . . . . . . . . . . .300 Hz to 3400 Hz . . . . . . . . . . . . . . . . . . . . . . . .

> 18 dB> 14 dB

Balance attenuation to ground:300 Hz to 3400 Hz . . . . . . . . . . . . . . . . . . . . . . . . > 40 dB

Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . > 35 VConstant current supply . . . . . . . . . . . . . . . . . . . . . . 35 mAMax. loop resistance . . . . . . . . . . . . . . . . . . . . . . . . < 1000 ΩSeizure type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Telephone handset

(off-hook)Dialing signal:

Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Receiving range . . . . . . . . . . . . . . . . . . . . . . . . . .Transmission range . . . . . . . . . . . . . . . . . . . . . . .

DTMF–20 dBm0 to –4 dBm0–12.5 dBm0 to –7.5 dBm0

Ringing signal transmission:Ringing signal voltage . . . . . . . . . . . . . . . . . . . . .Ringing signal frequency . . . . . . . . . . . . . . . . . . .

> 42 V25 Hz

Audio signal:Transmission level . . . . . . . . . . . . . . . . . . . . . . . .Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–10 dBm0425 Hz

Page 136: Technical Description Stm64

136 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

4-Wire Interface

PABX Interface

External Ringer

Usable ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Transmission bandwidth . . . . . . . . . . . . . . . . . . . . . . 300 Hz to 3400 HzRelative levels:

Outgoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Incoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–4 dBr–4 dBr

Impedance (ZL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 ΩReturn loss referred to ZL:

500 Hz to 2000 Hz. . . . . . . . . . . . . . . . . . . . . . . . .300 Hz to 3400 Hz. . . . . . . . . . . . . . . . . . . . . . . . .

> 20 dB> 16 dB

Balance attenuation to ground:300 Hz to 3400 Hz. . . . . . . . . . . . . . . . . . . . . . . . . > 40 dB

Conference call signalingRinging voltage incoming/outgoing . . . . . . . . . . . .Open-circuit operation . . . . . . . . . . . . . . . . . . . . . .

0 to –3 V–10 V to –75 V

Usable ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Transmission bandwidth . . . . . . . . . . . . . . . . . . . . . . 300 Hz to 3400 HzRelative levels

Outgoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Incoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–4 dBr–8 dBr

Impedance (ZL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Ω + (820 Ω parallel 115 nF)Return loss referred to ZL:

500 Hz to 2000 Hz. . . . . . . . . . . . . . . . . . . . . . . . .300 Hz to 3400 Hz. . . . . . . . . . . . . . . . . . . . . . . . .

> 18 dB> 14 dB

Balance attenuation to ground:300 Hz to 3400 Hz. . . . . . . . . . . . . . . . . . . . . . . . . > 40 dB

SeizureBusy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DC resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .Max. feeding current . . . . . . . . . . . . . . . . . . . . . . .

off hookabout 500 Ω60 mA

Dialing signal:Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Range (receive). . . . . . . . . . . . . . . . . . . . . . . . . . .Range (transmit) . . . . . . . . . . . . . . . . . . . . . . . . . .

DTMF or pulse dialing–20 dBm0 to –4 dBm0–12,5 dBm0 to –7,5 dBm0

c-wire busy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . earth at c-wireRinging detection:

Ringing voltage . . . . . . . . . . . . . . . . . . . . . . . . . . .Ringing frequency . . . . . . . . . . . . . . . . . . . . . . . . .

25 V to 80 V16 Hz to 25 Hz

Distance (SLD device to PBX):Diameter 0,4 mm . . . . . . . . . . . . . . . . . . . . . . . . .Diameter 0,6 mm. . . . . . . . . . . . . . . . . . . . . . . . . .

about 2 kmabout 3 km

Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Triggered by ground potentialSwitching voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . Max. –75 VSwitching current. . . . . . . . . . . . . . . . . . . . . . . . . . . . Max. 40 mA

Page 137: Technical Description Stm64

A42022-L5907-B51-2-7618 137

InformationSL64-3.3

Technical Description (TED)

External Conference Signaling

9.4.7 Style-7R Signaling Interface

Quiescent voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . Max. –2.5 VQuiescent current . . . . . . . . . . . . . . . . . . . . . . . . . . . Max. 0.5 mAOverload functions of the interface Current limitation, short-circuit

strength, limitation of relay dis-connection voltage

LEDs per OHA module. . . . . . . . . . . . . . . . . . . . . . . 2 green LEDs (1 per EOW con-ference)

LEDs at the SRA-PI . . . . . . . . . . . . . . . . . . . . . . . . . 2 green LEDs (1 per EOW con-ference)

SignalingFlashing (2 Hz). . . . . . . . . . . . . . . . . . . . . . . . . . .

Continuously ON . . . . . . . . . . . . . . . . . . . . . . . . .

Call to local handset from con-ferenceLocal handset connected to theconference

Alarm outputsZA(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Break contactZA(B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Make contact

Interferences and faults (closed ”contact”)Minimum current . . . . . . . . . . . . . . . . . . . . . . . . . 1 mAConstant current. . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 60 mAResidual voltage(at ”contact” at max. constant current) . . . . . . . . . ≤ 2 V to ground

Interference-free operation (open ”contact”)Adjacent direct voltage. . . . . . . . . . . . . . . . . . . . . ≤ 30 V at UNominal = 24 V,

positive pole at groundResidual current . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 20 µA

Permissible alternating noise voltage U0S ≤ 2 VPermissible load types . . . . . . . . . . . . . . . . . . . . . . . Ohmic resistances

relay coil with free-wheeling di-odelight emitting diodes

Relay contacts for light signal equipment. . . . . . . . . a, b, elLoad carrying capacity of the relay contacts . . . . ≤ 60 V, ≤ 100 mA

Load types: Ohmic resistancesor relays

Signaling voltage (+S/–S)(from the telecommunications center) . . . . . . . . . . . 10.5 V to 75 V, insulated and

not grounded

Page 138: Technical Description Stm64

138 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.4.8 Interface Q ST/F for Operating Terminal

9.4.9 Interface Q ST/B3 for Network Management System

9.5 Clock Pulse Accuracy

Protocol stackLayer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Layer 4, 5, 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ITU-T V.24/V.28ICE TC57ES/ES functionality ofVMP01EmptyAWP01 + expansionsFTZ 5805-3170 SISA specifica-tion

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 kbit/sPlug connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D subminiature, 9-pin

Protocol stackLayer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Layer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 5, 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Layer 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ISO 8802-3LLC Type 1 ISO 8802-2CSMA/CD ISO 8802-3ES-IS ISO 9542,IS-IS ISO 10589,IP CLNS ISO 8473,ITU-T X.213ISO 8072, 8073, ITU-T X.224EmptyAWP01 + expansionsFTZ 5805-3170 SISA specifica-tion

Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mbit/s

Selection of clock pulse sourceExternal interface . . . . . . . . . . . . . . . . . . . . . . . . .SDH interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T3/1 or T3/2Line clock pulse or tributaryclock pulse (tributary 1 to 16,only 1 simultaneously for T0and T4)

Quality levelExternal interface . . . . . . . . . . . . . . . . . . . . . . . . .SDH interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q1 to Q6Q1 to Q6

Precision in the free-wheeling mode . . . . . . . . . . . . . ± 4.6 ppmRun time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 250 msWait-to-restore time. . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 900 s (default value 10 s)Recognition time for

LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MS AIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSM “do not use” . . . . . . . . . . . . . . . . . . . . . . . . .

3 ms≤ 1 ms≤ 1 ms

Time for changing over to the holdover mode T0 . . . 0.5 msTime for T4 muting . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 ms

Page 139: Technical Description Stm64

A42022-L5907-B51-2-7618 139

InformationSL64-3.3

Technical Description (TED)

9.6 Switching and Delay Times

9.6.1 Switching Time for MSP Line Protection Switching

9.6.2 Switching Time for SNC Path Protection Switching

9.6.3 Automatic Laser Shutdown (ALS)

Quality

level

Frequency stability

(required by ITU-T)

Meaning

Q1 1x10-11 PRC (Primary Reference Clock according to ITU-T Recom-

mendation G.811)

Q2 1x10-9 per day SRC transit

(Secondary Reference Clock according to ITU-T Recom-

mendation G.812)

Q3 2x10-8 per day SRC local

(Secondary Reference Clock according to ITU-T Recom-

mendation G.812)

Q4 4.6x10-6 SETS (Synchronous Equipping Timing Source according to

ITU-T Recommendation G.81s) holdover or free-wheeling

mode

Q5 – Unknown quality

Q6 – Unsuitable for synchronization

Tab. 9.12 Quality Levels for the Reference Clock Pulse

Changeover time after the identification of signal fail-ure or for attenuated signal . . . . . . . . . . . . . . . . . . . < 50 msWait-to-restore time for revertive mode . . . . . . . . . . Can be configured 1 min. to

12 min.

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-revertiveChangeover time after the identification of signal fail-ure or for attenuated signal . . . . . . . . . . . . . . . . . . . < 30 msDelay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 s to 20 s

Persistence time from LOS to ALS start. . . . . . . . . . 500 ms to 600 msDelay time for disconnecting the transmitter . . . . . . < 0.1 sResponse time for reconnection of thereceiver/transmitter combination . . . . . . . . . . . . . . . < 0.85 sAutomatic reconnection (interval). . . . . . . . . . . . . . . 70 s ± 10 sSwitch-ON period for automatic reconnection of the la-ser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 s ± 0.25 sSwitch-ON period for manual reconnection of thelaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 s ± 0.25 sSwitch-ON period for manual reconnectionof the laser for test purposes . . . . . . . . . . . . . . . . . . 90 s ± 10 s

Page 140: Technical Description Stm64

140 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

9.6.4 Alarm Management

9.6.5 Configuration Management

9.7 Power Supply

9.8 Dimensions in mm (WxHxD)

Reaction period for transmission error . . . . . . . . . . . Can be configured 100 ms to30 s

Preparation time for switching unit connection setup ≤ 3 s

Input ports (redundant) . . . . . . . . . . . . . . . . . . . . . . . 2Input voltagerange . . . . . . . . . . . . . . . . . . . . . . . . . .Input voltage, nominal . . . . . . . . . . . . . . . . . . . . . . .

–40.5 V to –75 V48 V or 60 V

Typical power consumption values of the modules:

OIS64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86.0 WOIS16, OIS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.5 WOIS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 WOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 WOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 WEIPS1 incl. LTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 WETH100, ETH1000 . . . . . . . . . . . . . . . . . . . . . . . . . . 17.0 WSNL64-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80.0 WOHA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07.0 WSCU-R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0 WSCU-R2E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.0 WCLL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07.0 WEBSL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 WPSUTP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00.5 WTIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01.0 WFan shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.0 W

Rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 x 2200 x 300

Subrack, SL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 x 875 x 280

Modules:CLL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 265 x 235CLL64-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 265 x 235EIPS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 265 x 235EBSL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 54 x 142ETH100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 265 x 235ETH1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 265 x 235LTU-ETH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 64 x 142

Page 141: Technical Description Stm64

A42022-L5907-B51-2-7618 141

InformationSL64-3.3

Technical Description (TED)

9.9 Weights in kg

LTU64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 64 x 142OB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 x 265 x 235OHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5 x 265 x 235OIS64 / OIS64-2. . . . . . . . . . . . . . . . . . . . . . . . . . 65 x 565 x 242.5OIS16 / OIS16-2. . . . . . . . . . . . . . . . . . . . . . . . . . 45 x 265 x 235OIS4 / OIS4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 x 265 x 235OIS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 x 265 x 235OP / OP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 x 265 x 235PSUTP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x 54 x 142SCU-R2 / SCU-R2E . . . . . . . . . . . . . . . . . . . . . . . 37.5 x 265 x 235SNL64-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.5 x 565 x 242.5TIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 x 81 x 161CLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 x 195 x 125

Rack according to ETSI . . . . . . . . . . . . . . . . . . . . . . 20.0

Subrack (unequipped):SL64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.0

Modules:CLL64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5CLL64-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5EIPS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7EBSL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,2ETH100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,5ETH1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,5LTU-ETH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,2LTU64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2OB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8OHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5OIS64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4OIS16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9OIS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8OIS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8OP / OP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8SCU-R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8SCU-R2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5SNL64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7TIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2CLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8

Page 142: Technical Description Stm64

142 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

Page 143: Technical Description Stm64

A42022-L5907-B51-2-7618 143

InformationSL64-3.3

Technical Description (TED)

10 AbbreviationsAPD Avalanche Photo Diode

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

CRS Card Release Switching

DTMF Dual Tone Multi Frequency

ECC Embedded Control Channel

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memo-ry

ETH100 Fast Ethernet Interface Module

ETH1000 Gigabit Ethernet Interface Module

FEC Forward Error Correction

FO Fiber Optic

FTP File Transfer Protocol

HDLC High-Level Data Link Control

HPC Higher Order Path Connection

ITMN Installation and Test Manual

LED Light Emitting Diode

LTU Line Termination Unit

LXC Local Cross-Connect

MAU Medium Attachment Unit

MSOH Multiplexer Section Overhead

MTS Multiplexer Timing Source

NCT Network Craft Terminal

NSAP Network Service Access Point

NVRAM Non-volatile Random Access Memory

OC Optical Carrier

OGL Operator Guidelines

OH Overhead

OS Optical Section

PCU Peripheral Control Unit

PDH Plesiochronous Digital Hierarchy

PSU Power Supply Unit

RSOH Regenerator Section Overhead

SCU-R2 Synchronous Multiplexer Control unit

SDH Synchronous Digital Hierarchy

SETS Synchronous Equipment Timing Source

SNCP Subnetwork Connection Protection

SOH Section Overhead

Page 144: Technical Description Stm64

144 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

SONET Synchronous Optical Network

STM Synchronous Transport Module

SW Software

TMN Telecommunications Management Network

WDM Wavelength Division Multiplexing

Page 145: Technical Description Stm64

A42022-L5907-B51-2-7618 145

InformationSL64-3.3

Technical Description (TED)

11 IndexSymbols(1+1) path protection switching, SNCP 95

AAdd/drop multiplexer 42Alarm panel (subrack), SRAP-PI 78Alarm signaling scheme 78Applications of the SL64 in networks 15

BBidirectional self healing ring protection switching 92Booster (optical) module 56BSHR protection switching 92

CCard release protection switching (CRS) 94Cards

see ModulesCLA module 69CLL64 / CLL64-2 modules 68Clock modules 68Clock pulse sources 98Compatibility of the SL64 with existing systems 19Cross-connect multiplexer 42CRS protection switching 94

DDCM module 80Dispersion compensation module, DCM 80

EEIPS1 module 58Electrical interface module 58Engineering order wire 97EOW 97

FFan shelf 80FEC, forward error correction 50Forward error correction, FEC 50

HHardware

modules 107racks 101subracks 104

LLaser safety shutdown 99LCT and NCT operating terminals 38

LCT application 83LCT system requirements 84LED display, alarms 78LED display, phone 80Linear MSP 88, 90Local cross-connect multiplexer 42LTU64 module 63

MMechanical design

see HardwareModule (card) protection switching 88Modules

CLA 69CLL / CLL64 68DCM 80EIPS1 58ETH100 64ETH1000 65LTU64 63LTU-ETH 67OB 56OHA 75OIS1 53OIS16 / OIS16-2 48OIS4 / OIS4-2 52OIS64 / OIS64-2 47OP / OP64 55SCU-R2 / SCU-R2E 72SNL64-3 57TIF 77

Modules, mechanical design 107MSP (linear) 88, 90

NNCT and LCT operating terminals 38NCT application 86NCT system requirements 87Network applications 15

OOB module 56OHA module 75OIS1 module 53OIS16 / OIS16-2 modules 48OIS4 / OIS4-2 modules 52OIS64 / OIS64-2 modules 47OP / OP64 modules 55Operating terminals, LCT and NCT 38Optical interface modules 47Optical splitter 100Overhead access module 75

Page 146: Technical Description Stm64

146 A42022-L5907-B51-2-7618

Technical Description (TED) InformationSL64-3.3

PPhone indication 80Preamplifier (optical) modules 55Protection switching

BSHR 92CRS 94linear MSP 88, 90modules (cards) 88SNCP 95

RRacks, mechanical design 101Requirements, LCT 84Requirements, NCT 87Ring applications 17

SSCU-R2 / SCU-R2E modules 72Shutdown of the laser 99Signaling of local alarms 78Single-fiber mode 100SNCP 95SNL64-3 module 57Software

LCT 111NCT 113PCUs 110SCU-R2 109

SRAP-PI 78Subrack alarm panel, SRAP-PI 78Subracks, mechanical design 104Switching network module 57Synchronization 98Synchronous equipment timing source, SETS 98System overview 20

TT3/T4 clock adapter module 69Technical data 118Telemetry interface module 77Telephone 97Terminal multiplexer 41TIF module 77

WWDM applications 16