taylor series. theorem definition the series is called the taylor series of f about c (centered at...

24
Taylor Series

Post on 22-Dec-2015

229 views

Category:

Documents


0 download

TRANSCRIPT

Taylor Series

Theorem

0

)(

)(

0

)(!

)()(

,

:!

)(

)inf(

)()('

n

nn

n

n

n

nn

cxn

cfxf

thencaboutseriespowerahasfIf

wordsotherInn

cfaThen

esconvergencofradiusiniteorpositiveawith

cxaxfifsThat

cxabouttionrepresentaseriespowerahasfIf

Definition

The series

is called the Taylor series of f about c (centered at c)

0

)(

)(!

)(

n

nn

cxn

cf

Definition

The series

is called the Maclaurin series of f about c (centered at c)

Thus a Maclaurin series is a Taylor series centered at 0

0

)(

!

)0(

n

nn

xn

f

Examples I

Example (1)Taylor Series for f(x) = sinx about x = 2π

nf(n)(x)f(n)(2π)an=f(n)(2π) / n!an (x- 2π(n

0sinx000

1cosx11/1!(1/1!)(x- 2π(1

2-sinx000

3-cosx-1-1 / 3!(-1 / 3!)(x- 2π( 3

4sinx000

5cosx11/ 5!) 1/ 5!)(x- 2π(5

Taylor Series for sinx about 2π

12

0

12

1

1

753

753

)2()!12(

)1(

)2()!12(

)1(

)2(!7

1)2(

!5

1)2(

!3

1)2(

)2(!7

10)2(

!5

10)2(

!3

10)2(0sin

,

n

n

n

n

n

n

xn

xn

xxxx

xxxxx

haveWe

Example (2)Taylor Series for f(x) = sinx about x = π

nf(n)(x)f(n)(π)an=f(n)(π) / n!an (x- π(n

0sinx000

1cosx-1-1/1!(-1/1!)(x- π(1

2-sinx000

3-cosx11 / 3!(1 / 3!)(x- π( 3

4sinx000

5cosx-11-/ 5!1-)/ 5!)(x- π(5

Taylor Series for sinx about π

12

0

1

12

1

753

753

)()!12(

)1(

)()!12(

)1(

)(!7

1)(

!5

1)(

!3

1)(

)(!7

10)(

!5

10)(

!3

10)(0sin

,

n

n

n

n

n

n

xn

xn

xxxx

xxxxx

haveWe

Example (3)Taylor Series for f(x) = sinx about x = π/2

nf(n)(x)f(n)(π/2)an=f(n)(π/2) / n!an (x- π/2(n

0sinx11 / 0!(x- π/2(0=1

1cosx000

2-sinx-1-1 / 2!(-1 / 2!)(x- π/2(2

3-cosx000

4sinx11 / 4!(1 / 4!)(x- π/2(4

5cosx000

Taylor Series for sinx about π/2

n

n

n

xn

xxx

xxxx

haveWe

2

0

642

642

)2/(!2

)1(

)2/(!6

1)2/(

!4

1)2/(

!2

11

)2/(!6

10)2/(

!4

10)2/(

!2

101sin

,

Example (4)Maclaurin Series for f(x) = sinx

nf(n)(x)f(n)(0)an=f(n)(0) / n!an xn

0sinx000

1cosx11/1!(1/1!) x

2-sinx000

3-cosx-1-1 / 3!(-1 / 3! ) x3

4sinx000

5cosx11/ 5!(1 / 5! ) x5

Maclaurin Series for sinx

12

0

12

1

1

753

753

)!12(

)1(

)!12(

)1(

!7

1

!5

1

!3

1!7

10

!5

10

!3

100sin

,

n

n

n

n

n

n

xn

xn

xxxx

xxxxx

haveWe

Example(5)The Maclaurin Series for f(x) = x sinx

22

0

12

0

12

0

)!12(

)1(

)!12(

)1(sin

)!12(

)1(sin

,

n

n

n

n

n

n

n

n

n

xn

xn

xxx

Hence

xn

x

haveWe

Approximating sin(2○)

034899.0)90(!9

1)

90(!7

1)

90(!5

1)

90(!3

1

90)

90sin(

;,

)90(!9

1)

90(!7

1)

90(!5

1)

90(!3

1

90)

90sin(

90360

222

,

9753

9753

getweonlytermsfivefirstthegConsiderin

numberthetoscorrespond

haveWe

Examples II

Example (1)Maclaurin Series for f(x) = ex

nf(n)(x)f(n)(0)an=f(n)(0) / n!an xn

0ex11 /0!1

1ex11 /1!(1 / 1!) x

2ex11 /2!(1 / 2!) x2

3ex11 / 3!(1 / 3! ) x3

4ex11 /4!(1 / 4!) x4

5ex11/ 5!(1 / 5! ) x5

Maclaurin Series for ex

n

n

x

xn

xxxxxe

haveWe

0

5432

!

1!5

1

!4

1

!3

1

!2

11

,

Example (2)

Find a power series for the function

g(x) =2xe

0

2

0

2

2642

0

32

!

)1(

!

)(

!

)(

!3!21

!

!!3!21

2

n

nn

n

n

nx

n

n

nx

n

x

n

x

n

xxxxe

n

x

n

xxxxe

Example (3)TaylorSeries for f(x) = lnx about x=1

f(n)(x)f(n)(x)f(n)(1)an=f(n)(1) / n!an xn

0lnx000

1x-11=0!1(x -1)

2-x-2-1!-1!/2!(-1/2) (x -1)2

3(-1)(-2)x-32!2!/3!(1/3 ) (x -1)3

4(-1)(-2)(-3)x-4-3!-3!/4!(-1/4 (x -1)4

5(-1)(-2)(-3)(-4)x-54!4!/5!(1/5 ) (x -1)5

Taylor Series for lnx about x = 1

n

n

n

xn

xxxxx

xxxxxx

haveWe

)1()1(

)1(5

1)1(

4

1)1(

3

1)1(

2

1)1(

)1(!5

!4)1(

!4

!3)1(

!3

!2)1(

!2

!1)1(ln

,

1

1

5432

5432

Homework

1)()3(

2

3cos)()2(

cos)()1(

.

cexf

cxxf

cxxf

cxaboutfforseriesTaylortheFindI

x

xxf

exf

xxf

xxf

xxxf

xxf

xxf

xxf

xxf

xxf

fforseriesMaclaurintheFindII

x

cos)()10(

)()9(

sin)()8(

)1()()7(

cos)()6(

sinh)()5(

cosh)()4(

cos)()3(

)1ln()()2(

)1ln()()1(

.

5

3