taste cell

Upload: jeli-jati-anggeria

Post on 04-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 taste cell

    1/13

    The cell biology of taste

    Nirupa Chaudhari and Stephen D. Roper

    Vol. 190 No. 3, August 9, 2010. Pages 285296.

    An incorrect receptor dimer appeared in Fig. 1 of this Review. The corrected Fig. 1 is shown below.

    JCB: Correct

    Figure 1. Taste qualities, the taste receptors that detect them, and ex-amples of natural stimuli. Five recognized taste qualitiessweet, sour,bitter, salty, and umamiare detected by taste buds. Bitter taste is thought

    to protect against ingesting poisons, many of which taste bitter. Sweettaste signals sugars and carbohydrates. Umami taste is elicited by l-aminoacids and nucleotides. Salty taste is generated mainly by Na+ and sourtaste potently by organic acids. Evidence is mounting that fat may alsobe detected by taste buds via dedicated receptors. The names of taste re-ceptors and cartoons depicting their transmembrane topology are shownoutside the perimeter. Bitter is transduced by G proteincoupled receptorssimilar to Class I GPCRs (with short extracellular N termini). In contrast,sweet and umami are detected by dimers of Class III GPCRs (with longN termini that form a globular extracellular ligand-binding domain). One ofthe receptors for Na+ salts is a cation channel composed of three subunits,each with two transmembrane domains. Membrane receptors for sour andfat are as yet uncertain.

    Published August 9, 2010

  • 7/29/2019 taste cell

    2/13

    The Rockeeller University Press $30.00J. Cell Biol. Vol. 190 No. 3 285296

    www.jcb.org/cgi/doi/10.1083/jcb.201003144 JCB 28

    JCB: Review

    Correspondence to Nirupa Chaudhari: [email protected]; orStephen D. Roper: [email protected]

    Taste: our most intrepid sense

    Sampling the environment through our sense o

    taste. Taste is the sensory modaity that guides organisms to

    identiy and consume nutrients whie avoiding toxins and in-

    digestibe materias. For humans, this means recognizing and dis-

    tinguishing sweet, umami, sour, saty, and bitterthe so-caed

    basic tastes (Fig. 1). There are ikey additiona quaities such

    as atty, metaic, and others that might aso be considered basic

    tastes. Each o these is beieved to represent dierent nutritiona

    or physioogica requirements or pose potentia dietary hazards.

    Thus, sweet-tasting oods signa the presence o carbohydratesthat serve as an energy source. Saty taste governs intake o Na+

    and other sats, essentia or maintaining the bodys water ba-

    ance and bood circuation. We generay surmise that umami,

    the taste o l-gutamate and a ew other l-amino acids, reects

    a oods protein content. These stabe amino acids and nuceo-

    tide monophosphates are naturay produced by hydroysis

    during aging or curing. Bitter taste is innatey aversive and is

    thought to guard against consuming poisons, many o which

    taste bitter to humans. Sour taste signas the presence o dietary

    acids. Because sour taste is generay aversive, we avoid ingest-

    ing excess acids and overoading the mechanisms that maintain

    acidbase baance or the body. Moreover, spoied oods oten

    are acidic and are thus avoided. Nonetheess, peope earn to

    toerate and even seek out certain bitter- and sour-tasting com-

    pounds such as caeine and citric acid (e.g., in sweet-tart citrus

    ruits), overcoming innate taste responses. Variations o taste pre-

    erence may arise rom genetic dierences in taste receptors and

    may have important consequences or ood seection, nutrition,

    and heath (Drayna, 2005; Kim and Drayna, 2005; Dotson et a.,

    2008; Shigemura et a., 2009).

    An important, i unrecognized aspect o taste is that it serves

    unctions in addition to guiding dietary seection. Stimuating

    Taste buds are aggregates of 50100 polarized neuro-epithelial cells that detect nutrients and other compounds.Combined analyses of gene expression and cellular func-tion reveal an elegant cellular organization within thetaste bud. This review discusses the functional classes oftaste cells, their cell biology, and current thinking on howtaste information is transmitted to the brain.

    Review series

    The cell biology oftaste

    Nirupa Chaudhari and Stephen D. Roper

    Department o Physiology and Biophysics, and Program in Neurosciences, University o Miami Miller School o Medicine, Miami, FL 33136

    2010 Chaudhari and Roper This article is distributed under the terms o an AttributionNoncommercialShare AlikeNo Mirror Sites license or the frst six months ater the pub-lication date (see http://www.rupress.org/terms). Ater six months it is available under aCreative Commons License (AttributionNoncommercialShare Alike 3.0 Unported license,as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

    Figure 1. Taste qualities, the taste receptors that detect them, and ex-amples o natural stimuli. Five recognized taste qualitiessweet, sour,bitter, salty, and umamiare detected by taste buds. Bitter taste is thoughtto protect against ingesting poisons, many o which taste bitter. Sweettaste signals sugars and carbohydrates. Umami taste is elicited by l-aminoacids and nucleotides. Salty taste is generated mainly by Na + and sourtaste potently by organic acids. Evidence is mounting that at may alsobe detected by taste buds via dedicated receptors. The names o taste re-ceptors and cartoons depicting their transmembrane topology are shownoutside the perimeter. Bitter is transduced by G proteincoupled receptorssimilar to Class I GPCRs (with short extracellular N termini). In contrast,sweet and umami are detected by dimers o Class III GPCRs (with longN termini that orm a globular extracellular ligand-binding domain). One othe receptors or Na+ salts is a cation channel composed o three subunits,each with two transmembrane domains. Membrane receptors or sour andat are as yet uncertain.

    Published August 9, 2010

  • 7/29/2019 taste cell

    3/13

  • 7/29/2019 taste cell

    4/13

    28Cells, synapses, and signals in taste buds Chaudhari and Roper

    cavity (Fig. 2 A). In humans, there are 5,000 taste buds in the

    ora cavity, situated on the superior surace o the tongue, on the

    paate, and on the epigottis (Mier, 1995). Taste buds across

    the ora cavity serve simiar unctions. Athough there are subte

    regiona dierences in sensitivity to dierent compounds over

    the ingua surace, the ot-quoted concept o a tongue map

    defning distinct zones or sweet, bitter, saty, and sour has argey

    been discredited (Lindemann, 1999).

    The eongate ces o taste buds are mature dierentiated

    ces. Their apica tips directy contact the externa environment

    in the ora cavity and thus experience wide uctuations o tonic-

    ity and osmoarity, and the presence o potentiay harmu com-

    pounds. Hence, taste bud ces, simiar to oactory neurons,

    comprise a continuousy renewing popuation, quite unike the

    sensory receptors or vision and hearing: photoreceptors and

    hair ces. It is now cear that adut taste buds are derived rom

    oca epitheium. At east some precursor ces are common be-

    tween taste buds and the stratifed nonsensory epitheium sur-

    rounding them (Stone et a., 1995; Okubo et a., 2009).

    Tight junctions connecting the apica tips o ces were

    noted in eectron micrographs o taste buds rom severa species(Murray, 1973, 1993). Typica tight junction components such

    as caudins and ZO-1 are detected at the apica junctions

    (Michig et a., 2007). Taste buds, ike most epitheia, impede the

    permeation o water and many soutes through their interceuar

    spaces. Nevertheess, paraceuar pathways through taste buds

    have been demonstrated or certain ionic and nonpoar com-

    pounds (Ye et a., 1991). Indeed, permeation o Na+ into the in-

    terstitia spaces within taste buds may contribute to the detection

    o saty taste (Simon, 1992; Rehnberg et a., 1993).

    Considering the strongy poarized shapes o taste ces,

    reativey ew proteins have been shown to be partitioned

    into the apica membrane. Exampes incude aquaporin-5

    (Watson et a., 2007) and a K channe, ROMK (Dvoryanchikovet a., 2009).

    Eectron micrographs o taste buds revea ces o vary-

    ing eectron densities that were interpreted as reecting a con-

    tinuum o stages o dierentiation or maturation. However,

    precise morphometric anayses (i.e., eectron density o cyto-

    pasm, shape o nuceus, ength and thickness o microvii,

    and the presence o speciaized chemica synapses) demon-

    strated that ces in taste buds were o discrete types (Murray,

    1993; Pumpin et a., 1997; Yee et a., 2001). Utrastructura

    eatures served as the basis or a recassifcation o taste ces.

    Taste buds were described as containing ces imaginativey

    termed Types I, II, and III, and Basa, a nonpoarized, presum-

    aby undierentiated ce, sometimes termed Type IV. What

    was missing was a convincing argument that these morphotypes

    represented distinct unctiona casses.Figure 2. Cell types and synapses in the taste bud. (A) Electron micro-graph o a rabbit taste bud showing cells with dark or light cytoplasm, andnerve profles (arrows). Asterisks mark Type II (receptor) cells. Reprintedwith permission rom J. Comp. Neurol. (Royer and Kinnamon, 1991).(B) A taste bud rom a transgenic mouse expressing GFP only in recep-tor (Type II) cells. Presynaptic cells are immunostained (red) or aromaticamino acid decarboxylase (a neurotransmitter-synthesizing enzyme that isa marker or these cells), and are distinct rom receptor cells, identifed byGFP (green). Reprinted with permission rom J. Neurosci. (C) Taste budsimmunostained or NTPDase2 (an ectonucleotidase associated with theplasma membrane o Type I cells) reveal the thin lamellae (red) o Type I cells.These cytoplasmic extensions wrap around other cells in the taste bud.

    GFP (green) indicates receptor cells as in B. Bar, 10 m. Image courtesyo M.S. Sinclair and N. Chaudhari. (D) High magnifcation electron micro-graph o a synapse between a presynaptic taste cell and a nerve terminal (N)in a hamster taste bud. The nucleus (Nu) o the presynaptic cell is at the top,and neurotransmitter vesicles cluster near the synapse(s). The nerve pro-fle includes mitochondria (m) and electron-dense postsynaptic densities.mt, microtubule. Image courtesy o J.C. Kinnamon.

    Published August 9, 2010

  • 7/29/2019 taste cell

    5/13

    JCB VOLUME 190 NUMBER 3 2010288

    Type II (receptor) cells. There is itte ambiguity in

    how Type II ces unction within taste buds. Embedded in the

    pasma membrane o these ces are receptors that bind sweet,

    bitter, or umami compounds. These taste receptors are G protein

    couped receptors with seven transmembrane domains. Signaing

    events downstream o these receptors are we documented

    and are discussed under Transduction beow (or review see

    Margoskee, 2002; Bresin and Huang, 2006; Simon et a., 2006).

    In addition, Type II ces express votage-gated Na and K chan-

    nes essentia or producing action potentias, and hemichanne

    subunits, key payers in taste-evoked secretion o ATP (yeow

    ce in Fig. 3). Any given Type II ce expresses taste GPCRs spe-

    cifc or ony one taste quaity, such as sweet or bitter, but not both

    (Neson et a., 2001). Correspondingy, a given receptor ce re-

    sponds ony to stimuation with igands that activate those recep-

    tors. In brie, Type II ces are tuned to sweet, bitter, or umami

    taste (Tomchik et a., 2007). In recognition o their roe as the pri-

    mary detectors o these casses o tastants, Type II ces were re-

    named receptor ces (DeFazio et a., 2006). Type II ces do not

    appear to be directy stimuated by sour or saty stimui.

    Curiousy, receptor ces do not orm utrastructuray iden-tifabe synapses. Instead, nerve fbers, presumaby gustatory

    aerents, are cosey apposed to these ces (Murray, 1973, 1993;

    Yang et a., 2000; Yee et a., 2001; Capp et a., 2004). Signas

    transmitted rom receptor ces to sensory aerents or other ces

    within the taste bud must do so by unconventiona mechanisms,

    i.e., without the invovement o synaptic vesices, as wi be de-

    scribed beow.

    Type III (presynaptic) cells. The consensus is that

    Type III ces (green ce in Fig. 3) express proteins associated

    with synapses and that they orm synaptic junctions with nerve

    terminas (Murray et a., 1969; Murray, 1973, 1993; Yang et a.,

    2000; Yee et a., 2001). These ces express a number o neurona-

    ike genes incuding NCAM, a ce surace adhesion moecue,enzymes or the synthesis o at east two neurotransmitters,

    and votage-gated Ca channes typicay associated with neuro-

    transmitter reease (DeFazio et a., 2006; Dvoryanchikov

    et a., 2007). Type III ces, expressing synaptic proteins and

    showing depoarization-dependent Ca2+ transients typica o

    synapses, have been abeed presynaptic ces (DeFazio et a.,

    2006). Like receptor ces, presynaptic ces aso are excitabe

    and express a compement o votage-gated Na and K channes

    to support action potentias (Meder et a., 2003; Gao et a.,

    2009; Vandenbeuch and Kinnamon, 2009a,b). The origin o

    nerve fbers that synapse with Type III ces, and whether they

    represent taste aerents, is not known. In addition to these neu-

    rona properties, presynaptic ces aso respond directy to sour

    taste stimui and carbonated soutions and are presumaby the

    ces responsibe or signaing these sensations (Huang et a.,

    2006; Tomchik et a., 2007; Huang et a., 2008b; Chandrashekar

    et a., 2009).

    A key eature o presynaptic ces is that they receive input

    rom and integrate signas generated by receptor ces (see beow).

    Hence, in the intact taste bud, unike receptor ces, presynaptic

    ces are not tuned to specifc taste quaities but instead respond

    broady to sweet, saty, sour, bitter, and umami compounds

    (Tomchik et a., 2007). Athough presynaptic ces share many

    Subsequenty, investigators have probed taste buds with

    antibodies at both ight and eectron microscopic eves, thus

    associating a ew protein markers with the utrastructuray de-

    fned ce types. These markers incuded -gustducin (a taste-

    seective G subunit invoved in taste transduction) in Type II

    ces and SNAP25 (a core component o SNARE compexes

    that reguate exocytosis o synaptic vesices) in Type III ces

    (Yang et a., 2000; Yee et a., 2001; Capp et a., 2004). Immuno-

    staining in pairwise combinations then expanded the numbers

    o taste-specifc proteins that coud be assigned excusivey to

    ces o Type I, II, or III. Fig. 2 B demonstrates the cear distinc-

    tion between ce Types II and III, with ew i any ces exhibit-

    ing an intermediate pattern o gene expression. Simiary, ce

    Types I and II are separate popuations (Fig. 2 C). Type III ces

    are the ony ces that exhibit we-dierentiated synapses

    (Fig. 2 D). An important advance has been with the generation

    o transgenic mice with GFP expressed rom promoters seec-

    tivey active in Type II or III ces. This has aowed a precise

    integration between unctiona properties, morphoogica ea-

    tures, and gene expression patterns o the ce types within taste

    buds. For instance, by combining patch-camp and immuno-staining on tissues rom such mice, Meder et a. (2003) showed

    that votage-gated Ca2+ currents, de rigeur components o syn-

    apses, are imited to the Type III ces. In contrast, Ca2+ imaging

    in combination with transgenic markers demonstrated that

    Type II ces respond to sweet, bitter, or umami taste stimui whie

    acking votage-gated Ca channes (Capp et a., 2006; DeFazio

    et a., 2006).

    Type I cells. Type I ces are the most abundant ces in

    taste buds, with extended cytopasmic ameae that engu other

    ces (Fig. 2 C). Type I ces express GLAST, a transporter or gu-

    tamate, indicating that they may be invoved in gutamate uptake

    (Lawton et a., 2000). Type I ces aso express NTPDase2, a

    pasma membranebound nuceotidase that hydroyzes extrace-uar ATP (Barte et a., 2006). ATP serves as a neurotransmitter in

    taste buds (Finger et a., 2005) and gutamate aso is a candidate

    neurotransmitter. Thus, Type I ces appear to be invoved in termi-

    nating synaptic transmission and restricting the spread o transmit-

    ters, a roe perormed in the centra nervous system by gia ces.

    Type I ces aso express ROMK, a K channe that may be

    invoved in K+ homeostasis within the taste bud (Dvoryanchikov

    et a., 2009). During proonged trains o action potentias eic-

    ited by intense taste stimuation, Type I ces may serve to eimi-

    nate K+ (see bue ce in Fig. 3) that woud accumuate in the

    imited interstitia spaces o the taste bud and ead to diminished

    excitabiity o Type II and III ces. This is another stereotypic

    gia unction. Patch-camp studies have suggested that some

    taste ces, presumaby Type I ces, possesses eectrophysioog-

    ica properties, such as inexcitabiity and high resting K+ con-

    ductance, aso characteristic o gia (Bigiani, 2001). Thus, Type I

    ces appear overa to unction as gia in taste buds. A caveat is

    that not a Type I ces necessariy participate in each o the gia

    roes described above.

    Lasty, Type I ces may exhibit ionic currents impicated

    in sat taste transduction (Vandenbeuch et a., 2008). Despite

    their being the most abundant ce type in taste buds, the east is

    known about Type I ces.

    Published August 9, 2010

  • 7/29/2019 taste cell

    6/13

    28Cells, synapses, and signals in taste buds Chaudhari and Roper

    Nerve bers. Taste buds are innervated by sensory

    neurons whose ce bodies are ocated in custers nested against

    the brain (the genicuate, petrosa, and nodose crania gangia).

    In the adut, each taste bud is innervated by 314 sensory gan-

    gion neurons, depending on the species (mouse, rat, hamster)

    and ora region (tongue, paate; Krimm and Hi, 1998; Whitehead

    et a., 1999). Gustatory nerve fbers cominge with a rich pexus o

    other nerve fbers under the taste epitheium. In the absence o

    cear markers to distinguish them, one cannot discern which

    o these fbers carry taste inormation as opposed to pain,

    neuron-ike properties, it is cear that they are not a homogeneous

    popuation (Tomchik et a., 2007; Roberts et a., 2009).

    Basal cells. This category describes spherica or ovoid

    ces that do not extend processes into the taste pore and are

    ikey to be undierentiated or immature taste ces (Farbman,

    1965). It is not cear whether a basa ces within taste buds

    represent a common undierentiated cass o ces. Unambigu-

    ous markers or these ces have not been identifed, and the

    exact signifcance o basa ces as a ce popuation remains to

    be eucidated.

    Figure 3. The three major classes o taste cells. This classifcation incorporates ultrastructural eatures, patterns o gene expression, and the unctions oeach o Types I, II (receptor), and III (presynaptic) taste cells. Type I cells (blue) degrade or absorb neurotransmitters. They also may clear extracellularK+ that accumulates ater action potentials (shown as bursts) in receptor (yellow) and presynaptic (green) cells. K+ may be extruded through an apical Kchannel such as ROMK. Salty taste may be transduced by some Type I cells, but this remains uncertain. Sweet, bitter, and umami taste compounds activatereceptor cells, inducing them to release ATP through pannexin1 (Panx1) hemichannels. The extracellular ATP excites ATP receptors (P2X, P2Y) on sensorynerve fbers and on taste cells. Presynaptic cells, in turn, release serotonin (5-HT), which inhibits receptor cells. Sour stimuli (and carbonation, not depicted)directly activate presynaptic cells. Only presynaptic cells orm ultrastructurally identifable synapses with nerves. Tables below the cells list some o theproteins that are expressed in a cell typeselective manner.

    Published August 9, 2010

  • 7/29/2019 taste cell

    7/13

    JCB VOLUME 190 NUMBER 3 2010290

    occur in distinct subsets o ces within taste buds (Maruyama

    et a., 2006) and neura responses show simiary heterogeneous

    patterns (Yoshida et a., 2009b), observations that urther sug-

    gest that umami taste is compex, and ikey mediated through

    mutipe types o taste receptors. In summary, athough the

    T1R1+T1R3 dimer ceary acts as an umami receptor, additiona

    GPCRs may pay compementary roes. Candidates or addi-

    tiona umami receptors incude a taste-specifc variant or other

    isoorms o G proteincouped gutamate receptors expressed in

    taste buds (Chaudhari et a., 2000; Li et a., 2002; Neson et a.,

    2002; San Gabrie et a., 2009).

    The T1Rs are dimeric Cass III GPCRs, with arge

    N-termina extraceuar domains (Max et a., 2001). This do-

    main orms a Venus Fytrap structure as in other amiy mem-

    bers. T1Rs aso possess a mutitude o additiona igand-binding

    sites on the exterior aces o the ytrap, in the inker, and per-

    haps even in the pane o the membrane (Cui et a., 2006;

    Temussi, 2009). In contrast, T2Rs resembe Cass I GPCRs with

    binding sites in the transmembrane heices, in keeping with the

    nonpoar nature o many bitter igands (Foriano et a., 2006).

    When they bind taste moecues, taste GPCRs activateheterotrimeric GTP-binding proteins (Fig. 4 A). For exampe,

    the bitter receptors (T2Rs) are coexpressed with and activate the

    taste-seective G subunit, -gustducin, and the cosey reated

    -transducin (Ruiz-Avia et a., 1995). Taste receptors that in-

    cude T1R3 may coupe to G14 and other G subunits (Tizzano

    et a., 2008). Despite this apparent seectivity o taste GPCRs

    or G subunits, the principa pathway or taste transduction

    appears to be via G, incuding G13 and G1 or G3 (Huang

    et a., 1999). Upon igand binding, the G subunits are reed

    rom the taste GPCR and interact unctionay with a phospho-

    ipase, PLC2, an unusua isoorm that is activated by G

    rather than the more common Gq amiy subunits (Rsser

    et a., 1998). Knocking out PLC2 severey diminishes, but doesnot eiminate taste sensitivity (Zhang et a., 2003; Dotson et a.,

    2005). PLC2 stimuates the synthesis o IP3, which opens

    IP3R3 ion channes on the endopasmic reticuum, reeasing

    Ca2+ into the cytoso o receptor ces (Simon et a., 2006; Roper,

    2007). The eevated intraceuar Ca2+ appears to have two tar-

    gets in the pasma membrane: a taste-seective cation channe,

    TRPM5, and a gap junction hemichanne, both ound in recep-

    tor ces (Prez et a., 2002; Huang et a., 2007). The Ca 2+-

    dependent opening o TRPM5 produces a depoarizing generator

    potentia in receptor ces (Liu and Liman, 2003). I sufcienty

    arge, generator potentias evoke action potentias in receptor

    ces. The two signas eicited by tastants: strong depoarization

    and increased cytopasmic Ca2+, are integrated by gap junction

    hemichannes. The outcome o this convergence is that the taste

    bud transmitter, ATP, and possiby other moecues, are secreted

    through the hemichanne pores into the extraceuar space

    surrounding the activated receptor ce (Fig. 3, yeow ce; and

    Fig. 4 A; Huang et a., 2007; Romanov et a., 2007; Huang

    and Roper, 2010).

    Athough most researchers agree that ATP reease occurs

    through a pasma membrane hemichanne, whether these chan-

    nes are ormed o pannexin (Panx) or connexin (Cx) subunits is

    not uy resoved. Panx1 is robusty expressed in receptor ces,

    tactie, or therma signas. Taste axons branch and penetrate the

    basa amina to enter taste buds. Athough some fbers terminate

    in synaptic structures on Type III ces, others course intimatey

    among taste ces without orming speciaized synapses (Farbman,

    1965; Murray et a., 1969; Murray, 1973).

    As wi be expained next, the concerted action o Type I,

    Type II (receptor), and Type III (presynaptic) ces underies taste

    reception. There are synaptic interactions, both eed-orward

    and eedback, between these ces when taste stimui activate

    the taste bud.

    Beyond the tasty morsel: the

    underlying molecular mechanisms or

    nutrient detection

    Transduction o gustatory stimuli in receptor

    (Type II) cells. As stated above, sweet, umami, and bitter

    compounds each activate dierent taste GPCRs that are ex-

    pressed in discrete sets o receptor ces. For instance, receptor

    ces that express members o the T2R amiy o GPCRs sense

    bitter compounds (Chandrashekar et a., 2000). In dierent

    mammas, 2035 separate genes encode members o the T2Ramiy. These taste receptors exhibit heterogeneous moecuar

    receptive ranges: some are narrowy tuned to 24 bitter-tasting

    compounds, whereas others are promiscuousy activated by nu-

    merous igands (Meyerho et a., 2010). On the basis o in situ

    hybridizations with mixed probes on rodent taste buds, the T2Rs

    were reported either to be expressed as overapping subsets o

    mRNAs (Matsunami et a., 2000) or coexpressed in a singe

    popuation o taste ces (Ader et a., 2000). More recenty, de-

    taied anayses on human taste buds confrm that dierent bitter-

    responsive taste ces express subsets o 411 o the T2Rs in

    partiay overapping ashion (Behrens et a., 2007). This obser-

    vation is important insoar as it provides a moecuar basis or

    discriminating between dierent bitter compounds. Bitter-sensingtaste ces are known to unctionay discriminate among bitter

    compounds (Caicedo and Roper, 2001). This pattern o T2R ex-

    pression, aong with poymorphisms across the gene amiy, is

    thought to aow humans and animas to detect the enormous

    range o potentiay toxic bitter compounds ound in nature

    (Drayna, 2005).

    Receptor ces expressing the heterodimer T1R2+T1R3

    respond to sugars, synthetic sweeteners, and sweet-tasting pro-

    teins such as monein and brazzein (Neson et a., 2001; Jiang

    et a., 2004; Xu et a., 2004). Athough the persistence o sensi-

    tivity to some sugars in mice acking T1R3 suggests that addi-

    tiona receptors or sweet may exist (Damak et a., 2003),

    candidate receptors have yet to be identifed.

    A third cass o receptor ces expresses the heterodimeric

    GPCR, T1R1+T1R3, which responds to umami stimui, particu-

    ary the combination o l-gutamate and GMP/IMP, compounds

    that accumuate in many oods ater hydroysis o proteins and

    NTPs (Li et a., 2002; Neson et a., 2002). Nevertheess, robust

    physioogica responses and behaviora preerence or umami

    tastants persist in mice in which T1R3 is knocked out, suggest-

    ing that additiona taste receptors may contribute to umami de-

    tection (Damak et a., 2003; Maruyama et a., 2006; Yasumatsu

    et a., 2009). Functiona responses to various umami tastants

    Published August 9, 2010

  • 7/29/2019 taste cell

    8/13

    29Cells, synapses, and signals in taste buds Chaudhari and Roper

    this question, namey testing ATP reease rom taste ces rom

    Panx1 or Cx knockout mice, has yet to be reported.

    Presynaptic (Type III) cells also detect some

    taste stimuli. Presynaptic ces exhibit very dierent taste

    sensitivity and transduction mechanisms when compared with

    receptor ces. Sour taste stimui (acids) excite presynaptic ces

    (Tomchik et a., 2007). The membrane receptor or ion channe

    that transduces acid stimui remains as yet unidentifed. Non-

    seective cation channes ormed by PKD2L1 and PKD1L3 were

    proposed as candidate sour taste receptors (Huang et a., 2006;

    Ishimaru et a., 2006; LopezJimenez et a., 2006). Yet, this

    channe is sensitive to extraceuar pH rather than a drop in

    cytopasmic pH, which is known to be the proximate stimuus

    or sour taste (Fig. 4 B; Lya et a., 2001; Huang et a., 2008b).

    Further, mice acking PKD1L3 remain capabe o detecting

    acid taste stimui (Neson et a., 2010). More ikey candidate

    acid receptors in Type III ces are pasma membrane channes

    that are moduated by cytopasmic acidifcation, such as certain

    K channes (Lin et a., 2004; Richter et a., 2004). Presynaptic

    ces aso detect carbonation, party through the action o

    carbonic anhydrase that produces protons and thus acidifesthe environment (Graber and Keeher, 1988; Simons et a.,

    1999; Chandrashekar et a., 2009). The compete transduc-

    tion pathways or carbonation and sour taste have not been

    competey described.

    Salt detection and transduction. Taste buds de-

    tect Na sats by directy permeating Na+ through apica ion

    channes and depoarizing taste ces. An ion channe that has

    ong been thought to mediate this action is the amioride-sensitive

    epitheia Na channe, ENaC (Fig. 4 C; Heck et a., 1984; Lin et a.,

    1999; Lindemann, 2001). This notion was recenty confrmed

    by knocking out a critica ENaC subunit in taste buds, which

    impaired sat taste detection (Chandrashekar et a., 2010). This

    study did not assign sat sensitivity to any o the estabishedtaste ce types, but patch-camp studies suggested that Na+-

    detecting ces are Type I ces (Vandenbeuch et a., 2008). Pharma-

    coogica and other evidence suggests that sat transduction in

    human and anima modes aso occurs via additiona membrane

    receptors or ion channes. Athough a modifed TrpV1 channe

    has been proposed as a candidate Na+ taste transducer, knockout

    mice show a minima phenotype with respect to sat detection

    (Ruiz et a., 2006; Treesukoso et a., 2007).

    Inormation processing and cell-to-cell

    signaling in taste buds: teasing apart our

    taste response

    Transmitters and inormation fow. Receptor and pre-

    synaptic ces each reease dierent neurotransmitters (Huang

    et a., 2007). To date, receptor ces are known to reease ony

    ATP, via pannexin channes as described above. Presynaptic

    ces on the other hand, secrete serotonin (5-HT) and nor-

    epinephrine (NE). In some instances presynaptic ces co-reease

    both these amines (Dvoryanchikov et a., 2007; Huang et a., 2008a).

    Secretion o these biogenic amines appears to be via conven-

    tiona Ca2+-dependent exocytosis. Custers o monoaminergic

    vesices are present at synapses in eectron micrographs o

    mouse presynaptic ces (Takeda and Kitao, 1980).

    whereas severa Cx subunits are expressed at more modest ev-

    es (Huang et a., 2007; Romanov et a., 2007). Athough there

    may be gap junctions presumaby ormed o connexins between

    ces in mammaian taste buds (Yoshii, 2005), such junctions

    woud not be expected to secrete ATP into extraceuar spaces.

    A principa argument or Cx hemichannes in taste ces was

    based on the bocking action o certain isoorm-seective mi-

    metic peptides. However, the specifcity o such peptides has

    recenty been caed into question (Wang et a., 2007). Finay,

    Panx1 hemichannes are gated open by eevated cytopasmic

    Ca2+ and/or membrane depoarization (Locovei et a., 2006).

    ATP reease rom taste ces simiary is mediated by both Ca2+

    and votage (Huang and Roper, 2010). In contrast, Cx hemi-

    channes usuay open ony in the absence o extraceuar Ca2+

    and typicay are bocked by eevated cytopasmic Ca2+. Further,

    Panx1-seective antagonists bock taste-evoked ATP secretion

    (Huang et a., 2007; Dando and Roper, 2009). Thus, the weight o

    the evidence strongy avors ATP reease through Panx1 hemi-

    channes in receptor ces. Nevertheess, the idea test to resove

    Figure 4. Mechanisms by which fve taste qualities are transduced intaste cells. (A) In receptor (Type II) cells, sweet, bitter, and umami ligandsbind taste GPCRs, and activate a phosphoinositide pathway that elevatescytoplasmic Ca2+ and depolarizes the membrane via a cation channel,TrpM5. The combined action o elevated Ca2+ and membrane depolariza-tion opens the large pores o gap junction hemichannels, likely composedo Panx1, resulting in ATP release. Shown here is a dimer o T1R tasteGPCRs (sweet, umami). T2R taste GPCRs (bitter) do not have extensiveextracellular domains and it is not known whether T2Rs orm multimers.(B) In presynaptic (Type III) cells, organic acids (HAc) permeate throughthe plasma membrane and acidiy the cytoplasm where they dissociate toacidiy the cytosol. Intracellular H+ is believed to block a proton-sensitive Kchannel (as yet unidentifed) and depolarize the membrane. Voltage-gatedCa channels would then elevate cytoplasmic Ca2+ to trigger exocytosis o

    synaptic vesicles (not depicted). (C) The salty taste o Na+

    is detected bydirect permeation o Na+ ions through membrane ion channels, includingENaC, to depolarize the membrane. The cell type underlying salty tastehas not been defnitively identifed.

    Published August 9, 2010

  • 7/29/2019 taste cell

    9/13

    JCB VOLUME 190 NUMBER 3 2010292

    The question o coding has been addressed through ge-

    netic manipuations and physioogica and behaviora assays.

    Eectrophysioogica recordings rom singe aerent fbers or

    their parent sensory gangion ces indicated that some neurons

    respond strongy to a singe taste quaity (usuay sweet), but

    aso have weak responses to other tastes. In contrast, other a-

    erent neurons are excited by mutipe tastes, i.e., are broady

    responsive (Heekant et a., 1997; Frank et a., 2008; Breza

    et a., 2010). Thus, aerent taste neurons show response profes

    simiar to both narrowy tuned taste bud receptor ces and to

    broady tuned presynaptic ces. The pattern o aerent neuron

    activity mirrors the heterogeneity o taste bud ceuar responses

    (Gibertson et a., 2001; Caicedo et a., 2002; Tomchik et a.,

    2007; Yoshida et a., 2009a; Breza et a., 2010) and suggests that

    neura activity encoding taste does not oow a simpe dedi-

    cated abeed-ine ogic. That is, bitter-specifc, sour-specifc,

    etc., aerent sensory ibers and subsequent neurons in the

    networkobigatory components o abeed-ine codinghave

    never been reported.

    An argument or abeed-ine coding has been made based

    on the resuts o repacing a modifed opioid receptor or thebitter or sweet receptors in taste ces (Zhao et a., 2003; Mueer

    et a., 2005). Mice engineered with this oreign receptor in

    sweet receptor ces strongy preerred and copiousy drank

    soutions o a synthetic igand or the modifed receptor, as i

    the compound tasted sweet. For norma mice, the igand was

    tasteess. Conversey, when the opioid receptor was targeted to

    bitter receptor ces, the same igand was strongy aversive.

    Athough this was presented as frm proo o abeed-ine cod-

    ing, the ogic bears reexamining. Take or exampe a computer

    keyboard. Striking the A key activates a combination o eec-

    tronic signas that resuts in the iumination o a combination

    o pixes to produce the frst etter o the aphabet on screen.

    I the pastic key (the receptor) on the keyboard were changed,striking the repacement key woud sti produce the etter A

    on screen. The experiment does not inorm one about the eec-

    tronic coding that is out o sight between the two visibe events,

    and does not impy that abeed wires ink the base o the key to

    particuar pixes. Chemosensory researchers agree that abeed

    taste ces exist. Labeed ines remain controversia.

    In summary, sweet, bitter, and umami ces a secrete the

    same neurotransmitter, ATP, onto aerent fbers. Discrete syn-

    apses are acking that might coupe receptor ces with sensory

    aerent fbers to transmit singe taste quaities. Athough some

    taste ces and sensory aerent neurons are tighty tuned, others

    are responsive to mutipe taste quaities. Thus, it remains an open

    question exacty how inormation gathered by we-dierentiated

    receptor ces in taste buds is coded or the eventua perception

    o distinct taste quaities.

    Future directions in taste research

    Taste research, athough making tremendous strides in recent

    years, has exposed major gaps in our understanding. Among the

    open questions is the moecuar identifcation o additiona taste

    receptors. Known taste receptors do not account or a igands

    and sensory characteristics or sweet and umami tastes. It is

    ikey that there are additiona, undiscovered sweet and umami

    Gustatory stimui initiate a sequence o chemica signas

    that are passed between ces in the taste bud. When sweet, bit-

    ter, or umami tastants excite taste buds, ATP secreted rom re-

    ceptor ces stimuates gustatory aerent nerve fbers. At the

    same time, ATP aso excites adjacent presynaptic ces and stim-

    uates them to reease 5-HT and/or NE. ATP secreted during

    taste stimuation has a third target, namey the receptor ces,

    themseves. ATP, acting as an autocrine transmitter, exerts posi-

    tive eedback onto receptor ces, increasing its own secretion

    and presumaby counteracting its degradation by ecto-ATPase

    (Huang et a., 2009; Fig. 3).

    The 5-HT reeased by presynaptic ces aso may have

    mutipe targets. One eect o 5-HT is to inhibit receptor ces.

    That is, 5-HT exerts a negative eedback onto receptor ces.

    The opposing eects o positive (purinergic autocrine) and neg-

    ative (serotonergic paracrine) eedback in the taste bud during

    gustatory activation combine to shape the signas transmitted

    rom taste buds to the hindbrain. However, detais o how these

    eedback pathways are baanced to shape the eventua sensory

    output awaits experimentation and many questions remain. One

    might specuate that 5-HT mediates atera inhibition, sup-pressing the output o adjacent receptor (e.g., bitter) ces when

    a particuar (e.g., sweet) receptor ce is stimuated. Aterna-

    tivey, the negative eedback oop may participate in sensory

    adaptation by decreasing the aerent signa over time.

    Other sites o action or 5-HT (and NE) possiby incude

    the nerve fbers that orm synapses with presynaptic taste ces.

    Quite possiby, there are parae purinergic and serotonergic

    outputs rom taste buds and parae inormation pathways ead-

    ing into the hindbrain. At present, this is ony a specuation

    (Roper, 2009).

    In summary (see Fig. 3), receptor ces detect and discrimi-

    nate sweet, bitter, or umami tastants, generate Ca2+ signas, and re-

    ease ATP transmitter onto aerent nerves. The ATP rom dierentreceptor ces converges onto and produces secondary excitation

    o presynaptic ces, thereby integrating signas representing a

    three taste quaities (Tomchik et a., 2007). It is not cear that the

    secondary responses o presynaptic ces to sweet, bitter, and umami

    stimui are necessary or identiying or discriminating these taste

    quaities. Primary signas in presynaptic ces are ony generated

    by sour tastants, and this is the ony quaity that is ost when pre-

    synaptic ces are abated (Huang et a., 2006).

    Cracking the taste code. Taste aerent nerve fbers

    transmit inormation rom taste buds to the brain. How the acti-

    vation o receptor and presynaptic ces during gustatory stimu-

    ation transates into a neura code that specifes dierent taste

    quaities (sweet, bitter, etc.) remains uncear. Two opposing so-

    utions to this ogic probem are much discussed. On the one

    hand, dedicated nerve fbers (abeed ines) coud transmit

    each quaity, e.g., bitter ces, bitter fbers, and bitter neu-

    rons at each successive reay in the brain. On the other hand, a

    combinatoria system woud have quaities encoded by patterns

    o activity across severa fbers. In the atter case, any given

    fber coud transmit inormation or more than a singe quaity.

    A third, ess-discussed option is a tempora code in which qua-

    ity woud be denoted by a timing pattern o action potentias

    such as occurs in auditory fbers.

    Published August 9, 2010

  • 7/29/2019 taste cell

    10/13

    29Cells, synapses, and signals in taste buds Chaudhari and Roper

    Kokrashvii et a., 2009a). The existence o these taste mecha-

    nisms in the gut is perhaps not surprising, given the importance

    o sensing the chemica nature o umina contents at a points

    aong the GI tract. However, the fndings have generated new

    excitement in understanding how the gut participates in detect-

    ing and controing appetite in genera, and digestive processes

    in particuar.

    This work was supported by National Institutes o Health NIH/NIDCDgrants DC006308, DC006021, and DC010073 to N. Chaudhari;and DC000374 and DC007630 to S.D. Roper.

    The authors have no conficts o interest to declare.

    Other reviews in this series are: The cell biology o hearing (Schwander et al.2010.J. Cell Biol.doi:10.1083/jcb.201001138).

    Submitted: 30 March 2010Accepted: 20 July 2010

    Reerences

    Accoa, R., and A. Careton. 2008. Interna body state inuences topographi-ca pasticity o sensory representations in the rat gustatory cortex. Proc.Natl. Acad. Sci. USA. 105:40104015. doi:10.1073/pnas.0708927105

    Ader, E., M.A. Hoon, K.L. Mueer, J. Chandrashekar, N.J. Ryba, and C.S. Zuker.2000. A nove amiy o mammaian taste receptors. Cell. 100:693702.doi:10.1016/S0092-8674(00)80705-9

    Barte, D.L., S.L. Suivan, E.G. Lavoie, J. Svigny, and T.E. Finger. 2006.Nuceoside triphosphate diphosphohydroase-2 is the ecto-ATPase otype I ces in taste buds. J. Comp. Neurol. 497:112. doi:10.1002/cne.20954

    Behrens, M., S. Foerster, F. Staeher, J.D. Raguse, and W. Meyerho. 2007.Gustatory expression pattern o the human TAS2R bitter recep-tor gene amiy reveas a heterogenous popuation o bitter respon-sive taste receptor ces. J. Neurosci. 27:1263012640. doi:10.1523/JNEUROSCI.1168-07.2007

    Bigiani, A. 2001. Mouse taste ces with giaike membrane properties.J. Neurophysiol. 85:15521560.

    Bresin, P.A., and L. Huang. 2006. Human taste: periphera anatomy, taste trans-duction, and coding.Adv. Otorhinolaryngol. 63:152190.

    Breza, J.M., A.A. Nikonov, and R.J. Contreras. 2010. Response atency to in-gua taste stimuation distinguishes neuron types within the genicuate

    gangion.J. Neurophysiol. 103:17711784. doi:10.1152/jn.00785.2009

    Caicedo, A., and S.D. Roper. 2001. Taste receptor ces that discriminate betweenbitter stimui. Science. 291:15571560. doi:10.1126/science.1056670

    Caicedo, A., K.N. Kim, and S.D. Roper. 2002. Individua mouse taste ces re-spond to mutipe chemica stimui.J. Physiol.544:501509.doi:10.1113/jphysio.2002.027862

    Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, and D.Juius. 1997. The capsaicin receptor: a heat-activated ion channe in thepain pathway.Nature. 389:816824. doi:10.1038/39807

    Chandrashekar, J., K.L. Mueer, M.A. Hoon, E. Ader, L. Feng, W. Guo, C.S.Zuker, and N.J. Ryba. 2000. T2Rs unction as bitter taste receptors. Cell.100:703711. doi:10.1016/S0092-8674(00)80706-0

    Chandrashekar, J., D. Yarmoinsky, L. von Buchhotz, Y. Oka, W. Sy, N.J. Ryba,and C.S. Zuker. 2009. The taste o carbonation. Science. 326:443445.doi:10.1126/science.1174601

    Chandrashekar, J., C. Kuhn, Y. Oka, D.A. Yarmoinsky, E. Hummer, N.J. Ryba,and C.S. Zuker. 2010. The ces and periphera representation o sodium

    taste in mice.Nature. 464:297301. doi:10.1038/nature08783

    Chaudhari, N., A.M. Landin, and S.D. Roper. 2000. A metabotropic gutamatereceptor variant unctions as a taste receptor. Nat. Neurosci. 3:113119.doi:10.1038/72053

    Chaudhari, N., E. Pereira, and S.D. Roper. 2009. Taste receptors or umami:the case or mutipe receptors.Am. J. Clin. Nutr. 90:738S742S. doi:10.3945/ajcn.2009.27462H

    Capp, T.R., R. Yang, C.L. Stoick, S.C. Kinnamon, and J.C. Kinnamon. 2004.Morphoogic characterization o rat taste receptor ces that express com-ponents o the phosphoipase C signaing pathway. J. Comp. Neurol.468:311321. doi:10.1002/cne.10963

    Capp, T.R., K.F. Meder, S. Damak, R.F. Margoskee, and S.C. Kinnamon.2006. Mouse taste ces with G protein-couped taste receptorsack votage-gated cacium channes and SNAP-25. BMC Biol. 4:7.doi:10.1186/1741-7007-4-7

    receptors (Chaudhari et a., 2009). There is aso the question o

    transduction mechanisms or some o the ess-studied quaities

    such as sour, atty, metaic, and astringent. Soving these may

    require combining moecuar and popuation genetic anayses

    on human or mouse popuations aong with more conventiona

    expression studies.

    Another area o intense investigation is how gustatory sig-

    nas are encoded by the nervous system. The principes o sen-

    sory coding rom the retina to visua cortex were eucidated

    decades ago. We have a sound understanding o tonotopic and

    computationa maps or the auditory system. Latera inhibition

    and somatosensory receptive feds are we defned. Compara-

    be insights into taste are acking and we sti do not understand

    how the brain distinguishes sweet, sour, saty, and so orth.

    I taste does not oow a simpe abeed-ine code, how are gus-

    tatory signas transmitted and deciphered? Ongoing studies in-

    cude the possibiity that taste is encoded in the time domain,

    i.e., by the requency and pattern o action potentias in hind-

    brain and cortica neurons (Di Lorenzo et a., 2009; Mier and

    Katz, 2010). Other aboratories are exporing higher-order cor-

    tica processing via unctiona magnetic resonance imaging toaddress the interaction between taste detection, preerence, and

    appetite reguation (Ros, 2006; Sma et a., 2007; Accoa and

    Careton, 2008).

    A critica chasm in our understanding o taste is how gus-

    tatory mechanisms are inked to mood, appetite, obesity, and

    satiety. The obvious ink is that taste guides and to a arge extent

    determines ood seection, with saty, sweet, and at tastes being

    the main actors. A ascinating ink between appetite and moods

    is that serotonin-enhancing drugs, commony used or treating

    mood disorders and depression, were shown to inuence taste

    threshods (Heath et a., 2006). Whether the mechanism o this

    action depends on the inhibitory action o 5-HT in taste buds

    remains to be determined, but the fndings are intriguing (Kawaiet a., 2000).

    Cracks in the hard nut o appetite reguation are exposing

    a new dimension o tastethe impact o appetite-reguating

    hormones on periphera gustatory sensory organs. A number o

    neuropeptide hormones activate hypothaamic and hindbrain cir-

    cuits that reguate appetite. We are now earning that severa o

    these same peptide hormones, incuding eptin, gucagon-ike pep-

    tide, and oxytocin, moduate chemosensory transduction at the

    eve o the taste bud. Circuating eptin, acting directy on taste

    receptor ces, reduces sweet responses measured in taste buds,

    in aerent nerves, and by behaviora tests (Kawai et a., 2000;

    Nakamura et a., 2008). Circuating oxytocin, another anorectic

    peptide, aso acts on taste buds (Sincair et a., 2010). Bood-

    deivered satiety peptides may be idea candidates or integrating

    sensory and motivationa drivers o appetite. Additiona satiety

    peptides, incuding gucagon-ike peptide-1, are synthesized

    within taste buds and act on taste ces or nerves (Shin et a.,

    2008). This research might provide avenues into therapeutic ap-

    proaches or obesity, and at a minimum urther hep expain the

    seemingy insatiabe human drive to consume caories.

    Finay, another new direction or taste research is the pres-

    ence o taste receptors and their downstream intraceuar eec-

    tors in sensory ces o the gut (Rozengurt and Sternini, 2007;

    Published August 9, 2010

    http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1083/jcb.201001138http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0708927105http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(00)80705-9http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.20954http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.20954http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.1168-07.2007http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.1168-07.2007http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1152/jn.00785.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1056670http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2002.027862http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2002.027862http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/39807http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(00)80706-0http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1174601http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature08783http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/72053http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Hhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Hhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.10963http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1186/1741-7007-4-7http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1186/1741-7007-4-7http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.10963http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Hhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Hhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/72053http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature08783http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1174601http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(00)80706-0http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/39807http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2002.027862http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2002.027862http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1056670http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1152/jn.00785.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.1168-07.2007http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.1168-07.2007http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.20954http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.20954http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(00)80705-9http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0708927105http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1083/jcb.201001138
  • 7/29/2019 taste cell

    11/13

    JCB VOLUME 190 NUMBER 3 2010294

    with gustducin in taste receptor ces and mediates IP3 responses to bitterdenatonium.Nat. Neurosci. 2:10551062. doi:10.1038/15981

    Huang, Y.A., and S.D. Roper. 2010. Intraceuar Ca(2+) and TRPM5-mediatedmembrane depoarization produce ATP secretion rom taste receptorces.J. Physiol. 588:23432350. doi:10.1113/jphysio.2010.191106

    Huang, Y.A., Y. Maruyama, and S.D. Roper. 2008a. Norepinephrine is co-reeased with serotonin in mouse taste buds. J. Neurosci. 28:1308813093. doi:10.1523/JNEUROSCI.4187-08.2008

    Huang, Y.A., Y. Maruyama, R. Stimac, and S.D. Roper. 2008b. Presynaptic(Type III) ces in mouse taste buds sense sour (acid) taste. J. Physiol.

    586:29032912. doi:10.1113/jphysio.2008.151233Huang, Y.A., R. Dando, and S.D. Roper. 2009. Autocrine and paracrine roes or

    ATP and serotonin in mouse taste buds. J. Neurosci. 29:1390913918.doi:10.1523/JNEUROSCI.2351-09.2009

    Huang, Y.J., Y. Maruyama, G. Dvoryanchikov, E. Pereira, N. Chaudhari, andS.D. Roper. 2007. The roe o pannexin 1 hemichannes in ATP reeaseand ce-ce communication in mouse taste buds. Proc. Natl. Acad. Sci.USA. 104:64366441. doi:10.1073/pnas.0611280104

    Ishimaru, Y., H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami.2006. Transient receptor potentia amiy members PKD1L3 andPKD2L1 orm a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA.103:1256912574.doi:10.1073/pnas.0602702103

    Jiang, P., Q. Ji, Z. Liu, L.A. Snyder, L.M. Benard, R.F. Margoskee, and M.Max. 2004. The cysteine-rich region o T1R3 determines responses tointensey sweet proteins.J. Biol. Chem. 279:4506845075. doi:10.1074/jbc.M406779200

    Kawai, T., and T. Fushiki. 2003. Importance o ipoysis in ora cavity or oro-

    sensory detection o at.Am. J. Physiol. Regul. Integr. Comp. Physiol.

    285:R447R454.

    Kawai, K., K. Sugimoto, K. Nakashima, H. Miura, and Y. Ninomiya. 2000.Leptin as a moduator o sweet taste sensitivities in mice. Proc. Natl.Acad. Sci. USA. 97:1104411049. doi:10.1073/pnas.190066697

    Kim, U.K., and D. Drayna. 2005. Genetics o individua dierences in bittertaste perception: essons rom the PTC gene. Clin. Genet. 67:275280.doi:10.1111/j.1399-0004.2004.00361.x

    Kokrashvii, Z., B. Mosinger, and R.F. Margoskee. 2009a. Taste signaingeements expressed in gut enteroendocrine ces reguate nutrient-responsive secretion o gut hormones. Am. J. Clin. Nutr. 90:822S825S.doi:10.3945/ajcn.2009.27462T

    Kokrashvii, Z., D. Rodriguez, V. Yevshayeva, H. Zhou, R.F. Margoskee, and B.Mosinger. 2009b. Reease o endogenous opioids rom duodena entero-endocrine ces requires Trpm5. Gastroenterology. 137:598606: 606:e1e2. doi:10.1053/j.gastro.2009.02.070

    Krimm, R.F., and D.L. Hi. 1998. Innervation o singe ungiorm taste budsduring deveopment in rat. J. Comp. Neurol. 398:1324. doi:10.1002/

    (SICI)1096-9861(19980817)398:13.0.CO;2-C

    Laugerette, F., P. Passiy-Degrace, B. Patris, I. Niot, M. Febbraio, J.P.Montmayeur, and P. Besnard. 2005. CD36 invovement in orosensory de-tection o dietary ipids, spontaneous at preerence, and digestive secre-tions.J. Clin. Invest. 115:31773184. doi:10.1172/JCI25299

    Lawton, D.M., D.N. Furness, B. Lindemann, and C.M. Hackney. 2000.Locaization o the gutamate-aspartate transporter, GLAST, in rattaste buds. Eur. J. Neurosci. 12:31633171. doi:10.1046/j.1460-9568.2000.00207.x

    Li, X., L. Staszewski, H. Xu, K. Durick, M. Zoer, and E. Ader. 2002. Humanreceptors or sweet and umami taste. Proc. Natl. Acad. Sci. USA.99:46924696. doi:10.1073/pnas.072090199

    Lin, W., T.E. Finger, B.C. Rossier, and S.C. Kinnamon. 1999. EpitheiaNa+ channe subunits in rat taste ces: ocaization and reguation byadosterone. J. Comp. Neurol. 405:406420. doi:10.1002/(SICI)1096-9861(19990315)405:33.0.CO;2-F

    Lin, W., C.A. Burks, D.R. Hansen, S.C. Kinnamon, and T.A. Gibertson.

    2004. Taste receptor ces express pH-sensitive eak K+ channes.J. Neurophysiol. 92:29092919. doi:10.1152/jn.01198.2003

    Lindemann, B. 1999. Receptor seeks igand: on the way to coning the moecuar re-ceptors or sweet and bitter taste.Nat. Med. 5:381382. doi:10.1038/7377

    Lindemann, B. 2001. Receptors and transduction in taste. Nature. 413:219225. doi:10.1038/35093032

    Liu, D., and E.R. Liman. 2003. Intraceuar Ca2+ and the phosphoipid PIP2reguate the taste transduction ion channe TRPM5. Proc. Natl. Acad. Sci.USA. 100:1516015165.doi:10.1073/pnas.2334159100

    Locovei, S., J. Wang, and G. Dah. 2006. Activation o pannexin 1 channes byATP through P2Y receptors and by cytopasmic cacium. FEBS Lett.580:239244. doi:10.1016/j.ebset.2005.12.004

    LopezJimenez, N.D., M.M. Cavenagh, E. Sainz, M.A. Cruz-Ithier, J.F.Battey, and S.L. Suivan. 2006. Two members o the TRPP amiyo ion channes, Pkd13 and Pkd21, are co-expressed in a subset o

    Cui, M., P. Jiang, E. Maiet, M. Max, R.F. Margoskee, and R. Osman. 2006.The heterodimeric sweet taste receptor has mutipe potentia i-gand binding sites. Curr. Pharm. Des. 12:45914600. doi:10.2174/138161206779010350

    Damak, S., M. Rong, K. Yasumatsu, Z. Kokrashvii, V. Varadarajan, S. Zou, P.Jiang, Y. Ninomiya, and R.F. Margoskee. 2003. Detection o sweet andumami taste in the absence o taste receptor T1r3. Science. 301:850853.doi:10.1126/science.1087155

    Dando, R., and S.D. Roper. 2009. Ce-to-ce communication in intact tastebuds through ATP signaing rom pannexin 1 gap junction hemichannes.J. Physiol. 587:58995906. doi:10.1113/jphysio.2009.180083

    DeFazio, R.A., G. Dvoryanchikov, Y. Maruyama, J.W. Kim, E. Pereira, S.D.Roper, and N. Chaudhari. 2006. Separate popuations o receptor cesand presynaptic ces in mouse taste buds. J. Neurosci. 26:39713980.doi:10.1523/JNEUROSCI.0515-06.2006

    Di Lorenzo, P.M., J.Y. Chen, and J.D. Victor. 2009. Quaity time: representa-tion o a mutidimensiona sensory domain through tempora coding.J. Neurosci. 29:92279238. doi:10.1523/JNEUROSCI.5995-08.2009

    Dotson, C.D., S.D. Roper, and A.C. Spector. 2005. PLCbeta2-independent be-haviora avoidance o prototypica bitter-tasting igands. Chem. Senses.30:593600. doi:10.1093/chemse/bji053

    Dotson, C.D., L. Zhang, H. Xu, Y.K. Shin, S. Vigues, S.H. Ott, A.E. Eson,H.J. Choi, H. Shaw, J.M. Egan, et a. 2008. Bitter taste receptors inu-ence gucose homeostasis. PLoS One. 3:e3974. doi:10.1371/journa.pone.0003974

    Drayna, D. 2005. Human taste genetics. Annu. Rev. Genomics Hum. Genet.6:217235. doi:10.1146/annurev.genom.6.080604.162340

    Dvoryanchikov, G., S.M. Tomchik, and N. Chaudhari. 2007. Biogenic aminesynthesis and uptake in rodent taste buds.J. Comp. Neurol. 505:302313.doi:10.1002/cne.21494

    Dvoryanchikov, G., M.S. Sincair, I. Perea-Martinez, T. Wang, and N. Chaudhari.2009. Inward rectifer channe, ROMK, is ocaized to the apica tips ogia-ike ces in mouse taste buds. J. Comp. Neurol. 517:114. doi:10.1002/cne.22152

    Farbman, A.I. 1965. Fine structure o the taste bud.J. Ultrastruct. Res. 12:328350. doi:10.1016/S0022-5320(65)80103-4

    Finger, T.E., V. Daniova, J. Barrows, D.L. Barte, A.J. Vigers, L. Stone, G.Heekant, and S.C. Kinnamon. 2005. ATP signaing is crucia or com-munication rom taste buds to gustatory nerves. Science. 310:14951499.doi:10.1126/science.1118435

    Foriano, W.B., S. Ha, N. Vaidehi, U. Kim, D. Drayna, and W.A. Goddard III.2006. Modeing the human PTC bitter-taste receptor interactions with bit-ter tastants.J. Mol. Model. 12:931941. doi:10.1007/s00894-006-0102-6

    Frank, M.E., R.F. Lundy Jr., and R.J. Contreras. 2008. Cracking taste codes bytapping into sensory neuron impuse trafc. Prog. Neurobiol. 86:245263. doi:10.1016/j.pneurobio.2008.09.003

    Gao, N., M. Lu, F. Echeverri, B. Laita, D. Kaabat, M.E. Wiiams, P. Hevezi, A.Zotnik, and B.D. Moyer. 2009. Votage-gated sodium channes in tastebud ces.BMC Neurosci. 10:20. doi:10.1186/1471-2202-10-20

    Giduck, S.A., R.M. Threatte, and M.R. Kare. 1987. Cephaic reexes: their roein digestion and possibe roes in absorption and metaboism. J. Nutr.117:11911196.

    Gibertson, T.A. 1998. Gustatory mechanisms or the detection o at. Curr.Opin. Neurobiol. 8:447452. doi:10.1016/S0959-4388(98)80030-5

    Gibertson, T.A., J.D. Boughter Jr., H. Zhang, and D.V. Smith. 2001. Distributiono gustatory sensitivities in rat taste ces: whoe-ce responses to apicachemica stimuation.J. Neurosci. 21:49314941.

    Gibertson, T.A., L. Liu, I. Kim, C.A. Burks, and D.R. Hansen. 2005. Fatty acidresponses in taste ces rom obesity-prone and -resistant rats. Physiol.Behav. 86:681690. doi:10.1016/j.physbeh.2005.08.057

    Graber, M., and S. Keeher. 1988. Side eects o acetazoamide: the champagne

    bues.Am. J. Med. 84:979980. doi:10.1016/0002-9343(88)90091-5Heath, T.P., J.K. Meichar, D.J. Nutt, and L.F. Donadson. 2006. Human taste

    threshods are moduated by serotonin and noradrenaine. J. Neurosci.26:1266412671. doi:10.1523/JNEUROSCI.3459-06.2006

    Heck, G.L., S. Mierson, and J.A. DeSimone. 1984. Sat taste transduction oc-curs through an amioride-sensitive sodium transport pathway. Science.223:403405. doi:10.1126/science.6691151

    Heekant, G., Y. Ninomiya, and V. Daniova. 1997. Taste in chimpanzees II:singe chorda tympani fbers. Physiol. Behav. 61:829841. doi:10.1016/S0031-9384(96)00562-8

    Huang, A.L., X. Chen, M.A. Hoon, J. Chandrashekar, W. Guo, D. Trnkner, N.J.Ryba, and C.S. Zuker. 2006. The ces and ogic or mammaian sour tastedetection.Nature. 442:934938. doi:10.1038/nature05084

    Huang, L., Y.G. Shanker, J. Dubauskaite, J.Z. Zheng, W. Yan, S. Rosenzweig, A.I.Spieman, M. Max, and R.F. Margoskee. 1999. Ggamma13 coocaizes

    Published August 9, 2010

    http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/15981http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2010.191106http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.4187-08.2008http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2008.151233http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.2351-09.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0611280104http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0602702103http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.M406779200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.M406779200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.190066697http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1399-0004.2004.00361.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Thttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1053/j.gastro.2009.02.070http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19980817)398:1%3C13::AID-CNE2%3E3.0.CO;2-Chttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19980817)398:1%3C13::AID-CNE2%3E3.0.CO;2-Chttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1172/JCI25299http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1046/j.1460-9568.2000.00207.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1046/j.1460-9568.2000.00207.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.072090199http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19990315)405:3%3C406::AID-CNE10%3E3.0.CO;2-Fhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19990315)405:3%3C406::AID-CNE10%3E3.0.CO;2-Fhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1152/jn.01198.2003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/7377http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35093032http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.2334159100http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.febslet.2005.12.004http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2174/138161206779010350http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2174/138161206779010350http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1087155http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2009.180083http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.0515-06.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.5995-08.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bji053http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0003974http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0003974http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1146/annurev.genom.6.080604.162340http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.21494http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.22152http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.22152http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(65)80103-4http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1118435http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/s00894-006-0102-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.pneurobio.2008.09.003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1186/1471-2202-10-20http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0959-4388(98)80030-5http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.physbeh.2005.08.057http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/0002-9343(88)90091-5http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.3459-06.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.6691151http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0031-9384(96)00562-8http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0031-9384(96)00562-8http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature05084http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature05084http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0031-9384(96)00562-8http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0031-9384(96)00562-8http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.6691151http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.3459-06.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/0002-9343(88)90091-5http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.physbeh.2005.08.057http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0959-4388(98)80030-5http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1186/1471-2202-10-20http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.pneurobio.2008.09.003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/s00894-006-0102-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1118435http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(65)80103-4http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.22152http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.22152http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.21494http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1146/annurev.genom.6.080604.162340http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0003974http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0003974http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bji053http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.5995-08.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.0515-06.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2009.180083http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1126/science.1087155http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2174/138161206779010350http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2174/138161206779010350http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.febslet.2005.12.004http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.2334159100http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35093032http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/7377http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1152/jn.01198.2003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19990315)405:3%3C406::AID-CNE10%3E3.0.CO;2-Fhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19990315)405:3%3C406::AID-CNE10%3E3.0.CO;2-Fhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.072090199http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1046/j.1460-9568.2000.00207.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1046/j.1460-9568.2000.00207.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1172/JCI25299http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19980817)398:1%3C13::AID-CNE2%3E3.0.CO;2-Chttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19980817)398:1%3C13::AID-CNE2%3E3.0.CO;2-Chttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1053/j.gastro.2009.02.070http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Thttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1399-0004.2004.00361.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.190066697http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.M406779200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.M406779200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0602702103http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.0611280104http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.2351-09.2009http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2008.151233http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.4187-08.2008http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2010.191106http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/15981
  • 7/29/2019 taste cell

    12/13

    29Cells, synapses, and signals in taste buds Chaudhari and Roper

    Rehnberg, B.G., B.I. MacKinnon, T.P. Hettinger, and M.E. Frank. 1993. Anionmoduation o taste responses in sodium-sensitive neurons o the ham-ster chorda tympani nerve. J. Gen. Physiol. 101:453465. doi:10.1085/jgp.101.3.453

    Richter, T.A., G.A. Dvoryanchikov, N. Chaudhari, and S.D. Roper. 2004. Acid-sensitive two-pore domain potassium (K2P) channes in mouse tastebuds.J. Neurophysiol. 92:19281936. doi:10.1152/jn.00273.2004

    Roberts, C.D., G. Dvoryanchikov, S.D. Roper, and N. Chaudhari. 2009.Interaction between the second messengers cAMP and Ca2+ in mousepresynaptic taste ces. J. Physiol. 587:16571668. doi:10.1113/jphysio.2009.170555

    Ros, E.T. 2006. Brain mechanisms underying avour and appetite. Philos.Trans. R. Soc. Lond. B Biol. Sci. 361:11231136. doi:10.1098/rstb.2006.1852

    Ros, E.T., and L.L. Bayis. 1994. Gustatory, oactory, and visua convergencewithin the primate orbitoronta cortex.J. Neurosci. 14:54375452.

    Romanov, R.A., O.A. Rogachevskaja, M.F. Bystrova, P. Jiang, R.F. Margoskee,and S.S. Koesnikov. 2007. Aerent neurotransmission mediated by hemi-channes in mammaian taste ces. EMBO J. 26:657667. doi:10.1038/sj.emboj.7601526

    Roper, S.D. 2007. Signa transduction and inormation processing in mammaiantaste buds. Pfugers Arch. 454:759776. doi:10.1007/s00424-007-0247-x

    Roper, S.D. 2009. Parae processing in mammaian taste buds? Physiol. Behav.97:604608. doi:10.1016/j.physbeh.2009.04.003

    Rsser, P., C. Kroner, J. Freitag, J. No, and H. Breer. 1998. Identifcationo a phosphoipase C beta subtype in rat taste ces. Eur. J. Cell Biol.77:253261.

    Royer, S.M., and J.C. Kinnamon. 1991. HVEM seria-section anaysis o rabbitoate taste buds. I. Type III ces and their synapses. J. Comp. Neurol.306:4972.

    Rozengurt, E., and C. Sternini. 2007. Taste receptor signaing in the mammaiangut. Curr. Opin. Pharmacol. 7:557562. doi:10.1016/j.coph.2007.10.002

    Ruiz, C., S. Gutknecht, E. Deay, and S. Kinnamon. 2006. Detection oNaC and KC in TRPV1 knockout mice. Chem. Senses. 31:813820.doi:10.1093/chemse/bj024

    Ruiz-Avia, L., S.K. McLaughin, D. Widman, P.J. McKinnon, A. Robichon,N. Spickosky, and R.F. Margoskee. 1995. Couping o bitter receptorto phosphodiesterase through transducin in taste receptor ces. Nature.376:8085. doi:10.1038/376080a0

    San Gabrie, A., T. Maekawa, H. Uneyama, and K. Torii. 2009. Metabotropicgutamate receptor type 1 in taste tissue.Am. J. Clin. Nutr. 90:743S746S.doi:10.3945/ajcn.2009.27462I

    Scaani, A., K. Ackro, and N.A. Abumrad. 2007. CD36 gene deetion reducesat preerence and intake but not post-ora at conditioning in mice.Am. J.

    Physiol. Regul. Integr. Comp. Physiol. 293:R1823R1832.Shigemura, N., S. Shirosaki, K. Sanematsu, R. Yoshida, and Y. Ninomiya. 2009.

    Genetic and moecuar basis o individua dierences in human umamitaste perception. PLoS One. 4:e6717. doi:10.1371/journa.pone.0006717

    Shin, Y.K., B. Martin, E. Goden, C.D. Dotson, S. Maudsey, W. Kim, H.J.Jang, M.P. Mattson, D.J. Drucker, J.M. Egan, and S.D. Munger. 2008.Moduation o taste sensitivity by GLP-1 signaing. J. Neurochem.106:455463. doi:10.1111/j.1471-4159.2008.05397.x

    Simon, S.A. 1992. Inuence o tight junctions on the interaction o sats withingua epitheia: responses o chorda tympani and ingua nerves. Mol.Cell. Biochem. 114:4348. doi:10.1007/BF00240296

    Simon, S.A., I.E. de Araujo, R. Gutierrez, and M.A. Nicoeis. 2006. The neu-ra mechanisms o gustation: a distributed processing code. Nat. Rev.Neurosci. 7:890901. doi:10.1038/nrn2006

    Simons, C.T., J.M. Dessirier, M.I. Carstens, M. OMahony, and E. Carstens. 1999.Neurobioogica and psychophysica mechanisms underying the orasensation produced by carbonated water.J. Neurosci. 19:81348144.

    Sincair, M.S., I. Perea-Martinez, G. Dvoryanchikov, M. Yoshida, K. Nishimori,S.D. Roper, and N. Chaudhari. 2010. Oxytocin Signaing in Mouse TasteBuds. PLoS One. In press.

    Sma, D.M., and J. Prescott. 2005. Odor/taste integration and the perception oavor.Exp. Brain Res. 166:345357. doi:10.1007/s00221-005-2376-9

    Sma, D.M., G. Bender, M.G. Vedhuizen, K. Rudenga, D. Nachtiga, andJ. Fested. 2007. The roe o the human orbitoronta cortex in tasteand avor processing.Ann. N. Y. Acad. Sci. 1121:136151. doi:10.1196/annas.1401.002

    Stone, L.M., T.E. Finger, P.P.L. Tam, S.-S. Tan, P.P. Tam, and S.S. Tan.1995. Taste receptor ces arise rom oca epitheium, not neurogenicectoderm. Proc. Natl. Acad. Sci. USA. 92:19161920. doi:10.1073/pnas.92.6.1916

    Takeda, M., and K. Kitao. 1980. Eect o monoamines on the taste buds in themouse. Cell Tissue Res. 210:7178. doi:10.1007/BF00232142

    taste receptor ces. J. Neurochem. 98:6877. doi:10.1111/j.1471-4159.2006.03842.x

    Lya, V., R.I. Aam, D.Q. Phan, G.L. Ereso, T.H. Phan, S.A. Maik, M.H.Montrose, S. Chu, G.L. Heck, G.M. Fedman, and J.A. DeSimone.2001. Decrease in rat taste receptor ce intraceuar pH is the proxi-mate stimuus in sour taste transduction. Am. J. Physiol. Cell Physiol.281:C1005C1013.

    Margoskee, R.F. 2002. Moecuar mechanisms o bitter and sweet taste trans-duction.J. Biol. Chem. 277:14. doi:10.1074/jbc.R100054200

    Maruyama, Y., E. Pereira, R.F. Margoskee, N. Chaudhari, and S.D. Roper. 2006.

    Umami responses in mouse taste ces indicate more than one receptor.J. Neurosci. 26:22272234. doi:10.1523/JNEUROSCI.4329-05.2006

    Matsunami, H., J.P. Montmayeur, and L.B. Buck. 2000. A amiy o candidatetaste receptors in human and mouse.Nature. 404:601604. doi:10.1038/35007072

    Mattes, R.D. 1997. Physioogic responses to sensory stimuation by ood:nutritiona impications. J. Am. Diet. Assoc. 97:406413. doi:10.1016/S0002-8223(97)00101-6

    Mattes, R.D. 2009. Is there a atty acid taste? Annu. Rev. Nutr. 29:305327.doi:10.1146/annurev-nutr-080508-141108

    Max, M., Y.G. Shanker, L. Huang, M. Rong, Z. Liu, F. Campagne, H. Weinstein,S. Damak, and R.F. Margoskee. 2001. Tas1r3, encoding a new candidatetaste receptor, is aeic to the sweet responsiveness ocus Sac.Nat. Genet.28:5863. doi:10.1038/88270

    McKemy, D.D., W.M. Neuhausser, and D. Juius. 2002. Identifcation o a codreceptor reveas a genera roe or TRP channes in thermosensation.Nature. 416:5258. doi:10.1038/nature719

    Meder, K.F., R.F. Margoskee, and S.C. Kinnamon. 2003. Eectrophysioogicacharacterization o votage-gated currents in defned taste ce types omice.J. Neurosci. 23:26082617.

    Meyerho, W., C. Batram, C. Kuhn, A. Brockho, E. Chudoba, B. Bue, G.Appendino, and M. Behrens. 2010. The moecuar receptive rangeso human TAS2R bitter taste receptors. Chem. Senses. 35:157170.doi:10.1093/chemse/bjp092

    Michig, S., S. Damak, and J. Le Coutre. 2007. Caudin-based permeabiity barriersin taste buds.J. Comp. Neurol. 502:10031011. doi:10.1002/cne.21354

    Mier, I.J. 1995. Anatomy o the periphera taste system. In Handbooko Oaction and Gustation. R.L. Doty, editor. Marce Dekker, NY.521547.

    Mier, P., and D.B. Katz. 2010. Stochastic transitions between neura statesin taste processing and decision-making. J. Neurosci. 30:25592570.doi:10.1523/JNEUROSCI.3047-09.2010

    Mueer, K.L., M.A. Hoon, I. Erenbach, J. Chandrashekar, C.S. Zuker, andN.J. Ryba. 2005. The receptors and coding ogic or bitter taste.Nature.

    434:225229. doi:10.1038/nature03352Murray, R.G. 1973. The utrastructure o taste buds. In The Utrastructure o

    Sensory Organs. I. Friedmann, editor. North Hoand, Amsterdam. 181.

    Murray, R.G. 1993. Ceuar reations in mouse circumvaate taste buds.Microsc.Res. Tech. 26:209224. doi:10.1002/jemt.1070260304

    Murray, R.G., A. Murray, and S. Fujimoto. 1969. Fine structure o gustatoryces in rabbit taste buds. J. Ultrastruct. Res. 27:444461. doi:10.1016/S0022-5320(69)80043-2

    Nakamura, Y., K. Sanematsu, R. Ohta, S. Shirosaki, K. Koyano, K. Nonaka, N.Shigemura, and Y. Ninomiya. 2008. Diurna variation o human sweettaste recognition threshods is correated with pasma eptin eves.Diabetes. 57:26612665. doi:10.2337/db07-1103

    Neson, G., M.A. Hoon, J. Chandrashekar, Y. Zhang, N.J. Ryba, and C.S.Zuker. 2001. Mammaian sweet taste receptors. Cell. 106:381390.doi:10.1016/S0092-8674(01)00451-2

    Neson, G., J. Chandrashekar, M.A. Hoon, L. Feng, G. Zhao, N.J. Ryba, andC.S. Zuker. 2002. An amino-acid taste receptor. Nature. 416:199202.

    doi:10.1038/nature726

    Neson, T., N.D. LopezJimenez, L. Tessaroo, M. Inoue, A. Bachmanov, andS.L. Suivan. 2010. Taste unction in mice with a targeted mutation o thePkd1l3 gene. Chem. Senses. In press. doi:10.1093/chemse/bjq070

    Okubo, T., C. Cark, and B.L. Hogan. 2009. Ce ineage mapping o taste budces and keratinocytes in the mouse tongue and sot paate. Stem Cells.27:442450. doi:10.1634/stemces.2008-0611

    Prez, C.A., L. Huang, M. Rong, J.A. Kozak, A.K. Preuss, H. Zhang, M.Max, and R.F. Margoskee. 2002. A transient receptor potentia chan-ne expressed in taste receptor ces. Nat. Neurosci. 5:11691176.doi:10.1038/nn952

    Pumpin, D.W., C. Yu, and D.V. Smith. 1997. Light and dark ces o rat va-ate taste buds are morphoogicay distinct ce types.J. Comp. Neurol.378:389410. doi:10.1002/(SICI)1096-9861(19970217)378:33.0.CO;2-#

    Published August 9, 2010

    http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1085/jgp.101.3.453http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1085/jgp.101.3.453http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1152/jn.00273.2004http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2009.170555http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1113/jphysiol.2009.170555http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1098/rstb.2006.1852http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1098/rstb.2006.1852http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/sj.emboj.7601526http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/sj.emboj.7601526http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/s00424-007-0247-xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.physbeh.2009.04.003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.coph.2007.10.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjl024http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/376080a0http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Ihttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0006717http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2008.05397.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/BF00240296http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nrn2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/s00221-005-2376-9http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1196/annals.1401.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1196/annals.1401.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.92.6.1916http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.92.6.1916http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/BF00232142http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2006.03842.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2006.03842.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.R100054200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.4329-05.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35007072http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35007072http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0002-8223(97)00101-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0002-8223(97)00101-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1146/annurev-nutr-080508-141108http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/88270http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature719http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjp092http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.21354http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.3047-09.2010http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature03352http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/jemt.1070260304http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(69)80043-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(69)80043-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2337/db07-1103http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(01)00451-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature726http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjq070http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1634/stemcells.2008-0611http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nn952http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19970217)378:3%3C389::AID-CNE7%3E3.0.CO;2-#http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19970217)378:3%3C389::AID-CNE7%3E3.0.CO;2-#http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19970217)378:3%3C389::AID-CNE7%3E3.0.CO;2-#http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/(SICI)1096-9861(19970217)378:3%3C389::AID-CNE7%3E3.0.CO;2-#http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nn952http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1634/stemcells.2008-0611http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjq070http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature726http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0092-8674(01)00451-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.2337/db07-1103http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(69)80043-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0022-5320(69)80043-2http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/jemt.1070260304http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature03352http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.3047-09.2010http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1002/cne.21354http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjp092http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nature719http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/88270http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1146/annurev-nutr-080508-141108http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0002-8223(97)00101-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/S0002-8223(97)00101-6http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35007072http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/35007072http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1523/JNEUROSCI.4329-05.2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1074/jbc.R100054200http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2006.03842.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2006.03842.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/BF00232142http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.92.6.1916http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1073/pnas.92.6.1916http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1196/annals.1401.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1196/annals.1401.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/s00221-005-2376-9http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/nrn2006http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007/BF00240296http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1111/j.1471-4159.2008.05397.xhttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1371/journal.pone.0006717http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.3945/ajcn.2009.27462Ihttp://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1038/376080a0http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1093/chemse/bjl024http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.coph.2007.10.002http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.physbeh.2009.04.003http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1007