target system, targets in operation • temperature monitoring … ·  · 2010-10-09rotating disk...

24
2010/09/13-17 INTDS2010 @ TRIUMF RIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 1 Beam spot temperature monitoring on production target of BigRIPS separator Target system, targets in operation Temperature monitoring under high-radiation environment Recent temperature data & comparison with simulations (preliminary) Atsushi Yoshida & Yoshiyuki Yanagisawa (BigRIPS team, RIKEN)

Upload: phamhanh

Post on 23-Apr-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 1

Beam spot temperature monitoring onproduction target of BigRIPS separator

• Target system, targets in operation• Temperature monitoring

under high-radiation environment• Recent temperature data &

comparison with simulations (preliminary)

Atsushi Yoshida & Yoshiyuki Yanagisawa(BigRIPS team, RIKEN)

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 2

RRCfRC

IRC

SRC

400

300

200

100

0

1 40 80 120 160 200 240

H O Ar Kr Xe Bi U

Atomic Mass

RRC

with fRC (IRC)

with fRC (SRC) 350 MeV/nucleonU88+ (8Tm)

BigRIPS

1 p μA (goal)

(Max. beam power)238U beam 350MeV/A, 1pμA : 83kWbeam spot size 1mm (FWHM),

on Be,W ~1g/cm2 ΔE= 24kWatt31GW/m2 : on the surface of the target5.5kW/mm3 (5.5MW/cm3) : inside the target

In-flight RI-beam separator

Production Target (Fragmentation reaction)

Linac

RIBF (RI-beam factory)En

ergy

(MeV

/nuc

leon

)

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 3

Schematic view of rotating disk target with water-cooling

Rotating disk target unit for BigRIPS

Air-press. Box

Target vacuum chamber

( Components )•Rotating solid target disk

to dissipate the heat of the beam spot• Water-cooled disk

to remove heat from the target disk• Rotating actuator & motor

to rotate the disks in high speed ~ 500rpm•Double-piped shaft & rotary joint

to introduce cooling water into the rotating disks.

double-piped shaft

water-cooled disk

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 4

Core unit : Removable target flange unit

Rotating disk target unit

Removable target flange unitweight ~ 500 kg

slide

slide

Rot. Disk target

Ladder shapedFixed target

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 5

Target disks

Disk materials : Be , W are ready for exp.

Step shaped edge20,15,10 mm thick

for N, Ca, Ar beams 10, 7, 5 mm thick

for Kr, Xe, U beams

Be disk Diameter : 300 mm(Thickness : max 20mm)

Be disk mounted on a disk unitmin 100 ~ max 1000rpm

Be tapered targets

Diameter : ~ 20 mmThickness : 1 ~ 20, ~ 60 mm

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 6

Target list used for experiments

ΔE= 24kWstill far from the goal

Primary beam Targets used Target used for intense beamDate M.T. Beam Imax Power for the experiment d:thick,R:range Energy loss

period [MeV/A] [pnA] [kW] Material,Thick.[mm] shape d[mm] d/R [GeV] [kW]

Mar,07 2wk 86 Kr 345 ~3 0.1 Be2, 12 Be Fixed 12.0 0.42 8.48 0.025Mar,07 2wk 238 U 345 0.002 0.000 Be2, 5 Pb1.5 Pb Fixed 1.5 0.39 24.48 0.000May,07 3wk 238 U 345 0.02 0. 002 Be2, 5, 7 Pb1.5 Pb Fixed 1.5 0.39 24.48 0.000Jun,07 2wk 238 U 345 0.005 0.000 Be0.1, 5, 7 Pb1.5 Be Fixed 7.0 0.48 29.14 0.000Nov,08 2wk 238 U 345 0.2 0. 016 Be3, 5, Pb 1+Al Pb Fixed 1.0 0.26 16.35 0.003Dec,08 2.5wk 48 Ca 345 200 3.3 Be5, 10, 15, 20 Be Disk 20.0 0.39 4.30 0.860Mar,09 1wk 14 N 250 0.1 0. 000 Be12, 20 Be Fixed 12.0 0.17 0.36 0.000May,09 2wk 14 N 345 0.1 0. 000 Be20 Be Fixed 20.0 0.16 0.50 0.000

Nov,09 3wk 238 U 345 0.2 0. 016 Be3, 5, Be1.2+A l Be Fixed 5.0 0.34 20.14 0.004Dec,09 1wk 48 Ca 345 200 3.3 Be10, 15, 20, 40 Be Disk 20.0 0.39 4.30 0.860May,10 4wk 48 Ca 345 200 3.3 Be10, 15, W2.1 Be Disk 15.0 0.29 3.16 0.631

W Disk 2.1 0.27 3.01 0.602Jun,10 1.5wk 18 O 345 450 2.8 Be40, 60 Be Fixed 60.0 0.50 2.11 0.950

Be Fixed 40.0 0.33 1.35 0.608

Goal: 238U beam 350MeV/u, 1pμA, Power = 83kW

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 7

Target : BeBeam Spot radi : 0.5mmWater Cool radi : 5.0mm

10

100

1000

10000

0.001 0.01 0.1 1.Primary Beam [puA]

Bea

m S

pot T

emp

[C] U

XeKrArNeOC

Tmp(Be) =1278C

d/R0.80.50.2

Ar

NeO

C

Fixed target

UXe

Kr

31

17

11

6

3

2

[kW/1pμA]

Beam spot monitoring

* Estimation for beam spot temperature

* Difficultiestemp. measurement in vacuum & rotating

Infra-red thermometerunder high-radiation environment

telescope + mirrors, fiber optics

Target thickness

Beam350MeV/A

* It should be check experimentally from early stage.Stability of target should be monitored during exp.

develop beam spot temperature monitors

Beam : U 350A.MeV --> Target : Be

10

100

1000

10000

0.001 0.01 0.1 1. 10.Primary Beam [puA]

Bea

m S

pot T

emp

[C]

Fixed targetRotating Disk

Tmp(Be) =1278C

Fixed vs. Rotating disk target

gain x10

Rotating disktarget

Fixi

ngpl

ate

( alum

inum

)

Coolin

gpla

te

(alu

minum

)

Target

plat

e

(ca

rbon

)

Cooli

ngwa

ter

( 25℃

)

Beamaxis

1cm

1cm

disk

rotation

ANSYS (FEM code) simulation

Ref.) NIM A521(2004)65-71, INTDS conf. 2002, ANLFragment separator Expert meeting, 2004 GSI, 2006 Riken Riken Acc.Prog.Rep. 41(2008)high-light vii.

FixedTarget

RotatingDisk

Target

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 8

Target chamber

STQ

1 m

agne

t

Beam

Beam

Unit-2

Unit-1

View portfor

beam spotmonitoring

( Pill

ow se

al )

upperview

sideview

Pump unitAlignment

table

(1) Fiber

(2) CCD

(3) IR, Telescope

(2) (3)(1)

(3)

CCD

CCD

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 9

Beam Time : 2010 05/14 – 06/1148Ca20+ 345A.MeV max ~ 300pnA

CCD camera : Radiation damage

5/19 15h 5/21 14h 5/24 10h 5/25 11h05/14 10h Exp. start 5/18 17h

CCD

Beam

CCD

1m

1day 2daystart 3day 7day 10day ~ ~ ~ End : 27day

Primary beam tuning

Secondary beam tuningfor RI beam production

Experiments start

become blind

CCD camera @ port (2)is used for checking

proper motions of targets mechanics

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 10

Dose rate (calc)

Beam spot temperature monitors

Target

Mirror

Visible Light View I.R. Light View

84Kr 345A.MeV 3pnA --> Be 12mm

Beam Viewer : Desmarquest

Beam spot CCD & Thermo viewer ( former location)

CCD camera

TVS-8502

Laser pointer

IR monitor~1mSv/h

Dis

tanc

e ~1

1m

Fiber Sensor~1μSv/h

Fiber scope Temperature monitor

Dis

tanc

e ~3

5m

(calc.) Beam: 84Kr 350A.MeV 1pμABeam Loss :F0=30%,D1=60%,F1=1.6%

CCD~10Sv/h

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 11

IR Fiber Scope

Lens unit

Detector & Controller

Sapphire view port & Lenz unitmounted on the Target chamber

measure an average temp. in a circle of 5mm dia. on an object placed at 1120mm from the lens unit

Fiber

Chino (Japan) www.chino.co.jp

IR-FAIX43 200 ~ 500 ℃InGaAs(1.55μm)

IR-FAQIX06 500 ~ 1100 ℃InGaAs(1.55)/InGaAs(1.35μm)

φ16 x L 116 mmobject distance

~1120mm φ5mm

40+2m longQuarts 400μm dia.

IR Sensor & Controller unitsplaced at 40m from the target

switch connection

Laser spot indicatormeasuring position checkusing Laser spot indicator

actual beam spot~ φ1mm

during experiments

measuring area~ φ5mm

IR Fiber Scope isused for

beam spot temperature monitoringduring whole exp. period

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 12

170

190

210

230

250

270

06/25

18:0

0

06/26

06:0

0

06/26

18:0

0

06/27

06:0

0

06/27

18:0

0

Fib

er

Scope T

em

p. [C

]

18O8+ 345A.MeV Be 60mm (taper shape)Beam spot temperature measured

Beam Current

IR Fiber Scope

IR-FAIX43 ( 200 ~ 500 ℃)

IR-FAQIX06 (500 ~ 1100 ℃)InGaAs(1.55)/InGaAs(1.35μm)

Temp. calibration (ε=1.00)

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 100 200 300 400 500 600 700

Heater [C]

CH

INO

Raw

Data

500

550

600

650

700

750

CH

INO

Tem

p [

C]

Light=OFF 1.35um

Light=OFF 1.55um

Light=ON 1.35um

Light=ON 1.55um

Light=OFF ℃

Light=ON ℃

Room lightON

Room lightOFF

IR sensor output signal (measured)

[ arb

. Uni

t ]

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 13

IR Thermo Viewer

TVS-8502, Avio (Japan) www.avio.co.jp+ TVL-85626A telescope lens InSbFPA 256x256 array (3.5 ~ 4.1&4.5 ~ 5.1μm twin peak) Stirling cooler40 ~ 1000℃ (~ 2000℃ ND filter)Object 11m distance, ~ 30x30mmImage 256x236 dots, 14bitFrame rate 1/120sec, IEEE1394 (1/30sec)Lens : φ168mm, F4.0, f=626mm, Ge & Si

Telescope lens

Zoom lensCCD camera

TVS-8502

Laser pointer + focus lens

Visible

I.R.

Spotcheck

Mirrorφ150mm, Al-coatingsurf. smoothness < 20μmreflectivity > 95% for 3 ~ 5μm

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 14

IR Thermo Viewer : Radiation shield improved

Target chamber

mirror - 1

through sapphire view port2.5 m

along access tunnelhorizontal 8.5 m

former location

mirror – 3

shielding box Total 15m

Telescope + CCD

moved here !

mirror – 2

make a holethrough the ceiling

vertical 2 m

thermo viewer

radiation level( 48Ca 100pnA )

γ 27μSv/hn-slow 20μn-fast 530μ

in shielding box γ 10μSv/h

~1mSv/h

~10μSv/h

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 15

(front side view)

heater wire

Be plate

Temperature calibration using heater

TC

hole for TC

put W foil 0.1mm

Black paintε=0.94

R31_300C-Loff-R40_300-001.jpg

W side

Be side

during experiment ( set ε=1.0 ), alsofor Be: use ① Be curve for W: use ⑤ W curve

Heater Calibration(AvioRange -40 ~ 150℃)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 50 100 150 200

Heater Temperature [C]

Avi

o : m

eas

ure

d te

mpe

ratu

re [

C]

①Be center

②Be shine

③Be black

④Be black

⑤W shine

⑥W black

⑦W black

blackpaint

Be

W

if ε

= 1

.0

Calibration data ( set ε=1.0 )

ε(Be)calib. =0.10~0.13

③④

⑤⑥

In order to reduce an ambiguity of emissivity (ε ) on target surface, the thermo viewer was calibrated using a heater unit in vacuum.

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 16

used for 48Ca beam : 345 A.MeV max 300pnA for 18O beam : 345 A.MeV max 400pnA

before exp.

Fixed targets

Be10mm

Be40mm

Be40mm

Water way5x4mm R13.5mm

Holder

thick20mm

Be targetφ22

taper shape

Fix plateAl t 5mm

Geometry (ANSYS modeling)

after exp.

Thermo seal >100C, <125C

Thermo seal >50C, <100C beam spot

~φ2mm

beam spot~φ3mm

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 17

℃100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

G1: Beam SpotG2: Al plate

G1

G2

G1

G2

R002_Be40Tp-Rng150c-G01-3500enA-Loff

18O 8+ beam : 345 A.MeV 438pnA (3500enA) Be 40mm thick (taper shape)

G1

G2

Temp.(non-calibrated)

Fixed target ; temperature data magnified view

whole view

18O R002: Be40Tp 438pnA ini_temp=25C

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250

Time [sec]

Beam

Spot

[C

]

BeamSpotBmSpt-ANSYSBmSpt-AnsStaticAlumPlateAlPlt-AnsysAlPlt-AnsStatic

G1:exp

G2:exp

G1: simulation

G2: simulation

Static analysis

Transientanalysis

Thermo Seal : 100~125C

(( ANSYS params ))Convection @ water way = 3kW/(m2.K)

contact @ target taper= 100kW/(m2.K)Water Temp = 25C fix

Therm. Coduct. Be = 180W/(m.K) fixAl = 239W/(m.K) fix

Radiation = offBeam Spot = φ3.0mm fwhm

(( Cooling water data ))Water Flow = 5.4L/min Flow speed = 0.45m/sWater Press = in 0.43 out 0.21 MPaWater Temp = in 25.5C, dT~1.0C = 378WattHeat = dE:1.35GeV*438pnA=591.3Watt

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 18

48Ca R015: Be10Tp 200pnA ini_temp=50C

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250Time [sec]

Beam

Spot

[C]

BeamSpotBmSpt-ANSYSBmSpt-AnsStaticAlumPlateAlPlt-AnsysAlPlt-AnsStatic

G1: Beam SpotG2: Al plate

G1

G2

G1

G2

R015_Be10Tp-G01-4000enA-BmOff-On-Loff

48Ca 20+ beam : 345 A.MeV 200pnA (4000enA) Be 10mm thick (taper shape)

G1

G2

Temp.(non-calibrated)

Fixed target ; temperature data

(( ANSYS params ))Convection @ water way = 3kW/(m2.K)

contact @ target taper= 100kW/(m2.K)Water Temp = 25C fix

Therm. Coduct. Be = 180W/(m.K) fixAl = 239W/(m.K) fix

Radiation = offBeam Spot = φ2.0mm fwhm

(( Cooling water data ))Water Flow = 1.8L/min Flow speed = 0.15m/sWater Press = in 0.35 out 0.28 MPaWater Temp = in 25.5C, dT~2.0C = 252WattHeat = dE:2.06GeV*200pnA=412.4Watt

G1:exp

G2:exp

G1: simulation

G2: simulation

Thermo Seal : 50~105C

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 19

Beam : 48Ca 345A.MeVTarget : Be 10mm (Taper)

y = 441.00 x + 40.12

0

50

100

150

200

250

0.0 0.1 0.2 0.3 0.4 0.5

I beam [puA]

Beam

Spot

Tem

p. [C

]

ExpC.Trg25C.Wtr25CA.Trg25CA.Wtr25CA.FitA.HtA.Hw,HtE Fit

φ2mm

checkANSYS vs Cyl.Model

Beam : 18O 345A.MeVTarget : Be 40mm (Taper)

y = 291.82 x + 46.35

0

50

100

150

200

250

0.0 0.1 0.2 0.3 0.4 0.5

I beam [puA]

Beam

Spot

Tem

p. [C

]

ExpC.Trg25C.Wtr25CA.Trg25CA.Wtr25CA.FitA.HtA.Hw,HtExpFit

Fixed target data ; compare with simulations

Spot sizeφ3mm

Be 40mm Taper side Thermal contact was good / bad ?

Beam

Qin[W]

Ltg[mm]

r 2[mm] Target Tr2 [℃] Tr1[℃]

r 1[mm]

Tr1 : Beam Spot Temp.= Tr2 + Qin*Ln(r2/r1) /(2πκLtg )

Qin = Ibeam * dE∝ dE / Ltg

(( Cylindrical model ))analytical model

checkANSYS vs Cyl.Model

(( ANSYS model ))3D model

Water way

Be 10mm, simple tapered shape, should correspond well with cylindrical model.

Thermal convection at Water way is too good?

A.Hw,Ht A.FitWater way : Hw = 30k 80k W /(m2.K)Taregt side : Ht = 100k 50k

Thermal contact( thermal convection )10kW/(m2.K) CPU heat-sink

Thermal co

nductivity

= ON

AHtHw = 25Cfix Ht = 100k

Ther

m. c

ond.

= O

N

Discrepancy at the Beam Off temperature Calibration wrong ? or other reasons ?

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 20

℃30.0

28.8

27.5

26.3

25.0

23.8

22.5

21.3

20.0

R047: Be15mm Disk 100rpm 3300enA

℃60.0

55.0

50.0

45.0

40.0

35.0

30.0

25.0

20.0

R024: W 2.1mm Disk 150rpm 3700enA

Rotating disk target ; temperature data

48Ca + Be 15 DiskR47 100rpm 165pnA

40

42

44

46

48

50

52

54

0 20 40 60 80 100 120 140 160

Time [sec]

Beam

Spot

[C]

R47_100rpm

min. rotation speed : 100rpm

W disk ; we could observed, but .. Beam spot temperature shows vibration.

ANSYS calculation for disk experimental data has not done yet. ( sorry )

Be disk ; we cold not observe temp. rise.

G1: Beam SpotG1

G148Ca + W2.1DiskR24 150rpm 185pnA

40

60

80

100

120

140

0 50 100 150 200 250

Time [sec]

Beam

Spot

[C]

R24_150rpm

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 21

48Ca + W2.1DiskR24 150rpm 185pnAR23 100rpm 190pnA

40

60

80

100

120

140

0 50 100 150 200 250

Time [sec]

Beam

Spot

[C]

Rotating disk target ; temperature data

The vibration synchronizewith its rotation speed.

Some componentof different temperature ?

150rpm

100rpm

Inner structure ofthe water-cooled disk

Water way

inlet

outlet

8 – screwsto fix

target disk

48Ca -> W2.1mm Disk

0

20

40

60

80

100

120

140

0.000 0.050 0.100 0.150 0.200

I beam [puA]

Beam

Spot

Tem

p. [C

]

Exp_W2.1Dk-100rpm

Exp_W2.1Dk-150rpm

Exp_W2.1Dk-300rpm

Changing disk rotation speed

a slit decrease of temperature observed

Because of using high speed thermo viewer,I could face a “real” cooling effect ofmy water-cooling target disk.

48Ca + W2.1DiskR24 150rpm 185pnAR23 100rpm 190pnA

95

100

105

110

115

120

125

130

135

100 101 102 103 104 105 106Time [sec]

Beam

Spot

[C]

R24_150rpm

R23_100rpm

Rot. Speed Temp. Vibration[Hz] Flame rate = 1/10sec

rpm rps points sec [Hz]150 2.50 4 0.40 2.50100 1.67 6 0.60 1.67

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 22

Target : WBeam 345MeV/ABeam Spot radi : 1mmWater Cool radi : 13.5mm

10

100

1000

10000

0.001 0.01 0.1 1 10Prim.Beam [puA]

Bea

m S

pot T

emp

[C]

UXeKrCaNeOCU-Disk

d/R0.80.50.2

Tmp(W) =3387C

( Fixed target ) U

Ca

O

Target : BeBeam 345 MeV/ABeam Spot radi : 1mmWater Cool radi : 13.5mm

10

100

1000

10000

0.001 0.01 0.1 1 10Prim.Beam [puA]

Bea

m S

pot T

emp

[C]

UXeKrCaNeOCU-Disk

Tmp(Be) =1278C

d/R0.80.50.2

Target material : Be vs. W

Beam

U

Xe

Ca

O

( Fixed target )

gain x10

( Disk target ) U

gain x10

( Disk target ) U

Although both target are energy loss equivalent thickness (d/R : thick / range = 0.2~0.8),why the beam spot temperature is different ?

Primary beam 238U 136Xe 86Kr 48Ca 22Ne 18O 13C energy 345 345 345 345 345 345 345 [MeV/A]

Target 7.3 10.3 14.3 25.6 47.0 60.0 77.1 [mm]thickness : Ltg *) 1.3 1.9 2.6 4.7 8.7 11.1 14.3 [g/cm2]Energy loss : dE 30.4 16.9 10.3 5.7 2.6 2.1 1.5 [kW/1pμA]*) Here, Ltg is selected as 50% of the stopping range of the primary beam.

Primary beam 238U 136Xe 86Kr 48Ca 22Ne 18O 13C energy 345 345 345 345 345 345 345 [MeV/A]

Target 1.1 1.5 2.1 3.9 7.1 9.0 11.6 [mm]thickness : Ltg *) 2.1 3.0 4.1 7.4 13.6 17.5 22.5 [g/cm2]Energy loss : dE 32.0 17.4 10.6 5.8 2.7 2.2 1.6 [kW/1pμA]

κ Tmp[W/(m.K)] [C]

Be 218 1278W 177 3387

ρ(Be) = 1.8 g/cm3 ρ(W) ~ 18.5 g/cm3

because, thickness & therm. conductivity are different

Because of this, I used W target for present week beam condition.

estimated goal point

puA

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 23

Target : W

10

100

1000

10000

0.001 0.01 0.1 1. 10. 100.

Heat Density [kW/mm]B

eam

spot

tem

p. [C

].

Target : Be

10

100

1000

10000

0.001 0.01 0.1 1. 10. 100.

Heat Density [kW/mm]

Bea

m sp

ot te

mp.

[C].

Target : Be

10

100

1000

10000

0.01 0.1 1. 10. 100.

Heat Load [kW]

Bea

m sp

ot te

mp.

[C].

Target : W

10

100

1000

10000

0.01 0.1 1. 10. 100.

Heat Load [kW]

Bea

m sp

ot te

mp.

[C].

Target : Be

10

100

1000

10000

0.001 0.01 0.1 1. 10.

Beam intensity [puA]

Bea

m sp

ot te

mp.

[C].

UCaOCa_Exp 10mmO_Exp 40mmU_Disk(ANSYS)

345MeV/A

Target : W

10

100

1000

10000

0.001 0.01 0.1 1. 10.

Beam intensity [puA]

Bea

m sp

ot te

mp.

[C].

U

Ca

O

Ca_Exp 100rpm

Ca_Exp 300rpm

U_Ansys 500rpm

345MeV/A

roadmap

Fix targetdata

Rot.Diskdata

Change X: Heat Load Change X: Heat Density up to1kW

Fixed target on a same line

Although present heat density is1/10 of the goal point,

Both target material data look like following estimation curves.

estimated goal point

Target : Be, W

10

100

1000

10000

0.001 0.01 0.1 1. 10. 100.

Heat Density [kW/mm]

Bea

m sp

ot te

mp.

[C].

Exp. used different target (Be,W),but we can compare them

in the unit of Heat Density.

( Fixed target )

( Disk target )

Be targ.

W targ.

Fixed & Disk target “nearly” on a same line

estimated goal point

(note) κ(Be) 218 ~ κ(W) 177 W/(m.K)

( Fixed target ) U

Ca

O

U ( Disk target )

( Fixed ) U

Ca

O U

( Disk )

2010/09/13-17 INTDS2010 @ TRIUMFRIKEN Ayoshida : Beam spot temperature monitoring on production target of BigRIPS separator 24

Summary

• Beam spot temperature monitoring under high radiation environment is readyFiber scope : for long time monitoring during an experimentThermo viewer : to check & compare temperature distribution with simulations.

•Both data of fixed target and disk target look like following the estimated temperature curve scalded in the unit of energy loss density.

• Although present beam power is less than 1/20 of goal value,beam spot temperature on Be, W target were measured.

( Issues )

• Discrepancy between ANSYS simulation and experimental data still remains.• Beam spot temperature of rotating disk target shows vibration.

Precise analysis should be necessary, in order to estimatethermal conductivity of water way and thermal contact.