takumi chikada - iter · structure for high prf (>500) and corrosion protection from breeders...

17
Takumi CHIKADA The University of Tokyo, Tokyo, Japan E-mail: [email protected] Monaco Iter International Fusion Energy Days 2013 Grimaldi Forum, Van Dongen 4th December, 2013

Upload: others

Post on 20-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Takumi CHIKADA

The University of Tokyo, Tokyo, Japan

E-mail: [email protected]

Monaco Iter International Fusion Energy Days 2013

Grimaldi Forum, Van Dongen

4th December, 2013

Page 2: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Outline

1. Introduction

- What is tritium permeation barrier?

- Spin-off effects

2. Hydrogen permeation mechanism in

Er2O3 coatings

- Preparation and characterization

- Modeling of hydrogen permeation

3. Latest progress and future prospects - Potential of multi-layer coatings

4. Summary

2/18

Page 3: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

http://www.iter.org/doc/www/edit/Lists/WebsiteText/Attachments/16/fueling_5.jpg 3/18

Tritium in fusion systems

In a GW-class fusion reactor, a blanket

system must produce and recover

~100 kg tritium a year

Main metals for structural materials of

fusion blankets (Fe, V, Ti, etc.) has high

permeability of hydrogen isotopes

Critical fuel loss and radiological hazards

Page 4: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Tritium Permeation Barrier (TPB)

Tritium recovery system

Cooling channel

Metal wall T

Tritium permeation barrier

Requirements:

High permeation reduction factor (PRF)

PRF = Juncoated/Jcoated >102-103

Compatibility with blanket materials

especially corrosive breeding materials

Tolerance for thermal cycles, irradiation etc.

4/18

Page 5: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Variety of applications of TPB

Ele

ctro

lyte

Ca

tho

de

An

od

e

O2-

O2

O2

H2

CO

H2O

CO2

e- e-

H

5/18

1) Hydrogen loss by permeation

2) Constraint in structural material due to

hydrogen embrittlement

Possible applications:

Solid oxide fuel cell (SOFC)

Solar concentrator for H2 production

Fast breeder reactor (hydride control rod)

Light-water fission reactor

(Zr-H2O reaction at fuel cladding)

Page 6: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Issues and challenges

Problems of TPB coating research

Much higher permeability than bulks

4 orders of magnitude scattered data

G.W. Hollenberg, et al., Fusion Eng. Des. 28 (1995) 190–208.

Clarification of hydrogen permeation

mechanism through the coatings is

crucial for a plant design!

6/18

Page 7: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Coating material and methods

7/18 http://oxford-labs.com/wp-content/uploads/2009/04/periodic-table.jpg

Erbium Oxide (Er2O3)

Originally selected as an electrical

insulating coating

High thermodynamic stability

Compatibility with liquid Li

Lower crystallization temperature

(< Al2O3)

Page 8: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

(1) Filtered vacuum arc deposition (VAD)

A physical vapor deposition method

Good adhesion on substrates

Low impurity

Clarification of precise permeation behaviors

Coating material and methods

(2) Metal-organic decomposition (MOD)

Ability to coat on complex-shape substrates

Potential to apply plant-scale fabrication

Coating precursor: Er-03®

Kojundo Chemical Laboratory Co. Ltd.

Er content: 3%

8/18

Coating

Drying

Heat treatment

At 120 ºC for 10 min, in air

1) Spin-coating:

rotation speed

2) Dip-coating:

withdrawal speed

Atmosphere:

1) Ar 2) H2 + 0.6% H2O

Temperature: 600–700 ºC

Time: 10–30 min

Heating rate: 20–30 K/min

Coating

Repeat

Page 9: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Deuterium permeation experiment

D2

Gauge 1 Gauge 3

QMS

Calibration

Volume

TMP 2TMP 1

Upstream Downstream

Furnace

SampleGauge 2

RP 2RP 1

J : Permeation flux

S : Solubility

D : Diffusivity

d

pPJ

0.5

d

pSDJ

0.5

Gas-driven permeation formula

Richardson’s law:

Permeation = Diffusion × Solution

P : Permeability

p : Upstream D2 pressure

d : Sample thickness

9/18

Page 10: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Comparison of permeation reduction factors

1.0 1.2 1.4 1.6 1.810-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Perm

eabili

ty (

molm

–1

s–1

Pa

–0.5)

1000/T (K–1)

700 600 500 400 300

T (ºC)800

● Uncoated F82H

◯ Uncoated SS316

▲ Er2O3 (VAD 1.3 μm)

▼ Er2O3 (VAD 1.3/1.3 μm)

★ Er2O3 (VAD 2.6/2.6 μm)

■ Er2O3 (MOD 0.3 μm)

◆ Er2O3 (MOD 0.2/0.2 μm)

△ Al2O3 (VAD 1 μm) [1]

▽ Al2O3 (MS 1.5/1.5 μm) [2]

◇ TiN+TiC

(CVD 2.5/2.5 μm) [3]

□ TiN+TiC+SiO2

(HCD 2-3/2-3 μm) [4]

The world largest PRF (105) by both-side-coated

samples has been achieved!

PRF: one-side-coated < both-side-coated

Multiplication of permeation steps are

effective for permeation reduction

D2 flux

[1] D. Levchuk, et al., J. Nucl. Mater. 328 (2004) 103–106.

[2] E. Serra, et al., J. Nucl. Mater. 257 (1998) 194–198.

[3] C. Shan, et al., J. Nucl. Mater. 191–194 (1992) 221–225.

[4] Z. Yao, et al., J. Nucl. Mater. 283–287 (2000) 1287–1291.

10/18

Page 11: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

0 1000 2000 3000 4000 50000

5x10-8

1x10-7

Time (s)

Perm

eation

flu

x (

mo

l/m

2s)

0

2x104

4x104

6x104

8x104

p (

Pa)

1st test

2nd test

773 K

3rd test

Permeation mechanism in Er2O3 coating

873 K

300nm

250±10 nmas deposited

100nm

20±5 nm

Grain growth High TPB efficiency

1μm

11/18

D distribution

Deuterium permeation through the coating

is dominated by grain boundary diffusion

rather than lattice diffusion

Page 12: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Modeling of hydrogen permeation

1,0.50.5

sub

sub

coat

agbad

pP

d

pSPSJ

Coated region Uncoated region

Substrate

Coating

JcoatJsub Jcoat

Pgb : permeability through

grain boundary

Sa : grain area density

θ : surface coverage

Pgb

Grain boundary

Sa

12/18

= 0.900

0.980

0.990

0.995

0.999

1

0 100 200 30010

-8

10-7

10-6

10-5

Pe

rme

atio

n f

lux (

mo

l/m

2s)

Grain size (nm)

Large

Small First priority is surface coverage

Materials and fabrication methods

with lower Sa and Pgb should be

selected afterwards

Page 13: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Independent contributions of each layer have

been verified by Er2O3-Fe two-layer coatings

Schemes of layer structure can be

optimized depending on requirements

Solid breeder blankets (WCSB, HCPB)

Enough PFR (~100) and compatibility with

breeders (Li2TiO3, Li4SiO4)

Liquid breeder blankets (HCLL, WCLL)

Appropriate materials and multi-layer

structure for high PRF (>500) and

corrosion protection from breeders (Li-Pb)

Potential of multi-layer coatings (3)

15/18

Er M 1.0 µm

Er

Fe L 1.0 µm

Fe

0.5 mm 1 mmSubstrate

Arc-deposited Er2O3

Sputtered Fe

Page 14: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Potential of multi-layer coatings (4)

Contacting materials

Application

Structural materials

Temperature range

Layer structure

Number of layers

Materials

Thickness

Methods

Structural material

Optimized barrier coating

Gas / Liquid / Solid

16/18

Atmosphere

Page 15: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Summary (1)

This presentation showcased R&D of TPB for

fusion systems and possible spin-offs

1) Methodology for the fabrication of high-

quality Er2O3 coatings has been established

using gas/liquid phase methods

PRFs of up to 105 have been achieved

(world record at > 600 ºC)

2) Various permeation behaviors have been

clarified by microstructural analysis and

deuterium permeation measurements

17/18

Page 16: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Summary (2)

3) Modeling of tritium permeation through Er2O3

coating provided useful information for a

guidance of further TPB development

Surface coverage must primarily be secured

4) Optimization of materials and layer structures

may be one solution for the development of

TPB coatings and other applications

Multi-layer coatings have a possibility to

satisfy strict requirements by allocating

functions to each layer

18/18

Page 17: Takumi CHIKADA - ITER · structure for high PRF (>500) and corrosion protection from breeders (Li-Pb) Potential of multi-layer coatings (3) 15/18 1. 0 µm Er M Er 1. 0 µm Fe L Fe

Thank you for your kind attention!

http://www.iter.org/newsline/264/1566