t33g­2730 the european continent: surface · pdf filethe european continent: surface...

1
THE EUROPEAN CONTINENT: SURFACE EXPRESSION OF UPPER MANTLE DYNAMICS Rosaria Tondi, Renata Schivardi, Irene Molinari and Andrea Morelli - ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA (INGV) Sezione di Bologna, email: [email protected] T33G-2730 The surface topography of Europe shows important variations, most of which are relatively well explained by isostatic compensation of density constrasts within the crust and litosphere. However, not all of the density contrasts leading to topography reside within the litosphere. The crucial problem is how to detect the extra topography signal, in addition to that associated with both crustal and lithospheric anomalies. Among others, Forte and Perry (2000), estimate the amplitude of the dynamic topography by removal of the crustal isostatic topography signal from the surface of the Earth. Faccenna and Becker (2010) infer the equivalent dynamic topography from the normal stress generated at the surface by mantle viscous flow driven by thrmal anomalies. Here, we consider the correlation between residual topography and mantle residual gravity anomalies. As shown by Pekeris (1935) and Hager et al., (1985), the viscous mantle flow that is driven by the thermal density contrasts is responsible for the long-wavelength gravity anomalies observed at the surface. They have demonstrated that the gravitational effects of surface deformation caused by the flow is opposite in sign and comparable in magnitude to that of the driving density contrast. Thus, the dynamic contribution can be considered less important when mantle gravity anomalies are inversely correlated with the residual topography. Following these ideas, the correlation matrix between the residual topography and the mantle residual gravity anomalies allows us to define the regions where the sublithospheric mantle density contributes to surface topography (correlation coefficient equal to 1). 3-D images of the European upper mantle isotropic shear-wave speeds and mass densities, recently recovered by combined inversion of surface-wave information and GRACE satellite gravity data (Tondi et al., 2012) are used to select the regions where the residual topography and the residual mantle gravity anomalies are strongly correlated. As residual topography is calculated by removing the isostatic adjustment from the topography, in this poster we compare results obtained when isostatic compensation is achieved within the crust or within the lithosphere. The 1° x 1° , recently assembled European crustal model EPCrust (Molinari and Morelli, 2011) is used to estimate the effects of the isostatic crust. The thickness of mobile lithospheric plates (LAB) is still an important question in debate. So far, it is problematic to detect and a number of different techniques to determine it have been developed. They do not necessarily lead to identical results (see e.g. Anderson, 2007, Jones et alt., 2010). Here, we consider a collection of measurements recovered from receiver function techniques (Geissler et al., 2008, Kind et al., 2012). The data set does not cover the whole region of study; however it gives important information about the Central Europe and the Mediterranean regions. To recover the residual topography, the effects of the isostatic crust/lithosphere are estimated with the Panasyuk and Hager, 2000) algorithm and subtracted from the observed elevation (ETOPO-1). The mantle residual gravity anomalies are estimated as the differences between the produced gravity field of the 3-D crustal/lithospheric model and the measurements observed. Eventually, we select the region of positive correlaton of the two quantities on the 3-D density model at sublithospheric (210 km) depth. Following Pekeris (1935), we assume surface uplift processes with negative density anomalies and downward pull with positive anomalies. SURFACE TOPOGRAPHY OF EUROPE ! "#$! ""$! "%$! "&$! $! !"! #$! "$! #"! &$! ’$! ($! $"! #"! %"! &"! ’"! ("! )" )# )* " ! ) $ "#$! ""$! "%$! "&$! $! *$! #$! "$! %$! &$! ’$! ’" $"! #"! %"! &"! ’"! ("! )" )# )* " ! ) $ WAC EEC AN IP HK Mg SB RS AP AS Zag Med Hel 61.5 km depth 80 km depth )" )# )* " ! ) $ "#$! ""$! "%$! "&$! $! *$! #$! "$! #"! &$! ’$! ($! $"! #"! %"! &"! ’"! ("! "#$! ""$! $#"! "&$! $! !"! #$! "$! #"! &$! ’$! ($! $"! #"! %"! &"! ’"! ("! )" )# )* " ! ) $ 100 km depth 210 km depth "#$! ""$! "%$! "&$! $! *$! #$! "$! #"! &$! ’$! ’"! $"! #"! %"! &"! ’"! ("! )# )* " ! ) density anomalies (% ) "#$! ""$! $#"! "&$! $! !"! #$! "$! #"! &$! ’$! ’"! $"! #"! %"! &"! ’"! ("! )# )* " ! ) Azores Hoggar Iceland 260 km depth 360 km depth density anomalies (% ) 3D DENSITY MODEL OF UPPER MANTLE BELOW EUROPE (after Tondi et al., 2012) MOHO DEPTH FROM EPCRUST %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . !" !% )" )% $" $% #" #% %" %% +,-. EUROPE residual topography (EPcrust) %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . /$ /) /! " ! ) $ # % & ,- MANTLE GRAVITY RESIDUALS %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . /$"" /$"" /$"" /$"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /!"" /!"" /!"" /!"" /!"" /!"" /!"" /!"" " " " " " " " !"" !"" )"" )"" $"" $"" /%"" /#"" /$"" /)"" /!"" " !"" )"" $"" #"" %"" &"" ’"" -012 CONTRIBUTION OF SUBLITOSPHERIC MANTLE TO SURFACE TOPOGRAPHY )" )# )* " ! ) $ % sublithospheric density anomalies #"* $"* )"* !"* " !"- #$- "$- #" - &$- ’$- ($- $" . #". %". &". ’". (". EEC Tajik Basin Dniepr-Donec Basin Arabian Plate Mediterranean Basin CEVP WAC Canary Islands Iceland Sirt Basin Caledonides ISOSTATIC COMPENSATION ACHIEVED WITHIN THE CRUST LAB (after Geissler et al., 2010 / Kind et al., 2012) %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . %" &" ’" (" 3" !"" !!" !)" !$" !#" !%" !&" !’" !(" !3" )"" ,- EUROPE residual topography (EPcrust+LAB) %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . /& /% /# /$ /) /! " ! ) $ # % & ,- MANTLE GRAVITY RESIDUALS %$ * "$ * #$ * *$ , $ *$ - #$ - "$ - %$ - &$ - ’$ - ($ - "$ . %$ . &$ . ’$ . ($ . /$ . /$"" /$"" /$"" /$"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /)"" /!"" /!"" /!"" /!"" /!"" /!"" /!"" /!"" " " " " " " !"" !"" !"" )"" )"" $"" /%"" /#"" /$"" /)"" /!"" " !"" )"" $"" #"" %"" &"" ’"" -012 #"* $"* )"* !"* " !"- #$- "$- #" - &$- ’$- ($- $". #". %". &". ’". (". )" )# )* " ! ) $ % sublithospheric density anomalies CONTRIBUTION OF SUBLITOSPHERIC MANTLE TO SURFACE TOPOGRAPHY EEC Mediterranean Basin Iceland Caledonides TESZ Arabian Plate Southern Balkans ISOSTATIC COMPENSATION ACHIEVED WITHIN THE LITHOSPHERE Assuming that isostatic compensation is achieved within the crust, the East European Craton (EEC) appears mostly over-compensated, with regions of uplift at the northwestern margin, where the central Norwegian Caledonides are located, and at the southern margins that are associated with the huge Dniepr-Donets rift system and the Afghan Tajik Basin. As observed also by Artemieva (2007), although compositional variations have been incorporated into the model, down-pull of the lithosphere below the East European Craton is required to explain the strong correlation between mantle residual anomalies and residual topography. For the regions of uplift at the margins of the craton, the negative density anomaly in the North Atlantic mantle, which is associated with the Iceland plume, can provide dynamic support for the Norwegian Caledonides (Japsen and Chalmers, 2000). The other two adjacent regions indicate sites of deep adjustments of the lithospheric plates associated with Mesozoic and Cenozoic collisional events of the Eurasian continent (Otto, 1997). The origin of the large-scale upwelling between the east African and Arabian plates continues to be debated, and it is associated with the Read Sea Rift-flank uplift (Wernicke, 1985), or connected to the seismically slow and thermally buoyant megaplume structure under South Africa (Daradich et al., 2003). The Mediterranean region is composed of a mosaic of blocks within the convergence region of the Eurasian and African Plate. Downward flow (e.g. below the Hellenic slab) is associated with upwelling return flow (Adria) between the slabs and at their edges (Faccenna and Becker, 2010). For the region of mantle upwellings, close to the western Mediterranean, which extends from the Canary Islands, to Northern Africa, to the Central European Volcanic Province, they may ultimately be derived from a common sublithospheric mantle source (Hoernle et al., 1995). Assuming that isostatic compensation is achieved within the lithosphere, other interesting regions, where upper mantle dynamics has surface expression are highlighted: the uplift related to the tectonically active region of the Southern Balkans, the uplift of the Balearic Promontory, which can be important in the kinematics of the Western Mediterranean and the down-pull of the lithosphere along the TESZ (Trans European Suture Zone) and in particular below the northern part, the Teisseyre- Tornquist (TTZ) Suture, generally interpreted as a thrust of Caledonian nappes on Baltica (EEC) (Geissler et al., 2010). $0 *&- "$- %&- ’$- $"* !%* (&. ’$. %&. "$. Depth sections of the density percentage perturbations in the 3D Tondi et al. (2012) density model. Model perturbations are expressed as percentage deviations with respect to the mean velocity of each layer. AN, Anatolian plateau; AP, Arabian Platform; AS, Arabian Sea; EEC, East European Platform; Hel, Hellenic arc; HK, Hindu Kush; IP, Iranian Plateau; Med, Mediterranean Sea; Mg, Maghrebides; RS, Red Sea; SB, Sirt Basin; WAC, West African Craton From our analysis it emerges that isostatic compensaton is most likely achieved within the litosphere and not, within the crust. This misconception probably dates back the first models of isostasy, which where proposed long before the concept of lithosphere was formalized. Isostatic compensation can be achieved because the lithosphere essentially floats on a relatively inviscid substrate: the weak peridotite of the asthenosphere. Changes in the buoyancy or elevation of the lithosphere are accommodated by displacement of asthenospheric mantle (Zhou and Sandifords, 1992). However, as asthenospheric mantle is not completely inviscid (that is, its viscosity is not negligible), dynamic topography is the topography supported by the normal stresses generated by the viscous sublithospheric mantle. References: Anderson, D.L., 2007. New Theory of the Earth. Cambridge University Press. Artemieva, I. (2007), Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics, Global Planet. Change, 58, 411–434. Daradich, A. J., et al. (2003), Mantle flow, dynamic topography and rift-flank uplift of Arabia, Geology, 31, 901–904, doi:10.1130/G19661.1. Faccenna, C., and T. W. Becker (2010), Shaping mobile belts by smallscale convection, Nature, 465, 602–605, doi:10.1038/nature09064. Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940–1944. Geissler, W.H. et al. (2010), Geoph. Journ. Int., 181, 604–634, doi: 10.1111/j.1365-246X.2010.04548.x. Hager, B. H., et al. (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545. Hoernle, K., Y., et al. (1995), Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe, Nature, 374, 34–39. Japsen, P., and J. A. Chalmers (2000), Neogene uplift and tectonics around the North Atlantic: Overwiew, Global Planet. Change, 24, 165–173. Kind, R., et al. (2012), Seismic receiver functions and the lithosphere–asthenosphere boundary, Tectonophysics, 536-537, 25-43 doi:10.1016/j.tecto.2012.03.005. Molinari I., and A. Morelli (2011), EPcrust: A reference crustal model for the European plate, Geophys. J. Int., 185, 352–364. Otto, S. C. (1997), Mesozoic-Cenozoic history of deformation and petroleum systems in sedimentary basins of central Asia: Implications of collisions on the Eurasian margin, Pet. Geosci., 3, 327–341. Panasyuk, S. V., and B. H. Hager (2000), Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties, J. Geophys. Res., 105(B12), 28,199–28,209. Pekeris, C. L. (1935), Thermal convection in the interior of the Earth, Geophys.J. Int., 3, 343–367, doi:10.1111/j.1365-246X.1935.tb01742.x. Tondi, R. et al. (2012), Upper mantle structure below the European continent: constraints from surface-wave tomography and GRACEsatellite gravity data, JGR, 117, doi:10.1029/2012JB009149. Wernicke, B. (1985), Uniform-sense normal simple shear of the continental lithosphere, Can. J. Earth Sci., 22, 108–125. Zhou, S., and Sandiford, M. (1992), On the stability of isostatically compensated mountain belts. JGR, 97, 14207-14221.

Upload: dobao

Post on 06-Mar-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: T33G­2730 THE EUROPEAN CONTINENT: SURFACE · PDF fileTHE EUROPEAN CONTINENT: SURFACE EXPRESSION OF UPPER MANTLE DYNAMICS Rosaria Tondi, Renata Schivardi, Irene Molinari and Andrea

THE EUROPEAN CONTINENT: SURFACE EXPRESSION OF UPPER MANTLE DYNAMICS

Rosaria Tondi, Renata Schivardi, Irene Molinari and Andrea Morelli ­ ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA (INGV) Sezione di Bologna, email: [email protected] 

T33G­2730

The surface topography of Europe shows important variations, most of which are relatively well explained by isostatic compensation of density constrasts within the crust and litosphere. However, not all of the densitycontrasts leading to topography reside within the litosphere. The crucial problem is how to detect the extra topography signal, in addition to that associated with both crustal and lithospheric anomalies. Among others, Forte and Perry (2000), estimate the amplitude of the dynamic topography by removal of the crustal isostatic topography signal from the surface of the Earth. Faccenna and Becker (2010) infer theequivalent dynamic topography from the normal stress generated at the surface by mantle viscous flow driven by thrmal anomalies.Here, we consider the correlation between residual topography and mantle residual gravity anomalies. As shown by Pekeris (1935) and Hager et al., (1985), the viscous mantle flow that is driven by thethermal density contrasts is responsible for the long­wavelength gravity anomalies observed at the surface. They have demonstrated that the gravitational effects of surface deformation caused by the flow is opposite insign and comparable in magnitude to that of the driving density contrast. Thus, the dynamic contribution can be considered less important when mantle gravity anomalies are inversely correlated with the residual topography.Following these ideas, the correlation matrix between the residual topography and the mantle residual gravity anomalies allows us to define the regions where the sublithospheric mantle densitycontributes to surface topography (correlation coefficient equal to 1).

3­D images of the European upper mantle isotropic shear­wave speeds and mass densities, recently recovered by combined inversion of surface­wave information and GRACE satellite gravity data(Tondi et al., 2012) are used to select the regions where the residual topography and the residual mantle gravity anomalies are strongly correlated.

As residual topography is calculated by removing the isostatic adjustment from the topography, in this poster we compare results obtained when isostatic compensation is achieved within the crustor within the lithosphere. The 1° x 1° , recently assembled European crustal model EPCrust (Molinari and Morelli, 2011) is used to estimate the effects of the isostatic crust. The thickness of mobile lithospheric plates (LAB)is still an important question in debate. So far, it is problematic to detect and a number of different techniques to determine it have been developed. They do not necessarily lead to identical results (see e.g. Anderson, 2007,Jones et alt., 2010). Here, we consider a collection of measurements recovered from receiver function techniques (Geissler et al., 2008, Kind et al., 2012). The data set does not cover the whole region of study; however it gives important information about the Central Europe and the Mediterranean regions. To recover the residual topography, the effects of the isostatic crust/lithosphere are estimated with the Panasyuk and Hager, 2000) algorithm and subtracted from the observed elevation (ETOPO­1). The mantle residualgravity anomalies are estimated as the differences between the produced gravity field of the 3­D crustal/lithospheric model and the measurements observed. Eventually, we select the region of positive correlaton of the twoquantities on the 3­D density model at sublithospheric (210 km) depth.  Following Pekeris (1935), we assume surface uplift processes with negative density anomalies and downward pull with positive anomalies.   

SURFACE TOPOGRAPHY OF EUROPE

!

"#$!

""$! "%$! "&$! $! !"! #$! "$!#"!

&$!

'$!($!

$"!#"!

%"!&"!

'"!("!

)" )# )* " ! ) $

"#$!

""$! "%$! "&$! $! *$! #$! "$!%$!

&$!

'$!'"

$"!#"!

%"!&"!

'"!("!

)" )# )* " ! ) $

WAC

EEC

AN

IP

HK

Mg

SBRS

AP

ASZag

Med Hel

61.5 km depth   80 km depth

)" )# )* " ! ) $

"#$!

""$! "%$! "&$! $! *$! #$! "$!#"!

&$!

'$!($!

$"!#"!

%"!&"!

'"!("!

"#$!

""$! $#"! "&$! $! !"! #$! "$!#"!

&$!

'$!($!

$"!#"!

%"!&"!

'"!("!

)" )# )* " ! ) $

100 km depth   210 km depth"#$!

""$! "%$! "&$! $! *$! #$! "$!#"!

&$!

'$!'"!

$"!#"!

%"!&"!

'"!("!

)# )* " ! )

density anomalies (%)

"#$!

""$! $#"! "&$! $! !"! #$! "$!#"!

&$!

'$!'"!

$"!#"!

%"!&"!

'"!("!

)# )* " ! )

Azores

Hoggar

Iceland

260 km depth   360 km depth

density anomalies (%)

3D DENSITY MODEL OF UPPER MANTLEBELOW EUROPE (after Tondi et al., 2012)

MOHO DEPTH FROM EPCRUST

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

!" !% )" )% $" $% #" #% %" %%+,-.

EUROPE residual topography(EPcrust)

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

/$ /) /! " ! ) $ # % &,-

MANTLE GRAVITY RESIDUALS

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

/$""

/$""/$""

/$""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""/)""

/)""

/)""

/!""

/!""

/!""

/!""

/!""

/!""/!""

/!""

"

"

"

"

"

""

!""

!""

)""

)""

$""$""

/%"" /#"" /$"" /)"" /!"" " !"" )"" $"" #"" %"" &"" '""-012

CONTRIBUTION OF SUBLITOSPHERIC MANTLE TO SURFACE TOPOGRAPHY

)" )# )* " ! ) $% sublithospheric density anomalies

#"*

$"*)"*

!"* " !"- #$- "$-#"-

&$-

'$-($-

$".#".

%".&".

'".(".

EEC

Tajik BasinDniepr­Donec Basin

Arabian PlateMediterranean Basin

CEVP

WAC

Canary Islands

Iceland

Sirt Basin

Caledonides

ISOSTATIC COMPENSATION ACHIEVED WITHIN THE CRUST

LAB (after Geissler et al., 2010 /Kind et al., 2012)

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

%" &" '" (" 3" !"" !!" !)" !$" !#" !%" !&" !'" !(" !3" )"",-

EUROPE residual topography(EPcrust+LAB)

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

/& /% /# /$ /) /! " ! ) $ # % &,-

4

MANTLE GRAVITY RESIDUALS

%$+*

"$+*#$+*

*$+, $+ *$+- #$+- "$+-%$+-

&$+-

'$+-

($+-

"$+.%$+.

&$+.'$+.

($+./$+.

/$""

/$""

/$""

/$""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/)""

/!""

/!""

/!""

/!""

/!""/!""

/!""

/!""

"

"

" "

"

"

!""

!""

!""

)""

)""

$""

/%"" /#"" /$"" /)"" /!"" " !"" )"" $"" #"" %"" &"" '""-012

#"*

$"*)"*

!"* " !"- #$- "$-#"-

&$-

'$-($-

$".#".

%".&".

'".(".

)" )# )* " ! ) $% sublithospheric density anomalies

CONTRIBUTION OF SUBLITOSPHERIC MANTLE TO SURFACE TOPOGRAPHY

EEC

Mediterranean

                          Basin

Iceland

Caledonides

TESZ

Arabian Plate

Southern Balkans

ISOSTATIC COMPENSATION ACHIEVED WITHIN THE LITHOSPHERE

Assuming that isostatic compensation is achieved within the crust, theEast European Craton (EEC) appears mostly over­compensated, withregions of uplift at the northwestern margin, where the central Norwegian Caledonides are located, and at the southern margins thatare associated with the huge Dniepr­Donets rift system and the AfghanTajik Basin. As observed also by Artemieva (2007), althoughcompositional variations have been incorporated into the model,down­pull of the lithosphere below the East European Craton is requiredto explain the strong correlation between mantle residual anomalies andresidual topography. For the regions of uplift at the margins of the craton,the negative density anomaly in the North Atlantic mantle, which isassociated with the Iceland plume, can provide dynamic support for theNorwegian Caledonides (Japsen and Chalmers, 2000). The other twoadjacent regions indicate sites of deep adjustments of the lithosphericplates associated with Mesozoic and Cenozoic collisional events of theEurasian continent (Otto, 1997). The origin of the large­scale upwellingbetween the east African and Arabian plates continues to be debated, andit is associated with the Read Sea Rift­flank uplift (Wernicke, 1985), orconnected to the seismically slow and thermally buoyant megaplumestructure under South Africa (Daradich et al., 2003). The Mediterraneanregion is composed of a mosaic of blocks within the convergence regionof the Eurasian and African Plate. Downward flow (e.g. below the Hellenicslab) is associated with upwelling return flow (Adria) between the slabsand at their edges (Faccenna and Becker, 2010). For the region of mantleupwellings, close to the western Mediterranean, which extends from theCanary Islands, to Northern Africa, to the Central European VolcanicProvince, they may ultimately be derived from a common sublithosphericmantle source (Hoernle et al., 1995).Assuming that isostatic compensation is achieved within the lithosphere,other interesting regions, where upper mantle dynamics has surfaceexpression are highlighted: the uplift related to the tectonically activeregion of the Southern Balkans, the uplift of the Balearic Promontory, which can be important in the kinematics of the Western Mediterraneanand the down­pull of the lithosphere along the TESZ (Trans European Suture Zone) and in particular below the northern part, the Teisseyre­Tornquist (TTZ) Suture, generally interpreted as a thrust of Caledoniannappes on Baltica (EEC) (Geissler et al., 2010).   

$011111111111*&-1111111111"$-111111111%&-1111111111'$-$"*444444444!%*

(&.

'$.

%&.

"$.

Depth sections of the density percentage perturbations in the 3D Tondiet al. (2012) density model. Model perturbations are expressed aspercentage deviations with respect to the mean velocity of each layer.AN, Anatolian plateau; AP, Arabian Platform; AS, Arabian Sea; EEC, EastEuropean Platform; Hel, Hellenic arc; HK, Hindu Kush; IP, Iranian Plateau;Med, Mediterranean Sea; Mg, Maghrebides; RS, Red Sea; SB, Sirt Basin;WAC, West African Craton   

From our analysis it emerges that isostatic compensaton is most likelyachieved within the litosphere and not, within the crust. This misconceptionprobably dates back the first models of isostasy, which where proposedlong before the concept of lithosphere was formalized. Isostaticcompensation can be achieved because the lithosphere essentially floats ona relatively inviscid substrate: the weak peridotite of the asthenosphere.Changes in the buoyancy or elevation of the lithosphere are accommodatedby displacement of asthenospheric mantle (Zhou and Sandifords, 1992). However, as asthenospheric mantle is not completely inviscid (that is, itsviscosity is not negligible), dynamic topography is the topographysupported by the normal stresses generated by the viscous sublithosphericmantle.   

References: Anderson, D.L., 2007. New Theory of the Earth. Cambridge University Press. Artemieva, I. (2007), Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics, Global Planet. Change, 58, 411–434. Daradich, A. J., et al. (2003), Mantle flow, dynamic topography and rift­flank uplift of Arabia, Geology, 31, 901–904, doi:10.1130/G19661.1. Faccenna, C., and T. W. Becker (2010), Shaping mobile belts by smallscale convection,Nature, 465, 602–605, doi:10.1038/nature09064. Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940–1944. Geissler, W.H. et al. (2010), Geoph. Journ. Int., 181, 604–634, doi: 10.1111/j.1365­246X.2010.04548.x.  Hager, B. H., et al. (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545. Hoernle, K., Y., et al. (1995), Seismic and geochemical evidence for large­scale mantle upwellingbeneath the eastern Atlantic and western and central Europe, Nature, 374, 34–39. Japsen, P., and J. A. Chalmers (2000), Neogene uplift and tectonics around the North Atlantic: Overwiew, Global Planet. Change, 24, 165–173. Kind, R., et al. (2012), Seismic receiver functions and the lithosphere–asthenosphere boundary, Tectonophysics, 536­537, 25­43 doi:10.1016/j.tecto.2012.03.005. Molinari I., and A. Morelli (2011), EPcrust: A reference crustal model for the European plate, Geophys. J. Int., 185, 352–364.Otto, S. C. (1997), Mesozoic­Cenozoic history of deformation and petroleum systems in sedimentary basins of central Asia: Implications of collisions on the Eurasian margin, Pet. Geosci., 3, 327–341. Panasyuk, S. V., and B. H. Hager (2000), Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties, J. Geophys. Res., 105(B12), 28,199–28,209.  Pekeris, C. L. (1935), Thermal convection in the interior of the Earth, Geophys.J. Int., 3, 343–367, doi:10.1111/j.1365­246X.1935.tb01742.x.Tondi, R. et al. (2012), Upper mantle structure below the European continent: constraints from surface­wave tomography and GRACEsatellite gravity data, JGR, 117, doi:10.1029/2012JB009149. Wernicke, B. (1985), Uniform­sense normal simple shear of the continental lithosphere, Can. J. Earth Sci., 22, 108–125. Zhou, S., and Sandiford, M. (1992), On the stability of isostatically compensated mountain belts. JGR, 97, 14207­14221.