systematics in nucleon matrix element calculations€¦ · motivation three reasons for studying...

78
Systematics in nucleon matrix element calculations Jeremy Green NIC, DESY, Zeuthen The 36th International Symposium on Laice Field Theory East Lansing, MI, USA July 22–28, 2018

Upload: others

Post on 14-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Systematics in nucleon matrix element calculations

Jeremy Green

NIC, DESY, Zeuthen

The 36th International Symposium on Laice Field TheoryEast Lansing, MI, USA

July 22–28, 2018

Page 2: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Motivation

Three reasons for studying structure of protons and neutrons:I Understanding the quark and gluon substructure of a hadron.I Understanding nucleons as tools in experiments.I Validation of laice QCD using “benchmark” observables.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 2

Page 3: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Neutron beta decay

W−

n

pνee Coupling toW boson via axial current depends on nucleonaxial charge,

〈p (P , s ′) |uγ µγ5d |n(P , s )〉 = дAup (P , s ′)γ µγ5un (P , s ).

Interpreted as isovector quark spin contribution.→ Yi-Bo Yang plenary

PDG 2018: дA = 1.2724(23).

History plots 1

1960 1970 1980 1990 2000 2010850

900

950

1000

1050

1100

1960 1970 1980 1990 2000 201080

85

90

95

100

105

1990 2000 20100.8

1.0

1.2

1.4

1.6

1.8

2.0

1970 1980 1990 2000 2010-1.28

-1.26

-1.24

-1.22

-1.20

-1.18

-1.16

1970 1980 1990 2000 20106

8

10

12

14

16

1990 2000 20100.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

1970 1980 1990 2000 2010547.0

547.5

548.0

548.5

549.0

549.5

550.0

1970 1980 1990 2000 20100.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

1990 2000 201077

78

79

80

81

82

83

84

1960 1970 1980 1990 2000 20101115.0

1115.2

1115.4

1115.6

1115.8

1980 1990 2000 20101770

1780

1790

1800

1810

1820

1830

1970 1980 1990 2000 2010-20

0

20

40

60

80

100

Figure 1: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of publication of the

Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the “scale factor.”

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

1DARIUS 17 calculates this value from the measurement of the a parameter (see below).2MENDENHALL 13 gets A = −0.11954 ± 0.00055 ± 0.00098 and λ = −1.2756 ±0.0030. We quote the nearly identical values that include the earlier UCNA measurement(PLASTER 12), with a correction to that result.

3This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 andABELE 97D).

4MOSTOVOI 01 measures the two P-odd correlations A and B, or rather SA and SB,where S is the n polarization, in free neutron decay.

5YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.6This PLASTER 12 value is identical with that given in LIU 10, but the experiment isnow described in detail.

7 This is the combined result of ABELE 02 and ABELE 97D.8 These experiments measure the absolute value of gA/gV only.9KROHN 75 includes events of CHRISTENSEN 70.

10KROPF 74 reviews all data through 1972.

WEIGHTED AVERAGE-1.2724±0.0023 (Error scaled by 2.2)

BOPP 86 SPEC 4.3YEROZLIM... 97 CNTR 11.7LIAUD 97 TPC 2.5MOSTOVOI 01 CNTR 0.7SCHUMANN 08 CNTRMUND 13 SPEC 3.6MENDENHALL 13 UCNA 1.1DARIUS 17 SPEC

χ2

23.8(Confidence Level = 0.0002)

-1.29 -1.28 -1.27 -1.26 -1.25 -1.24

λ ≡ gA / gV

e− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER AThis is the neutron-spin electron-momentum correlation coefficient. Unless otherwisenoted, the values are corrected for radiative effects and weak magnetism. In theStandard Model, A is related to λ ≡ gA/gV by A = −2 λ (λ + 1) / (1 + 3λ2); thisassumes that gA and gV are real.

VALUE DOCUMENT ID TECN COMMENT

−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE−0.1184 ±0.0010 OUR AVERAGE Error includes scale factor of 2.4. See the ideogrambelow.−0.11952±0.00110 1 MENDENHALL13 UCNA Ultracold n, polarized

−0.11926±0.00031+0.00036−0.00042

2 MUND 13 SPEC Cold n, polarized

−0.1160 ±0.0009 ±0.0012 LIAUD 97 TPC Cold n, polarized

−0.1135 ±0.0014 3 YEROZLIM... 97 CNTR Cold n, polarized

−0.1146 ±0.0019 BOPP 86 SPEC Cold n, polarized

HTTP://PDG.LBL.GOV Page 11 Created: 6/5/2018 19:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 3

Page 4: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Other observables

Precision β-decay experiments may be sensitive to BSM physics; leadingcontributions are controlled by the scalar and tensor charges:T. Bhaacharya et al., Phys. Rev. D 85, 054512 (2012) [1110.6448]

〈p (P , s ′) |ud |n(P , s )〉 = дS up (P , s ′)un (P , s ),〈p (P , s ′) |uσ µνd |n(P , s )〉 = дT up (P , s ′)σ µνun (P , s ).

Sigma terms control the sensitivity of direct-detection dark maer searchesto WIMPs that interact via Higgs exchange.

σπN =mud 〈N |uu + dd |N 〉 σq =mq〈N |qq |N 〉

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 4

Page 5: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Toward precision nucleon structure

Trustworthy laice calculations need control over all systematics:I Physical quark massesI Isolation of ground stateI Infinite volumeI Continuum limit

Want to transition from this . . .

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.10 0.15 0.20 0.25 0.30

gA

mπ (GeV)

Nf=2+1+1 TM (ETMC)Nf=2 TM+clover (ETMC)Nf=2 TM (ETMC)Nf=2+1+1 mixed (PNDME)Nf=2+1+1 mixed (CalLat)Nf=2+1 DW (RBC/UKQCD)Nf=2+1 clover (CSSM)

Nf=2+1 clover (LHPC)Nf=2+1 clover (NME)Nf=2 clover (Mainz)Nf=2 clover (RQCD)Nf=2 clover (QCDSF)PDG

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 5

Page 6: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Toward precision nucleon structure

Trustworthy laice calculations need control over all systematics:I Physical quark massesI Isolation of ground stateI Infinite volumeI Continuum limit

Want to transition from this . . . to something like this.

22 24 26 28 30 32 34

=+

+=

+=

pheno.

Weinberg 77Leutwyler 96Kaiser 98Narison 06Oller 07PDG

QCDSF/UKQCD 06ETM 07RBC 07ETM 10BETM 14D

FLAG average for =

MILC 04, HPQCD/MILC/UKQCD 04RBC/UKQCD 08PACS-CS 08MILC 09MILC 09APACS-CS 09Blum 10RBC/UKQCD 10ABMW 10A, 10BLaiho 11PACS-CS 12RBC/UKQCD 12RBC/UKQCD 14B

FLAG average for = +

ETM 14FNAL/MILC 14A

FLAG average for = + +

/

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 5

Page 7: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Outline

1. Methodologies for nucleon matrix elements

2. Excited-state eects: theory and practice

3. Other systematics: L, (a),mq

4. Outlook

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 6

Page 8: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Hadron correlation functions

Compute two-point and three-point functions, using interpolator χ andoperator insertion O. In simplest case:

t0

τ0 T

C2pt (t ) ≡ 〈χ (t )χ† (0)〉=

∑n

|Zn |2e−Ent

→ |Z0 |2e−E0t(1 +O (e−∆Et )

),

where Zn = 〈Ω |χ |n〉,

C3pt (τ ,T ) ≡ 〈χ (T )O (τ )χ† (0)〉=

∑n,n′

Zn′Z∗n〈n′ |O|n〉e−Enτ e−En′ (T−τ )

→ |Z0 |2〈0|O|0〉e−E0T(1 +O (e−∆Eτ ) +O (e−∆E (T−τ ) )

)Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 7

Page 9: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Hadron matrix elements

Ratio method

R (τ ,T ) ≡ C3pt (τ ,T )

C2pt (T )= 〈0|O|0〉 +O (e−∆Eτ ) +O (e−∆E (T−τ ) )

Midpoint yields R (T2 ,T ) = 〈0|O|0〉 +O (e−∆ET /2).

Summation methodL. Maiani et al., Nucl. Phys. B 293, 420 (1987); дA in S. Güsken et al., Phys. Le. B 227, 266 (1989)

S (T ) ≡∑τ

R (τ ,T ),d

dTS (T ) = 〈0|O|0〉 +O (Te−∆ET )

Sum can be over all timeslices or from τ0 to T − τ0.Improved asymptotic behaviour noted in talks at Laice 2010.S. Capitani et al., PoS LATTICE2010 147 [1011.1358]; J. Bulava et al., ibid. 303 [1011.4393]

In practice noisier than ratio method at same T .

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 8

Page 10: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Ratio and summation method

1.15

1.20

1.25

1.30

2 4 6 8 10 12

g A(bare)

T/a

R(T/2, T )

S(T + a)− S(T )

physicalmπ , a = 0.116 fmN. Hasan, JG, et al., in preparation

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 9

Page 11: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Feynman-Hellmann approach

If we add a term to the Lagrangian L (λ) ≡ L + λO, then

∂λEn (λ)

λ=0= 〈n |O|n〉.

Discrete derivatives sometimes used, particularly for sigma terms:

σq ≡mq〈N |qq |N 〉 =mq∂mN

∂mq.

Exact derivatives lead directly to summation method (neglecting 〈Ω |O|Ω〉):

− ∂∂λ

logC2pt (t )λ=0= S (t ).

L. Maiani et al., Nucl. Phys. B 293, 420 (1987)A. J. Chambers et al. (CSSM and QCDSF/UKQCD), Phys. Rev. D 90, 014510 (2014) [1405.3019]C. Bouchard et al., Phys. Rev. D 96, 014504 (2017) [1612.06963]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 10

Page 12: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Controlling excited states

Three approaches:I Go to large T . Need ∆ET 1.

But signal-to-noise decays as e−(E0− 32mπ )T .

I Improve the interpolating operator.I Fit correlators to remove excited states.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 11

Page 13: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

First approximation: noninteracting stable hadrons in a box. Nπ , Nππ , . . .

3.0 3.5 4.0 4.5 5.0mπL

0.0

0.2

0.4

0.6

0.8

1.0∆E

(GeV

)

Physicalmπ .

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 12

Page 14: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

First approximation: noninteracting stable hadrons in a box. Nπ , Nππ , . . .

3.0 3.5 4.0 4.5 5.0mπL

0.0

0.2

0.4

0.6

0.8

1.0∆E

(GeV

)

Nπ Nππ

Physicalmπ .

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 12

Page 15: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

First approximation: noninteracting stable hadrons in a box. Nπ , Nππ , . . .

3.0 3.5 4.0 4.5 5.0mπL

0.0

0.2

0.4

0.6

0.8

1.0∆E

(GeV

)

Nπ Nππ Nπππ

Physicalmπ .

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 12

Page 16: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

First approximation: noninteracting stable hadrons in a box. Nπ , Nππ , . . .

3.0 3.5 4.0 4.5 5.0mπL

0.0

0.2

0.4

0.6

0.8

1.0∆E

(GeV

)

Nπ Nππ Nπππ Nππππ

Physicalmπ .

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 12

Page 17: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

First approximation: noninteracting stable hadrons in a box. Nπ , Nππ , . . .

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50mπ (GeV)

0.0

0.2

0.4

0.6

0.8

1.0∆E

(GeV

)

Nπ Nππ Nπππ Nππππ

mπL = 4.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 12

Page 18: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Excited-state energies

M. T. Hansen and H. B. Meyer, Nucl. Phys. B 923, 558 (2017) [1610.03843]

Focus on Nπ sector and apply finite-volume quantization usingscaering phase shi from experiment.

3.0 3.5 4.0 4.5 5.0 5.5 6.0MπL

1000

1200

1400

1600

1800

E (

MeV

)I(JP ) =1/2(1/2+ )

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 13

Page 19: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Going to largeT

Statistical errors:

δstat ∼ N −1/2e (E0− 32mπ )T

Excited state systematics:

δexc ∼ e−∆ET /2 (ratio method)

Suppose we want these to be equal, i.e. δstat = δexc ≡ δ .

Required statistics are given by

N ∝ δ−(2+ 4E0−6mπ

∆E

).

At the physical point with ∆E = 2mπ , the exponent is ≈ −13.

Multi-level methods could potentially improve this.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 14

Page 20: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Predicting excited-state contributions

Need to know:

1. energies En2. matrix elements 〈n′ |O|n〉3. overlaps Zn

Have been studied in ChPT. B. C. Tiburzi; O. Bär

Key insight: at leading order a single LEC controls coupling of localinterpolator to N and Nπ states.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 15

Page 21: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

ChPT prediction of excited-state eectsm

e(T)/m

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.01.00

1.01

1.02

1.03

1.04

T (fm)

physical pointmπL = 4

truncated to fiveNπ states

need T & 2 fm forChPT to be reliable

O. Bär, Int. J. Mod. Phys. A 32 no. 15, 1730011 (2017) [1705.02806]

generalization to axial FFs→ Oliver Bär parallel, Wed. 14:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 16

Page 22: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

ChPT prediction of excited-state eectsRX(T

2,T

)/X

Results: Midpoint estimate for all charges and moments

hxiud

hxiud

hxiud

gS

gA

gT

1.0 1.5 2.0 2.51.00

1.05

1.10

1.15

1.20

1.25

T (fm)

physical pointmπL = 4

truncated to fiveNπ states

need T & 2 fm forChPT to be reliable

O. Bär, Int. J. Mod. Phys. A 32 no. 15, 1730011 (2017) [1705.02806]

generalization to axial FFs→ Oliver Bär parallel, Wed. 14:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 16

Page 23: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Going beyond ChPT

M. T. Hansen and H. B. Meyer, Nucl. Phys. B 923, 558 (2017) [1610.03843]

Deviations of 〈Ω |χ |Nπ 〉 and 〈Nπ |Aµ |N 〉 from ChPT in the resonanceregime modeled with parameters α and γ .

↵ = 0, = 0↵ = 1, = 0↵ = 1, = 4

ML = 4ML = 6

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 17

Page 24: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Numerical studies

Available data depends onhow C3pt is computed.

τ0 T

For connected diagrams:I Fixed sink: most common. Get data at all τ and

any operator insertion. Cost increases with eachvalue of T .

I Fixed operator and τ . Get data at all T and anyset of interpolators. variational studies by CSSM

I Fixed operator and summed τ . Get summationdata at all T and any set of interpolators.used by CalLat, NPLQCD

−6 −4 −2 0 2 4 6(τ−T/2)/a

1.30

1.35

1.40

1.45

g A(b

are)

T/a =

14121086

ratiosummation

JG et al., PRD 95, 114502 [1703.06703]

21 22 23 24 25 26 27 28 29 30

1.2

1.4

1.6

tS

gA

B. J. Owen et al., PLB 723, 217 [1212.4668]

0 5 10 15t/a

1.15

1.20

1.25

1.30

1.35

1.40

geff

A

a09m220

C. C. Chang et al., Nature 558, 91[1805.12130]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 18

Page 25: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Improving the nucleon interpolator

I Standard operator: χ = ϵabc (uTaCγ5db )uc , with smeared quark fields.I Smearing width typically tuned so thatme has early plateau.I Variational approach: χ =

∑i ci χi with optimized ci .

I Simple basis: use varying smearing widths for χi .I Can be extended with more local structures (derivatives and Gµν ).I More expensive: include nonlocal operators for beer isolation of Nπ

and Nππ states.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 19

Page 26: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: dierent smearings — eective mass

3 5 7 9 11 13 15 17 19 21 23

t

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

aM

N

Mass 2exp Variational Comparison

sm32

sm64

sm128

t0 =2 ∆t=2

mπ = 460 MeV, a = 0.074 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

4 6 8 10 12 14 16 18 20

MN

t

S3S3

S5S5

S7S7

V357

mπ = 312 MeV, a = 0.081 fmB. Yoon et al. (NME), PRD 93, 114506 (2016)

[1602.07737]

Small improvement over widest smearing.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 20

Page 27: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: dierent smearings — eective mass

3 5 7 9 11 13 15 17 19 21 23

t

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

aM

N

Mass 2exp Variational Comparison

sm32

sm64

sm128

t0 =2 ∆t=2

mπ = 460 MeV, a = 0.074 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

4 6 8 10 12 14 16 18 20

MN

t

S5S5

S7S7

S9S9

V579

mπ = 312 MeV, a = 0.081 fmB. Yoon et al. (NME), PRD 93, 114506 (2016)

[1602.07737]

Small improvement over widest smearing. . . so use even wider smearings.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 20

Page 28: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: dierent smearings — axial charge

8 6 4 2 0 2 4 6 8

τ−t/20.95

1.00

1.05

1.10

1.15

1.20

R( τ,t

)

gA Variational Comparison

sm32

sm64

sm128

t0 =2 ∆t=2

mπ = 460 MeV, a = 0.074 fmT = 0.96 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

1.20

1.25

1.30

1.35

1.40

1.45

1.50

-6 -4 -2 0 2 4 6

gA

τ - tsep/2

tsep=10tsep=12tsep=14

tsep=16

V357V579

mπ = 312 MeV, a = 0.081 fmvariational at T = 0.97 fm versus S5B. Yoon et al. (NME), PRD 93, 114506 (2016)

[1602.07737]

Improvement over best tuned single smearing seems small.

See also: including negative parity operators in basis when ~p , 0.F. Stokes et al., in preparation

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 21

Page 29: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: dierent smearings — axial charge

8 6 4 2 0 2 4 6 8

τ−t/20.95

1.00

1.05

1.10

1.15

1.20

R( τ,t

)

gA Variational Comparison

sm32

sm64

sm128

t0 =2 ∆t=2

mπ = 460 MeV, a = 0.074 fmT = 0.96 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

1.20

1.25

1.30

1.35

1.40

1.45

1.50

-6 -4 -2 0 2 4 6

gA

τ - tsep/2

tsep=10tsep=12tsep=14

tsep=16

V357V579

mπ = 312 MeV, a = 0.081 fmvariational at T = 0.97 fm versus S9B. Yoon et al. (NME), PRD 93, 114506 (2016)

[1602.07737]

Improvement over best tuned single smearing seems small.

See also: including negative parity operators in basis when ~p , 0.F. Stokes et al., in preparation

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 21

Page 30: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: dierent smearings — axial charge

8 6 4 2 0 2 4 6 8

τ−t/20.95

1.00

1.05

1.10

1.15

1.20

R( τ,t

)

gA Variational Comparison

sm32

sm64

sm128

t0 =2 ∆t=2

mπ = 460 MeV, a = 0.074 fmT = 0.96 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

1.20

1.25

1.30

1.35

1.40

1.45

1.50

-6 -4 -2 0 2 4 6

gA

τ - tsep/2

tsep=10tsep=12tsep=14

tsep=16

V357V579

mπ = 312 MeV, a = 0.081 fmvariational at T = 0.97 fm versus S9B. Yoon et al. (NME), PRD 93, 114506 (2016)

[1602.07737]

Improvement over best tuned single smearing seems small.

See also: including negative parity operators in basis when ~p , 0.F. Stokes et al., in preparation

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 21

Page 31: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: larger basis — eective mass

Calculation performed using distillation.Operators with derivatives and hybrid operators with Gµν included in basis.→ C. Egerer parallel, Wed. 14:40

How does this compare with a standard calculation with tuned smearing?

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 22

Page 32: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: larger basis — tensor charge

Standard operator VariationalCalculation performed using distillation.Operators with derivatives and hybrid operators with Gµν included in basis.→ C. Egerer parallel, Wed. 14:40

How does this compare with a standard calculation with tuned smearing?

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 22

Page 33: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: larger basis — tensor charge

Standard operator VariationalCalculation performed using distillation.Operators with derivatives and hybrid operators with Gµν included in basis.→ C. Egerer parallel, Wed. 14:40

How does this compare with a standard calculation with tuned smearing?

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 22

Page 34: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Fiing approaches

Fit correlators using ansatz based on N -state model.I En and Zn generally determined from C2pt.I 〈n′ |O|n〉 determined from C3pt, either in combined or separate fit.

Typical energy gap:

0.5 GeV < E1 − E0 < 1 GeV,

usually greater than expected 2mπ .I Each model state approximates contribution from several states.I Fit ansatz should be considered a somewhat uncontrolled model.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 23

Page 35: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Fits for axial charge

Fixed sink

1.1

1.2

1.3

1.4

−10 −5 0 5 10

τ :∞ 12 14 16

a09m220

R. Gupta et al. (PNDME), 1806.09006

constrained 3-state fit: τ ,T − τ ≥ 3a

Note: more than 10 states with∆E < 1 GeV =⇒ e−3a∆E > 0.25.

Summed current insertion

0 5 10 15t/a

1.15

1.20

1.25

1.30

1.35

1.40

geff

A

a09m220

C. C. Chang et al., Nature 558, 91 [1805.12130]

data with smeared and point sinksunconstrained 2-state fit: T ≥ 3a

1.22

1.26

g A/

g V

a09m220

meff tmin geffA tmin geff

V tmin

8 9 10 11 2 3 4 5 5 6 7 810−2

10−1

100

P

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 24

Page 36: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Fits for axial charge

Fixed sink

1.1

1.2

1.3

1.4

−10 −5 0 5 10

τ :∞ 12 14 16

a09m220

R. Gupta et al. (PNDME), 1806.09006

constrained 3-state fit: τ ,T − τ ≥ 3a

Note: more than 10 states with∆E < 1 GeV =⇒ e−3a∆E > 0.25.

Summed current insertion

0 5 10 15t/a

1.15

1.20

1.25

1.30

1.35

1.40

geff

A

a09m220

C. C. Chang et al., Nature 558, 91 [1805.12130]

data with smeared and point sinksunconstrained 2-state fit: T ≥ 3a

1.22

1.26

g A/

g V

a09m220

meff tmin geffA tmin geff

V tmin

8 9 10 11 2 3 4 5 5 6 7 810−2

10−1

100

P

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 24

Page 37: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

data at tsep = 1.0fmfit model at tsep = 1.0fm

fit result

tsep/fm

gu−d

A

10.50-0.5-1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9data at tsep = 1.0fm

fit model at tsep = 1.0fmfit result

tsep/fm

gu−d

S

10.50-0.5-1

2

1.5

1

0.5

0data at tsep = 1.0fm

fit model at tsep = 1.0fmfit result

tsep/fm

gu−d

T

10.50-0.5-1

1.3

1.2

1.1

1

0.9

0.8

data at tsep = 1.0fmfit model at tsep = 1.0fm

fit result

tsep/fm

〈x〉 u

−d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.0fm

fit model at tsep = 1.0fmfit result

tsep/fm

〈x〉 ∆

u−∆d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.0fm

fit model at tsep = 1.0fmfit result

tsep/fm

〈x〉 δ

u−δd

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

mπ = 347 MeV, a = 0.064 fm, T = 16a(all T included in fit).

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 38: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

data at tsep = 1.2fmfit model at tsep = 1.2fm

fit result

tsep/fm

gu−d

A

10.50-0.5-1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9data at tsep = 1.2fm

fit model at tsep = 1.2fmfit result

tsep/fm

gu−d

S

10.50-0.5-1

2

1.5

1

0.5

0data at tsep = 1.2fm

fit model at tsep = 1.2fmfit result

tsep/fm

gu−d

T

10.50-0.5-1

1.3

1.2

1.1

1

0.9

0.8

data at tsep = 1.2fmfit model at tsep = 1.2fm

fit result

tsep/fm

〈x〉 u

−d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.2fm

fit model at tsep = 1.2fmfit result

tsep/fm

〈x〉 ∆

u−∆d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.2fm

fit model at tsep = 1.2fmfit result

tsep/fm

〈x〉 δ

u−δd

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

mπ = 347 MeV, a = 0.064 fm, T = 18a(all T included in fit).

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 39: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

data at tsep = 1.3fmfit model at tsep = 1.3fm

fit result

tsep/fm

gu−d

A

10.50-0.5-1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9data at tsep = 1.3fm

fit model at tsep = 1.3fmfit result

tsep/fm

gu−d

S

10.50-0.5-1

2

1.5

1

0.5

0data at tsep = 1.3fm

fit model at tsep = 1.3fmfit result

tsep/fm

gu−d

T

10.50-0.5-1

1.3

1.2

1.1

1

0.9

0.8

data at tsep = 1.3fmfit model at tsep = 1.3fm

fit result

tsep/fm

〈x〉 u

−d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.3fm

fit model at tsep = 1.3fmfit result

tsep/fm

〈x〉 ∆

u−∆d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.3fm

fit model at tsep = 1.3fmfit result

tsep/fm

〈x〉 δ

u−δd

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

mπ = 347 MeV, a = 0.064 fm, T = 20a(all T included in fit).

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 40: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

data at tsep = 1.4fmfit model at tsep = 1.4fm

fit result

tsep/fm

gu−d

A

10.50-0.5-1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9data at tsep = 1.4fm

fit model at tsep = 1.4fmfit result

tsep/fm

gu−d

S

10.50-0.5-1

2

1.5

1

0.5

0data at tsep = 1.4fm

fit model at tsep = 1.4fmfit result

tsep/fm

gu−d

T

10.50-0.5-1

1.3

1.2

1.1

1

0.9

0.8

data at tsep = 1.4fmfit model at tsep = 1.4fm

fit result

tsep/fm

〈x〉 u

−d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.4fm

fit model at tsep = 1.4fmfit result

tsep/fm

〈x〉 ∆

u−∆d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.4fm

fit model at tsep = 1.4fmfit result

tsep/fm

〈x〉 δ

u−δd

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

mπ = 347 MeV, a = 0.064 fm, T = 22a(all T included in fit).

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 41: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

data at tsep = 1.5fmfit model at tsep = 1.5fm

fit result

tsep/fm

gu−d

A

10.50-0.5-1

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

0.9data at tsep = 1.5fm

fit model at tsep = 1.5fmfit result

tsep/fm

gu−d

S

10.50-0.5-1

2

1.5

1

0.5

0data at tsep = 1.5fm

fit model at tsep = 1.5fmfit result

tsep/fm

gu−d

T

10.50-0.5-1

1.3

1.2

1.1

1

0.9

0.8

data at tsep = 1.5fmfit model at tsep = 1.5fm

fit result

tsep/fm

〈x〉 u

−d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.5fm

fit model at tsep = 1.5fmfit result

tsep/fm

〈x〉 ∆

u−∆d

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0data at tsep = 1.5fm

fit model at tsep = 1.5fmfit result

tsep/fm

〈x〉 δ

u−δd

10.50-0.5-1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

mπ = 347 MeV, a = 0.064 fm, T = 24a(all T included in fit).

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 42: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Simultaneous fits

∆Nπ

2Mπ

Fitted ∆0

Mπtstart

∆0/[G

eV]

0.80.70.60.50.40.30.20.1

3

2.5

2

1.5

1

0.5

0

mπ = 347 MeV, a = 0.064 fm

Two-state fit to ratios for six observables in range τ ,T − τ ≥ tstart withtstartMπ = 0.4 fixed globally for all ensembles.∆E determined only from ratios, not C2pt.→ K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 25

Page 43: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Fit qualityCan we trust these fits? Ideally we would require that they have good fitquality. (Not a suicient condition!)

0.0 0.2 0.4 0.6 0.8 1.0p

0.0

0.2

0.4

0.6

0.8

1.0

Cum

ulat

ive

dist

ribu

tion

func

tion

uniformCalLatPNDME

Should expect uniformly distributed p-values.Following

Sz. Borsanyi et al., Science 347, 1452 (2015) [1406.4088]

can use Kolmogorov-Smirnov test.

PNDME: p = 0.26CalLat: p = 0.00077

p-values not provided by Mainz,but reduced χ 2 are large.

0.0 0.5 1.0 1.5 2.0 2.5 3.0χ2 per degree of freedom

0.0

0.2

0.4

0.6

0.8

1.0

Cum

ulat

ive

dist

ribu

tion

func

tion

Mainz

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 26

Page 44: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Fit qualityCan we trust these fits? Ideally we would require that they have good fitquality. (Not a suicient condition!)

0.0 0.2 0.4 0.6 0.8 1.0p

0.0

0.2

0.4

0.6

0.8

1.0

Cum

ulat

ive

dist

ribu

tion

func

tion

uniformCalLatPNDME

Should expect uniformly distributed p-values.Following

Sz. Borsanyi et al., Science 347, 1452 (2015) [1406.4088]

can use Kolmogorov-Smirnov test.

PNDME: p = 0.26CalLat: p = 0.00077

p-values not provided by Mainz,but reduced χ 2 are large.

0.0 0.5 1.0 1.5 2.0 2.5 3.0χ2 per degree of freedom

0.0

0.2

0.4

0.6

0.8

1.0

Cum

ulat

ive

dist

ribu

tion

func

tion

Mainz

May be diicult to estimate χ 2 due to diiculty inverting large covariancematrix.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 26

Page 45: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

What about Nπ states?

Expected Nπ states not seen in variational or fiing results. Why?I Volume suppression? Contamination from each state ∝ L−3.

But density of states ∝ L3 compensates.I At short T , higher states dominate?=⇒ not yet in asymptotic regime.

Familiar from mesonspectroscopy.

Must include nonlocaloperators in variationalbasis to identify completespectrum.

0.10

0.15

0.20

D. J. Wilson et al. (HadSpec), Phys. Rev. D 92, 094502 (2015)[1507.02599]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 27

Page 46: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Comparison of several approachessm

32sm

64sm

128

t=

10t=

13t=

16t=

19t=

22

δt=

0δt

=1

δt=

2δt

=3

δt=

0δt

=1

δt=

2δt

=3

δt=

0δt

=1

δt=

2δt

=3

δt=

2δt

=3

δt=

4δt

=2

δt=

3δt

=4

δt=

2δt

=3

δt=

4

δt=

2δt

=3

δt=

4

δt=

2δt

=3

δt=

4

t=

13t=

16

Methods

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Valu

e

Fits Fits Summation 2exp 2exp 2exp Var

Smears Sink Times Method sm32 t=13 All t 10,13 t0 =2

t=13 sm32 All t 10 t 10,13 sm32 sm64 sm128 sm32sm32 sm32sm32 ∆t=2

gA Summary

mπ = 460 MeV, a = 0.074 fmJ. Dragos et al., PRD 94, 074505 (2016) [1606.03195]

1.05

1.15

1.25

1.35

g A

Plateau Summation Two-state

0.9 1.0 1.1 1.2 1.3 1.4ts[fm]

0.50

0.55

0.60

0.65

0.70

gu+

dA

Connected

0.9 1.0 1.1 1.2 1.3tlow

s [fm]

1.05

1.15

1.25

1.35

g A

Plateau Summation Two-state

0.9 1.0 1.1 1.2 1.3 1.4ts[fm]

0.50

0.55

0.60

0.65

0.70

gu+

dA

Connected

0.9 1.0 1.1 1.2 1.3tlow

s [fm]

mπ = 130 MeV, a = 0.093 fmC. Alexandrou et al. (ETMC), PRD 96, 054507 (2017)

[1705.03399]

May be best to estimate systematic uncertainty using multiple dierentapproaches.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 28

Page 47: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects

In general suppressed as e−mπ L .For дA, computed in heavy baryon ChPT including ∆ degrees of freedom:S. R. Beane and M. J. Savage, Phys. Rev. D 70 074029 (2004) [hep-ph/0404131]

дA (L) − дAдA

=m2π

3π 2 f 2π

[д2AF1 (mπL) + д

2∆N (1 + 25д∆∆

81дA )F2 (mπ ,∆,L)

+ F3 (mπL) + д2∆N F4 (mπ ,∆,L)

],

Neglecting loops with ∆ baryons, the leading contribution is

дA (L) − дAдA

∼ m2πд

2A

3π 2 f 2π

√π

2mπLe−mπ L

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 29

Page 48: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects: controlled studies

0.80

0.85

0.90

0.95

1.00

1.05

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

gA

(L)/gA

(Lmax

)

mπL

RQCD 150 MeVRQCD 290 MeVRQCD 420 MeV

PNDME 220 MeVCalLat 220 MeVETMC 130 MeV

QCDSF 261 MeVQCDSF 290 MeVLHPC 356 MeVLHPC 254 MeVRBC 420 MeV

Reference data at Lmax indicated with black dot.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 30

Page 49: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects: controlled studies

0.80

0.85

0.90

0.95

1.00

1.05

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

gA

(L)/gA

(Lmax

)

(mπ/mphysπ )2e−mπL/

√mπL

RQCD 150 MeVRQCD 290 MeVRQCD 420 MeVPNDME 220 MeVCalLat 220 MeVETMC 130 MeV

QCDSF 261 MeVQCDSF 290 MeVLHPC 356 MeVLHPC 254 MeVRBC 420 MeV

Reference data at Lmax indicated with black dot.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 30

Page 50: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects: global fitsgu−d

A

MπL

1.2

1.3

3 4 5 6 7

R. Gupta et al. (PNDME), 1806.09006

дA (mπ ,L,a) = f (mπ ,a) + cm2πe−mπ L

atmphysπ ,mπL = 4: −0.9(5)% eect

0.000 0.005 0.010 0.015 0.020 0.025

e−mπL/(mπL)1/2

1.23

1.25

1.27

1.29

g A

NNLO+ct χPT

NLO χPT predictionNLO χPT prediction

C. C. Chang et al., Nature 558, 91 [1805.12130]

leading HBChPT expression (no ∆)

+c (mπ /fπ )3F1 (mπL)

Larger (few %) eect seen by Mainz group! K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 31

Page 51: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects: global fitsgu−d

A

MπL

1.2

1.3

3 4 5 6 7

R. Gupta et al. (PNDME), 1806.09006

дA (mπ ,L,a) = f (mπ ,a) + cm2πe−mπ L

atmphysπ ,mπL = 4: −0.9(5)% eect

0.000 0.005 0.010 0.015 0.020 0.025

e−mπL/(mπL)1/2

1.23

1.25

1.27

1.29

g A

NNLO+ct χPT

NNLO χPT estimateNNLO χPT estimate

C. C. Chang et al., Nature 558, 91 [1805.12130]

leading HBChPT expression (no ∆)+c (mπ /fπ )

3F1 (mπL)

Larger (few %) eect seen by Mainz group! K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 31

Page 52: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Finite-volume eects: global fitsgu−d

A

MπL

1.2

1.3

3 4 5 6 7

R. Gupta et al. (PNDME), 1806.09006

дA (mπ ,L,a) = f (mπ ,a) + cm2πe−mπ L

atmphysπ ,mπL = 4: −0.9(5)% eect

0.000 0.005 0.010 0.015 0.020 0.025

e−mπL/(mπL)1/2

1.23

1.25

1.27

1.29

g A

model average

NNLO χPT estimateNNLO χPT estimate

C. C. Chang et al., Nature 558, 91 [1805.12130]

leading HBChPT expression (no ∆)+c (mπ /fπ )

3F1 (mπL)

Larger (few %) eect seen by Mainz group! K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 31

Page 53: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Chiral extrapolation

Increasing number of calculations at physicalmπ .Otherwise need extrapolation.

Heavy baryon ChPT for дA:

дA (mπ ) = д0 − (д0 + 2д30 )

( mπ

4πF

)2log

m2π

µ2 + c1m2π + c2m

3π + . . .

or use simple polynomials inmπ orm2π .

Range of convergence is a priori unknown.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 32

Page 54: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 55: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

1.05

1.15

1.25

1.35

g A

Plateau Summation Two-state

0.9 1.0 1.1 1.2 1.3 1.4ts[fm]

0.50

0.55

0.60

0.65

0.70

gu+

dA

Connected

0.9 1.0 1.1 1.2 1.3tlow

s [fm]

1.05

1.15

1.25

1.35

g A

Plateau Summation Two-state

0.9 1.0 1.1 1.2 1.3 1.4ts[fm]

0.50

0.55

0.60

0.65

0.70

gu+

dA

Connected

0.9 1.0 1.1 1.2 1.3tlow

s [fm]

One ensemble: mπ = 130 MeV,a = 0.093 fm,mπL = 3.0C. Alexandrou et al. (ETMC),Phys. Rev. D 96, 054507 (2017) [1705.03399]

1.1

1.15

1.2

1.25

1.3

1.35

0.8 1 1.2 1.4 1.6 1.8

gA

Time separation [fm]

L=48, a~0.094, Nf=2L=64, a~0.094, Nf=2 (preliminary)L=64, a~0.081, Nf=2+1+1 (preliminary)

New Nf = 2 ensemble: larger volume.C. Lauer poster

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 56: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

model average gLQCDA (ǫπ , a = 0)

gPDGA = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)gA(ǫπ , a ≃ 0.12 fm)gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fma ≃ 0.12 fma ≃ 0.09 fm

Bayesian average over fit models forдA (mπ /Fπ ,mπL,a

2/w20 ).

C. C. Chang et al., Nature 558, 91 (2018)[1805.12130]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 57: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

1:24 1:28 1:32

gA

model avg

NNLO fflPT

NNLO+ct fflPT

NLO Taylor ›2ı

NNLO Taylor ›2ı

NLO Taylor ›ı

NNLO Taylor ›ı

+O(¸sa2) disc.

+O(a) disc.

omit FV

NLO FV

2×LO width

2× all widths

mı ≤ 350 MeV

mı ≤ 310 MeV

mı ≥ 220 MeV

a ≤ 0:12 fm

a ≥ 0:12 fm

N3LO fflPT

NLO fflPT(∆)

0:0 0:5 1:0

ffl2aug=dof

0:0 0:5 1:0

Bayes factor

C. C. Chang et al., Nature 558, 91 (2018)[1805.12130]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 58: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

gu−d

A

a [fm]

a15m310a12m310a12m220La12m220a12m220S

a09m310a09m220a09m130a06m310a06m220

a06m135extrap.1-extrap.

1.2

1.3

0 0.03 0.06 0.09 0.12 0.15

gu−d

A

M2π [GeV2]

1.2

1.3

0.02 0.04 0.06 0.08 0.1 0.12

gu−d

A

MπL

1.2

1.3

3 4 5 6 7

Main ansatz:

дA (mπ ,L,a) = c1 + c2a + c3m2π

+ c4m2πe−mπ L

R. Gupta et al. (PNDME), 1806.09006

R. Gupta parallel, Thu 12:40

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 59: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

0 5 10 15t/a

0.8

1

1.2

1.4

1.6

PDG16m

π=0.146 GeV

gA

ren

One ensemble: mπ = 146 MeV,a = 0.085 fm,mπL = 6.0, T = 1.3 fm.K.-I. Ishikawa et al. (PACS), 1807.03974

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 60: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

0 5 10 15t/a

0.8

1

1.2

1.4

1.6

PDG16m

π=0.146 GeV

gA

ren

One ensemble: mπ = 146 MeV,a = 0.085 fm,mπL = 6.0, T = 1.3 fm.K.-I. Ishikawa et al. (PACS), 1807.03974

New ensemble: mπ = 135 MeV,L = 10.8 fm. Y. Kuramashi parallel, Thu 9:50

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 61: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

lattice data (corrected)value at Mπ,phys

chiral + continuum + FS extrapolation

Mπ/GeV

t0M2π

gu−d

A

0.350.300.250.200.150.100

0.070.060.050.040.030.020.010

1.4

1.3

1.2

1.1

1

0.9

0.8

Ensembles havems varied such thatms +mu +md = const.Fit ansatz:

дA (mπ ,L,a) = c1 + c2a2 + c3m

+ c4m2πe−mπ L

K. Onad parallel, Thu 12:00

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 62: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

1.1

1.15

1.2

1.25

1.3

1.35

0.8 1 1.2 1.4 1.6 1.8

gA

Time separation [fm]

Two state fitL=64, a~0.081, Nf=2+1+1 (preliminary)

One ensemble: physicalmπ ,a = 0.081 fm,mπL = 3.6C. Lauer posterM. Constantinou parallel, Fri 17:50

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 63: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Axial charge: extrapolated and physical-point results

0.8 0.9 1.0 1.1 1.2 1.3 1.4gA

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2 clover (Mainz ’17)

2+1 overlap (JLQCD ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 overlap on domain wall (χQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (PACS ’18)

2+1 clover (PACS ’18b)

2+1 clover (Mainz ’18)

2+1+1 twisted mass clover (ETMC ’18)

PDG

filled symbols: published

Selection based on quality criteriastill missing!

Other preliminary results:

1

1.1

1.2

1.3

1.4

1.5

8 9 10 11 12

gA/gV

T

2:-2 ft3:-3 ft4:-4 ft

Experiment

Nf = 2 + 1 domain wall (RBC+LHPC)One ensemble: mπ = 139 MeV,a = 0.11 fm,mπL = 3.9S. Ohta parallel, Thu 11:40

Nf = 2 + 1 + 1 staggered(Fermilab-MILC)Blinded analysis.Y. Lin parallel, Thu 9:30

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 33

Page 64: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Tensor and scalar charges

0.7 0.8 0.9 1.0 1.1 1.2gT (MS, 2 GeV)

2+1 clover (LHPC ’12)

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 twisted mass clover (ETMC ’17)

2+1 overlap (JLQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (Mainz ’18)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4gS (MS, 2 GeV)

2+1 clover (LHPC ’12)

2 clover (RQCD ’15)

2+1+1 clover on HISQ (PNDME ’16)

2 TM-clover (ETMC ’17)

2+1 overlap (JLQCD ’18)

2+1+1 clover on HISQ (PNDME ’18)

2+1 clover (Mainz ’18)

LQCD average (∆mN/∆mq)QCD(Gonzalez-Alonso ’14)

Selection based on quality criteria still missing!

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 34

Page 65: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Sigma terms

25 30 35 40 45 50 55 60 65

RQCD

ETMC

χQCD

BMWc

M. Hoferichter et al., PRL 115, 092301

0 20 40 60 80 100 120 140 160σπN (MeV) σs (MeV)

phenomenologyLQCD Feynman-HellmannLQCD direct

Published results with (near-)physicalmπ .Update on BMWc Nf =1+1+1+1 results: L. Varnhorst and C. Hoelbling, Wed. 16:10 and 16:30

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 35

Page 66: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Outlook

I Excited-state contamination is a major focus.A full variational study including nonlocal Nπ interpolators would helpdefinitively resolve the issue.

I No sign of large finite-volume eect in fully-controlled studiesat low pion mass.

I For LQCD averages, individual calculations must be selected usingquality criteria. Fiing approaches for excited states vary; seingstandards may be diicult.I One aempt: H.-W. Lin et al., “Parton distributions and laice QCD calculations: A

community white paper” Prog. Part. Nucl. Phys. 100, 107 (2018) [1711.07916]I Some nucleon structure to appear in next FLAG review.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 36

Page 67: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Thanks to all who sent results and replied to my questions:

Constantia AlexandrouChia Cheng Chang

Colin EgererRajan Gupta

Jian LiangShigemi Ohta

Konstantin OnadFinn Stokes

André Walker-LoudTakeshi Yamazaki

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 37

Page 68: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 38

Page 69: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Scalar and tensor charges

Precision β-decay experiments may be sensitive to BSM physics; leadingcontributions are controlled by the scalar and tensor charges:T. Bhaacharya et al., Phys. Rev. D 85, 054512 (2012) [1110.6448]

〈p (P , s ′) |ud |n(P , s )〉 = дS up (P , s ′)un (P , s ),〈p (P , s ′) |uσ µνd |n(P , s )〉 = дT up (P , s ′)σ µνun (P , s ).

Tensor charges also control contribution from quark electric dipole momentto neutron EDM:

LqEDM = − 12

∑q

dqqiσµνγ5qFµν =⇒ dn = duд

dT + ddд

uT + dsд

sT + · · · .

For scalar charge, conserved vector current relation implies

дS =(mn −mp )QCD

md −mu,

up to second-order isospin breaking.M. González-Alonso and J. Martin Camalich, Phys. Rev. Le. 112, 042501 (2014) [1309.4434]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 39

Page 70: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Sigma terms

The contributions from quark masses to the nucleon mass.

σπN =mud 〈N |uu + dd |N 〉 σq =mq〈N |qq |N 〉Control the sensitivity of direct-detection dark maer searches to WIMPsthat interact via Higgs exchange.

Phenomenological value σπN = 59.1 ± 3.5 MeV determined based oncombining:I Cheng-Dashen low-energy theoremI Roy-Steiner equations to constrain πN scaering amplitudeI Precise πN scaering lengths from pionic atoms

M. Hoferichter et al., Phys. Rev. Le. 115, 092301 (2015) [1506.04142]

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 40

Page 71: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Variational approach: nonzero momentum

16 18 20 22 24 26 28 30 32 34

t/a

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

GM(Q

2)/µN

dp (PEVA) dp (Conv.)

Include operators with negative parity in variational basis.F. Stokes et al., in preparation Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 41

Page 72: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Discretization eects: controlled studies

C. Alexandrou et al. (ETMC),Phys. Rev. D 83, 045010 (2011) [1012.0857]

Nf = 2 Wilson twisted mass.No significant eect seen.

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

PRELIMINARY

g A

a2 [fm2]

Nf = 3, mπ ≈ 420 MeVExpt

G. S. Bali et al. (RQCD), PoS LATTICE2016, 106[1702.01035]

Nf = 3 clover.Linear in a2/t0 extrapolations.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 42

Page 73: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Discretization eects: global fitsgu−d

A

a [fm]

a15m310a12m310a12m220La12m220a12m220S

a09m310a09m220a09m130a06m310a06m220

a06m135extrap.1-extrap.

1.2

1.3

0 0.03 0.06 0.09 0.12 0.15

R. Gupta et al. (PNDME), 1806.09006

Nf = 2 + 1 + 1 clover on HISQ.pink: дA (mπ ,L,a) = f (mπ ,L) + ca/r1gray: дA (mπ ,L,a) = дA + ca/r1

0.00 0.01 0.02 0.03 0.04 0.05 0.06ǫ2

a = a2/(4πw20 )

1.10

1.15

1.20

1.25

1.30

1.35

g A

model average gLQCDA (ǫphys.

π , ǫa)

gPDGA = 1.2723(23)

gA(ǫ(130)π , ǫa)

gA(ǫ(220)π , ǫa)

gA(ǫ(310)π , ǫa)

gA(ǫ(350)π , ǫa)

gA(ǫ(400)π , ǫa)

C. C. Chang et al., Nature 558, 91 [1805.12130]

Nf = 2 + 1 + 1 domain wall on HISQ.дA (mπ ,L,a) = f (mπ ,L) + ca

2/w20

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 43

Page 74: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Chiral log?

Preferred fit: дA (mπ ) = c1 + c2m2π

ChPT: дA (mπ ) = д0 − (д0 + 2д30 )

( mπ

4πF

)2logm2

π + cm2π + . . .

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

model average gLQCDA (ǫπ , a = 0)

gPDGA = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)gA(ǫπ , a ≃ 0.12 fm)gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fma ≃ 0.12 fma ≃ 0.09 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

NNLO χPT gLQCDA (ǫπ , a = 0)

gPDGA = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)gA(ǫπ , a ≃ 0.12 fm)gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fma ≃ 0.12 fma ≃ 0.09 fm

C. C. Chang et al., Nature 558, 91 (2018) [1805.12130]

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35Axial charge in chiral limit

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

Preferred fit

ChPT May need precise data belowmphysπ

to see chiral log.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 44

Page 75: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Chiral log?

Preferred fit: дA (mπ ) = c1 + c2m2π

ChPT: дA (mπ ) = д0 − (д0 + 2д30 )

( mπ

4πF

)2logm2

π + cm2π + . . .

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

NNLO χPT

LONLO

NNLO

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

NNLO χPT gLQCDA (ǫπ , a = 0)

gPDGA = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)gA(ǫπ , a ≃ 0.12 fm)gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fma ≃ 0.12 fma ≃ 0.09 fm

C. C. Chang et al., Nature 558, 91 (2018) [1805.12130]

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35Axial charge in chiral limit

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

Preferred fit

ChPT May need precise data belowmphysπ

to see chiral log.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 44

Page 76: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Chiral log?

Preferred fit: дA (mπ ) = c1 + c2m2π

ChPT: дA (mπ ) = д0 − (д0 + 2д30 )

( mπ

4πF

)2logm2

π + cm2π + . . .

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

NNLO χPT

LONLO

NNLO

0.00 0.05 0.10 0.15 0.20 0.25 0.30ǫπ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g A

NNLO χPT gLQCDA (ǫπ , a = 0)

gPDGA = 1.2723(23)

gA(ǫπ , a ≃ 0.15 fm)gA(ǫπ , a ≃ 0.12 fm)gA(ǫπ , a ≃ 0.09 fm)

a ≃ 0.15 fma ≃ 0.12 fma ≃ 0.09 fm

C. C. Chang et al., Nature 558, 91 (2018) [1805.12130]

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35Axial charge in chiral limit

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

2+1+1 domain wall on HISQ (CalLat ’18)

2+1 clover (Mainz ’18)

Preferred fit

ChPT May need precise data belowmphysπ

to see chiral log.

Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 44

Page 77: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Calculations with near-physicalmπ

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

3.0 4.0 5.0 6.0 7.0

gA(near-ph

ysical

mπ)

mπL

Nf=2 TM-clover (ETMC)Nf=2+1+1 TM-clover (ETMC)Nf=2 clover (RQCD)Nf=2+1 clover (PACS)Nf=2+1+1 clover/HISQ (PNDME)Nf=2+1+1 DW/HISQ (CalLat)

see also: Nf = 2 + 1 domain wall (RBC+LHPC) → S. Ohta parallel, Thu 11:40

Nf = 2 + 1 + 1 HISQ staggered → Y. Lin parallel, Thu 9:30Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 45

Page 78: Systematics in nucleon matrix element calculations€¦ · Motivation Three reasons for studying structure of protons and neutrons: I Understanding the quark and gluon substructure

Calculations with near-physicalmπ

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

gA(near-ph

ysical

mπ)

a (fm)

Nf=2 TM-clover (ETMC)Nf=2+1+1 TM-clover (ETMC)Nf=2 clover (RQCD)Nf=2+1 clover (PACS)Nf=2+1+1 clover/HISQ (PNDME)Nf=2+1+1 DW/HISQ (CalLat)

see also: Nf = 2 + 1 domain wall (RBC+LHPC) → S. Ohta parallel, Thu 11:40

Nf = 2 + 1 + 1 HISQ staggered → Y. Lin parallel, Thu 9:30Jeremy Green | DESY, Zeuthen | Laice 2018 | Page 45