synthetic strategies in solid-phase peptide synthesis: n ...€¦ · ii synthetic strategies in...

148
Synthetic Strategies in Solid-Phase Peptide Synthesis: N-Terminus Modification by Max Ryan Weissman A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Max Ryan Weissman 2018

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • SyntheticStrategiesinSolid-PhasePeptideSynthesis:N-TerminusModification

    by

    MaxRyanWeissman

    AthesissubmittedinconformitywiththerequirementsforthedegreeofMasterofScience

    DepartmentofChemistryUniversityofToronto

    ©CopyrightbyMaxRyanWeissman2018

  • ii

    SyntheticStrategiesinSolid-PhasePeptide

    Synthesis:N-TerminusModification

    MaxRyanWeissman

    MasterofScience

    DepartmentofChemistry

    UniversityofToronto

    2018

    AbstractSolid-phasepeptidesynthesis(SPPS)isatechniqueusedinthesynthesisof

    peptides.SPPSismainlyusedtosynthesizelinearpeptidesusingnaturalα-amino

    acidprecursors.Inthisthesis,differentwaysofmodifyingtheN-terminusof

    polymer-supportedpeptideswasinvestigated.TheN-terminuswasconvertedinto

    ureaandguanidinefunctionalitieswiththeuseofisocyanatesequivalents.

    Alternatively,anothermethodconvertedtheN-terminusintoisocyanatesand

    carbodiimides,whichthenreactedwithvariousamines.Inaddition,lesscommon

    peptidecouplingreagents,suchasacylchloridesandanhydrides,wereexamined

    withrespecttopolymerboundpeptides.Thesereagentswerethencomparedwith

    moretypicalones,suchasHATU,onavarietyofsubstrates.

  • iii

    Acknowledgments

    I’dliketothankmysupervisor,Rob,andallthemembersoftheBateygroupfor

    theirhelpduringmytimehere.Theyhavealltaughtmemanythingsandguidedme

    throughthisproject.Iappreciatealltheyhavedoneformeandfeelsofortunateto

    havebeensurroundedbysomanycompassionatepeople.

    I’dalsoliketothankmyfamilyandfriendsfortheirsupportduringthistime.Their

    effortsandexistencehavehelpedmetopushforwardthrougheverything.I’m

    happythattheyareinmylifeandknowthattheywillbethereformeinthefuture.

  • iv

    TableofContents

    Acknowledgments....................................................................................................................................iii

    TableofContents......................................................................................................................................iv

    ListofFigures..............................................................................................................................................vListofSchemes...........................................................................................................................................vi

    ListofTables..............................................................................................................................................viiAbbreviations..........................................................................................................................................viii

    1 Peptidesinchemistry................................................................................................................1

    1.1 Usesofpeptides.....................................................................................................................11.2 Synthesisofpeptides...........................................................................................................3

    1.3Synthesisofpeptidesderivatives..................................................................................5

    2 IsocyanatesandPeptides.........................................................................................................92.1β-alanineandderivatives..................................................................................................9

    2.2Isocyanateequivalents.....................................................................................................132.3Reactivityofthioureas......................................................................................................17

    2.4ConclusionsandOutlook.................................................................................................21

    3 Peptidecouplingconditions.................................................................................................223.1Methodsofactivation........................................................................................................22

    3.2Applicationsofactivation................................................................................................253.3ConclusionsandOutlook.................................................................................................31

    Experimental.............................................................................................................................................32

    Appendix......................................................................................................................................................75References................................................................................................................................................135

  • v

    ListofFiguresFigure1.Naturallyoccurringpeptides 2

    Figure2.Commonprotectinggroups 4

    Figure3.Commoncouplingreagents 4

    Figure4.Naturallyoccurringpeptidesandpeptidebaseddrugs 6

    Figure5.TheN-terminusbeingasecondaryamine 8

  • vi

    ListofSchemesScheme1.Synthesisofglyclglycine 1

    Scheme2.Synthesisofbenzoylglyclglycine 3

    Scheme3.GeneralstrategyforSPPS 5

    Scheme4.Peptidescanbemodifiedatmultiplelocations 7

    Scheme5.Nucleophilicadditionofaminesintoisocyanates 9

    Scheme6.β-Alaninederivativesformedfromphenylisocyanate 10

    Scheme7.Synthesisofapeptideona2-chlorotritylresin 11

    Scheme8.Substitutedβ-alaninesderivativescouplingtopolymerbound 12peptides

    Scheme9.Formationofcompound27e,withoutimpurities 13

    Scheme10.Reactionandproductsofreactionofpolymerboundpeptide 14withvariousisocyanatesandisothiocyanates.

    Scheme11.PolymerboundpeptidewithvariousN-alkylcarbamoylimidazoles 16

    Scheme12.Polymerboundpeptidescontainingthioureascanformhydantoins 17

    Scheme13.Cyclizationofaβ-alaninethiourea 18

    Scheme14.Trappingoutapolymersupportedcarbodiimidewithbenzylamine 19

    Scheme15.Trappingoutapolymersupportedcarbodiimidewith 20variousnucleophiles

    Scheme16.TheuseofaC-terminusprotectedaminoacidasanucleophile 21allowsfortheorientationofthepeptidetoflip

    Scheme17.Reactingthecarboxylicacid18awithvariousamines 30

  • vii

    ListofTablesTable1.Differentconditionsforcyclizingaβ-alaninethiourea 18

    Table2.Reactionofapolymerboundpeptidewithsimpleacylatingagents 23

    Table3.Reactionofapolymerboundpeptidewithvariousactivatingagents 24andbenzoicacid

    Table4.Polymerboundpeptidereactingwithactivatedaminoacid 25

    Table5.Differentactivatingagentswithanelectronpoorcarboxylicacid 26

    Table6.Reactionusingdifferentactivatingagentswithanelectronpoor 27carboxylicacid

    Table7.Comparisonofabulkycarboxylicacid,53c,couplingsusingHATU 28andEDC

  • viii

    AbbreviationsAla,A Alanine

    Asp,D Asparticacid

    br Broad(spectral)

    Boc tert-butoxycarbonyl

    cm-1 Wavenumber

    CDCl3Deuteratedchloroform

    CDICarbonyldiimidazole

    d Doublet(spectral)

    DABCO 1,4-Diazabicyclo[2.2.2]octane

    DCM Dichloromethane

    DIPEA Diisopropylethylamine

    DMAP 4-Dimethylaminopyridine

    DMF Dimethylformamide

    DMSO-d6 Deuterateddimethylsulfoxide

    DPPA Diphenylphosphorylazide

    dr Dram

    δ Chemicalshift

    EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

    ESI+Electrosprayionization

    Et2ODiethylether

    FmocFluorenylmethylcarbonyl

    HATU1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium

    3-oxidehexafluorophosphate

    HFIP Hexafluoroisopropanol

    HOAt 1-Hydroxy-7-azobenzotriazole

    HPLC High-performanceliquidchromatography

    HRMS High-resolutionmassspectrometry

    IR InfraredSpectroscopy

    m Multiplet(spectral)

  • ix

    MeI Iodomethane

    MeOH Methanol

    mgMilligram

    [M+H]+Molecularionwithhydrogen

    MHz Megahertz

    mL Milliliter

    mmol Millimole

    [M+Na]+ Molecularionwithsodium

    m.p. Meltingpoint

    Mukaiyama’sreagent 2-chloro-1-methylpyridiniumiodide

    m/z Mass-to-chargeratio

    NaHSodiumhydride

    NaOHSodiumhydroxide

    NEt3 Triethylamine

    NMP N-methyl-2-pyrrolidone

    Ph Phenyl

    ppm Partspermillion

    Pro,P Proline

    PS 2-chlorotritylpolymersupport/resin

    q Quartet(spectral)

    s Singlet(spectral)

    Ser,S Serine

    SPPS Solid-phasepeptidesynthesis

    t Triplet(spectral)tBu tert-butyl

    THF Tetrahydrofuran

    Trityl Triphenylmethyl

    Trp,W Tryptophan

    μL Microliter

    Val,V Valine

    YamaguchiReagent2,4,6-Trichlorobenzoylchloride

  • x

    1HNMR Protonnuclearmagneticresonance13CNMR Carbonnuclearmagneticresonance

  • 1

    Chapter1Introduction

    1PeptidesinChemistry

    1.1Thehistoryofpeptides

    Peptidesareamidesderivedfromtwoormoreaminoacidsconnectedbyacovalent

    amidebondformedbetweentheamineandcarboxylicacidofcontiguousamino

    acids,afterthelossofwater.1Theyaredistinguishedfromproteinsduetotheir

    relativesmallersize.Justlikeproteins,peptidesexistformanyreasonsandhave

    manyuses.

    Theinitialclassificationofpeptideswasin1902.Thedipeptideglycylglycinewas

    synthesizedbyErnestFourneaufromthehydrolysisof2,5-diketopiperazine

    (Scheme1).2Whenhepresentedthisresult,heintroducedthetermpeptide.Before

    this,theonlyidentificationofshorterformsofproteinswaspeptones,theproductof

    proteinsaftertheyaredigestedinthestomach.Thenewclassificationhelped

    establishedthetheorythatproteinsarelongchainsofaminoacidslinkedbyamide

    bonds.Sincethen,thisstructuraltheoryhasbeenproventhroughmany

    spectroscopicandotheranalyticaltechniques.Forexample,proteinscanbe

    characterizedbymassspectrometry,throughtheirfragmentationintopeptide

    fragments.3

    Scheme1.Synthesisofglyclglycine

    HNNH

    O

    OO

    H2N

    OHN OH

    2,5-diketopiperazine glyclglycine

    Hydrolysis

  • 2

    Later,naturallyoccurringpeptideswerediscoveredsuchasinsulin,oxytocin2and

    glutathione(Figure1).4Naturallyoccurringpeptidesactaseitherinhibitorsor

    activatorsforproteinsinlivingorganisms.5Synthesizingpeptidesallowsusto

    understandhowtheyworkandopensuproutesformodificationstoexplorethe

    structuralfeaturesrequiredforbiologicalactivity.Modifiedpeptidescanfunction

    betterinalivingorganismthantheinitialpeptide,aprocessthatcanbeusefulfor

    drugdiscovery.Allofthisisalsotrueforproteins,butduetotheirsizetheyare

    naturallymorechallengingtoworkwith.

    Figure1.Naturallyoccurringpeptides

    Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn

    Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly

    S S

    SS SS

    H

    H2NO O

    O

    NHO

    HN NH2

    N

    S

    NH O

    HN

    OH2N

    O

    NH

    O

    NH

    O

    HO

    NH

    O

    S

    NH2O

    HO

    O

    NH2

    O

    OHHN

    OSH

    NH O

    Insulin

    Oxytocin Glutathione

    Thr-Lys-Pro-Thr-Tyr-Phe-Phe

  • 3

    1.2Synthesisofpeptides

    Thefirstsynthesisofapeptideusedaglycine-silver(I)saltandbenzoylchloride.2

    Thiswasbeforetheidentificationofpeptidesasaclassofmolecules.Thedesired

    productforthereactionwasbenzoylglycine.Inadditiontomakingthedesired

    product,benzoylglycylglycineandlongerchainssuchasbenzoylhexaglycinewere

    alsomade(Scheme2).Inthecontextofpeptidechemistrythissynthesisraiseda

    fewissues.Duetotheamineandcarboxylicacidfunctionalityoneitherendofany

    aminoacid,polymerizationcanoccur.Thiscanbefurtherexacerbatedbyanamino

    acidwithreactivesidechains,suchaslysineorcysteine.Inaddition,ahardto

    removeprotectinggroup,suchasabenzoylgroup,beingonthepeptidewouldmake

    itdifficulttoextendthepeptide.

    Scheme2.Synthesisofbenzoylglyclglycine

    Themethodologyofpeptidechemistryhasgrownmuchsincethisinitialstudy.

    TypicallytheaminoacidsareprotectedoneithertheirC-orN-terminusand

    allowedtocouplewithanotheraminoacidthatisprotectedonthecomplementary

    end(Figure2).6Theaminoacidsarecoupledtogetherusuallywithanactivating

    agentthatreducesthepossibilityforracemization(Figure3).7

    OH2N O Ag

    Cl

    O

    OHN OH

    O

    + +

    OHN

    ONH

    OH

    O

    nGlycine-silver(I) Benzoyl Chloride

    Benzoylglycine

    1

    Benzene

    Reflux

  • 4

    Figure2.Commonprotectinggroups:Fmoc(2,blue),Boc(3,blue),Trityl(2,red),tBu(3,red)

    Figure3.Commoncouplingreagents

    In1963,amoreefficientmethodforpeptidesynthesiswasestablished,Solid-phase

    peptidesynthesis(SPPS).8Thismethodusesapolymersupportwithanactivated

    chainendwhereeithertheC-orN-terminusofanaminoacidcanattach.Inthis

    thesis,allpolymer-supportedpeptideswereattachedbytheC-terminustothe

    polymer.WithSPPS,couplingsarecarriedoutasnormal,butanywastecanjustbe

    washedoffwithfiltrationduetothepolymersupport.Thisreducesthetimefor

    synthesiswithouttheneedforlengthypurifications.Solubilityisalsolessofanissue

    becausehighlysolubilizingsolvents,suchasDMF,canbeused.Thereisnoconcern

    withremovingthesolventsinceitcanalsobefilteredoff.Oncethepeptidehasbeen

    completeditcaneasilybecleavedfromthepolymersupport(Scheme3).

    OHN

    O

    O O

    OHN

    O

    O O

    2 3

    N NN

    N

    ONCNN

    N

    NN

    NOH

    HOAt

    PF6

    EDCHATU

    NN

  • 5

    Scheme3.GeneralstrategyforSPPS

    1.3Synthesisofpeptidederivatives

    OneproblemwithSPPSisthatnormallythetypesofreactionsperformedarenot

    thatdiverse.Thisisduetothemildconditionsneededtokeepalltheprotecting

    groupsonthepeptide.Thenarrowscopeofreactionscanbeanissuebecause

    naturalproductsarenotalwaysjustsimplepeptides,butcanhavemodifications

    (Figure4A).9Thesenaturalproductsarebiosynthesizedaspeptidesandpost

    modifiedinthecell.Drugsthatarederivedfrompeptidesarealsooftenpeptides

    thathavebeenmodified(Figure4B).10Drugsusuallyhavemorenon-proteinogenic

    modificationsthanthenaturalproductitisbaseduponhave.Becauseofthis,new

    typesofreactionsforSPPSwouldgreatlyhelpthefieldofmedicinalchemistryand

    pharmaceuticaldevelopment.

    Whenlookingatapeptidetherearemultiplelocationsthatcanbemodified

    (Scheme4).Thehydrogenonanitrogenofanyamidebondcanbereplaced.A

    X Linker PolymerSupport+OH

    N OH LinkerPolymerSupport

    OHN

    R R

    Linker PolymerSupportOH

    N

    R

    OHN OH

    R

    ONH

    Rn

    OHN

    RONH

    Rn

    OH

    Cleave

    1. Deprotection2.PeptideCoupling

    4 5 6

    7

    89

    PG PG

    PG

    PGPG

  • 6

    Figure4.Naturallyoccurringpeptides(A)andpeptidebaseddrugs(B)withnonproteinogenicaminoacidcomponents(green)

    O

    O

    ON

    H

    O

    HN

    O O

    HO NH

    OCl

    HO

    Cl

    H

    HO

    O

    O

    HN

    H2NOH

    O

    NH

    O NH

    OH O

    NH

    HN

    ON

    O

    OHHN

    O

    OH

    HN O

    HN

    O

    HN

    HN

    O

    NHO

    OO

    H

    H

    H

    H

    H H

    TelomycinNannocystin A

    O

    N

    O NHO

    NH

    NH

    O

    HN

    NH2

    OHN O

    HNO

    H

    O

    NHO

    NH2

    Pasireotide

    O

    N

    O

    HN

    O

    NH

    O

    HN

    O

    NH

    O

    H

    H

    O

    Carfilzomib

    A

    B

  • 7

    commonreplacementisamethylgroup,whichhasbeenshowntobeaparticularly

    importantmodificationforcellpermeability.11Modificationscanalsobeperformed

    onthesidechainsofthepeptide.Disulfideformationisanimportantmodification

    thatchangestheconformationofthepeptideandincreasesitsstability.12Amidation

    ofacarboxylicresiduewithanitrogenonthepeptideoffersinterestingstructures.13

    Scheme4.Peptidescanbemodifiedatmultiplelocations

    OnematterthatisalwaysaddressedisthenatureoftheN-terminusbecauseitis

    usuallythelaststepforthesynthesis.Itcanbeleftasaprimaryaminebefore

    cleavagefromresin.ThemostfrequentN-terminalmodificationisacetylation

    becauseithassignificantimplicationsonthepeptideinteractionwithproteins.14

    TheN-terminusisagoodpointforsinglemodificationonapeptide.Itiseasyto

    performanditfollowsthelinearcouplingstrategyofSPPS.AlsoitchangestheN-

    terminusfromaprimaryaminetoasecondaryamine.Ifthepeptidewasbasedoffof

    aproteinfragment,themodificationoftheN-terminus(R’)ofthepeptidewouldbe

    analogoustotheprotein(Figure5).Inthisthesisdifferentreactionsareinvestigated

    thatchangetheN-terminusofpeptideswhilestillonthepolymersupport.

    O

    NH2HS

    ONH

    OHO

    OHN

    SH

    OH

    10 11

    NNS S

    O

    O NH2

    O OH

    O

  • 8

    Figure5.TheN-terminusbeingasecondaryamine(12)givesitsimilarpropertiestoaprotein(13)

    OHN PeptideR

    Peptide

    OHN PeptideR

    R'

    12 13

  • 9

    Chapter2Results&Discussion

    2IsocyanatesandPeptides

    2.1β-alanineandderivatives

    Thenucleophilicadditionofanamineintoanisocyanateisawell-established

    reactionthatproducesaurea(Scheme5).15Thisreactionisinterestinginthe

    perspectiveofpeptidechemistrybecausethisreactioncanworkwiththeN-

    terminusofapeptideandureasareasimilarfunctionalgrouptoamides.Inthis

    chapterthereactionandformationofisocyanatesandsimilarfunctionalgroups

    withβ-aminoacidsisinvestigated.

    Scheme5.Nucleophilicadditionofaminesintoisocyanates

    β-aminoacidsarepresentinmanypharmaceuticalandagrochemicaltarget

    molecules.16Themoleculestheyarepresentinhaveshownawiderangeof

    biologicalpropertiessuchasantibacterial,antiketogenicandinsecticidalactivity.

    Since,β-aminoacidsarehomologstoα-aminoacidstheirreactivityisexpectedtobe

    quitesimilar.Thismakesthemagoodstartingpointwhendivergingfromnormalα-

    aminoacidpeptidesynthesis.

    AnumberofN-substitutedβ-alaninesderivativesweresynthesizedfromβ-alanine

    andrelatedprecursors,usinggeneralexperimentalprocedureA.Mostofthe

    reactionsproceededsmoothly,providingacceptableyieldsoftheproductsafter

    +NHR’N

    H

    ORNH2R’C ONR

    14 15 16

  • 10

    purification(Scheme6).Inthecaseofthe3,3-dimethylsubstitutedβ-alaninethe

    desiredproductwasnotobtained.Theincreasedsterichindrancebytheadjacent

    methylgroupsreducedthenucleophilicityoftheamineoftheβ-alanine.This

    resultedinithavingsimilarreactivitytotheweakercarboxylicacidnucleophile,

    leadingtotheformationof18einlowyield.

    Scheme6.β-alaninederivativesformedfromphenylisocyanate

    Next,apeptideona2-chlorotritylpolymersupportwasprepared.Thegeneral

    experimentalproceduresBandCwereusedtomakeaL-valyl-L-prolyl-L-

    trypotophanpeptideona2-chlorotritylresin(Scheme7).Oncetheresinbound

    peptidewasmade,thecompounds18werecoupledtothepeptideusinggeneral

    experimentalprocedureD(Scheme8).Inmostinstancesthereactionproceededas

    expected.Mostofthecompoundswereobtainedinhighpurity,butlowyield.The

    NCO

    H2N OH

    O

    R+

    NH

    OH

    O

    RNH

    OTHF

    3 days

    Phenylisocyanate(1.0 equiv)

    17(1.0 equiv)

    18

    NH

    OH

    O

    NH

    O

    NH

    OH

    O

    NH

    O

    NH

    OH

    O

    NH

    O

    18a95%

    18b22%

    18c24%

    NH

    OH

    O

    NH

    O

    NH

    O

    O

    NH

    O

    18d52%

    18e2%

    NH

    O

  • 11

    lowyieldismostlikelyduetoresidualamountsofthepeptidenotbeingableto

    cleavefromtheresin.Thisisanissuethatcameupinmostinstancesofcleavageof

    thepeptidefromthepolymersupportinthisthesis.

    Scheme7.Synthesisofapeptideona2-chlorotritylresin

    Oneofthestartingcompounds,compound18e,whichinthepreviousreactionwas

    notthedesiredproduct,didnotreactinthesamewayascompounds18a-d.Wehad

    thoughtthatthecarbamatefunctionalityon18ewouldhaveasimilarreactivityas

    theactivatedcarboxylicacidofcompounds18a-d.However,thecarbamategroup

    interferedwiththereactionafteritwaseliminatedfromthecarbonyl.Thisyielded

    sideproductsinadditiontothedesiredproduct,resultinginlowpurity.

    O

    OHNH

    PSCl+ PSO

    OHNDIPEA (10.0 equiv)

    DCM, 5 h

    RFmoc

    RFmoc

    DMF/Piperidine (4:1 v/v)15 min x2

    PSO

    OH2N

    R

    O

    OHNH

    RFmoc

    HATU (3.0 equiv)DIPEA (6.0 equiv)

    NMP, 2 h x2

    PSO

    OHN

    RONH

    RFmoc

    PSO

    OHN

    ROH2N

    Rn

    19(3.0 equiv)

    20 21

    22

    19(3.0 equiv)

    23

  • 12

    Scheme8.Substitutedβ-alaninesderivativescouplingtopolymerboundpeptides

    Duetotheseissues,adifferentapproachwastakentomakecompound27e

    (Scheme9).Thecyclicdimethylatedmaleicanhydrideunderwentnucleophilic

    attackbytheN-terminusofapeptideboundresin.Followingaliteratureprocedure,

    theresultantcarboxylicacidreactedwithDPPA,formingtheacylazide.17ACurtius

    rearrangementcouldthenbeperformedandtheresultantisocyanatereactedwith

    anilinetoformcompound27e.

    VPW PS VPW

    O

    + PSNHOH

    O

    RNH

    O

    NH R

    NH

    O

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    27a22% (91% purity)

    27b23% (82% purity)

    27c30% (80% purity)

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    27d23% (91% purity)

    27e16% (31% purity)

    OH OH OH

    OHOH

    VPW

    O

    NH R

    NH

    O

    OH

    18(3.0 equiv)

    25 26

    27

    HATU (3.0 equiv)DIPEA (6.0 equiv)

    NMP, 16 h

    DCM/HFIP (4:1 v/v)1 h x2

  • 13

    Scheme9.Formationofcompound27e,withoutimpurities

    2.2Isocyanateequivalents

    Thenextapproachwastosynthesizetheureafunctionalitybyreactionof30with

    variousisocyanates,usingthegeneralexperimentalprocedureE(Scheme10).The

    productcompounds32weremadesuccessfullyinhighpurity,butonceagainlow

    yields.Notably,theisocyanatesdidnothaveanyadverseeffectonthepolymer

    support.Thisreactionperformedwellevenwithelectrondonatinggroupsonthe

    aromaticring,suchasmethoxy,whichreducetheelectrophilicityoftheisocyanate.

    Inaddition,replacingtheisocyanatewithisothiocyanateswasalsosuccessful,

    leadingtothiourea-terminatedpeptides.

    VPW PSVPW

    O+

    PS

    O OOHO

    O

    VPW

    O

    PSNCO

    VPW

    O

    PSNHNH

    O

    26eI

    27e

    VPW

    O

    NH

    NH

    O

    OH

    28(3.0 equiv)

    25

    26e

    THF

    2 h

    DPPA (10. 0 equiv)DIPEA (10.0 equiv)

    Toluene, 2 hNH2

    Aniline(10. equiv)

    50oC, 40 h

    DCM/HFIP (4:1 v/v)1 h x2

  • 14

    Scheme10.Reactionandproductsofreactionofpolymerboundpeptidewithvariousisocyanatesandisothiocyanates.

    PS VPW

    O

    + PSNHNH

    XR

    VPW

    O

    H2NNCX

    R

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    S

    32a35% (100% purity)

    32b27% (100% purity)

    32f48% (100% purity)

    F3C Cl

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    S

    NH

    VPW

    O

    NH

    O

    32c41% (94% purity)

    32d50% (96% purity)

    32g18% (100% purity)

    N

    O2N

    NH

    VPW

    O

    NH

    O

    32e43% (97% purity)

    O

    VPW

    O

    NH

    NH

    XR

    OH

    OH OH

    OH

    OH

    OH

    OH

    OH

    29(3.0 equiv)

    THF

    19.5 h

    30 31

    32

    DCM/HFIP (4:1 v/v)1 h x2

  • 15

    AnotherwaytoformureaswithanamineiswithN-alkylcarbamoylimidazoles,

    derivativesofCDI.18Thesecompoundsarenotassimpletoworkwith,butoffera

    largersubstratescopethanisocyanates.Thisscopeisonlylimitedtoanyamine

    nucleophilethatcanreactwithCDIandnottheresultantN-alkylcarbamoyl

    imidazoles.Thereactioneffectivelychangesanucleophilicaminegroupintoan

    electrophilicisocyanateequivalent.TheN-alkylcarbomylimidazoleswereprepared

    byanothermemberofourgroupfromvariousaminesandCDI,usinggeneral

    experimentalprocedureF(Scheme11A).Thepolymerboundpeptidewasreacted

    withtheN-alkylcarbamoylimidazoles,usinggeneralexperimentalprocedureG.

    Thisyieldedthedesiredureasinhighpurity,butagaininlowyield(Scheme11B).

  • 16

    Scheme11.PolymerboundpeptidewithvariousN-alkylcarbamoylimidazoles

    PS

    VPW

    O

    +

    PSNHNH

    O

    VPW

    O

    H2NR N

    HN

    O

    N

    R

    NH

    VPW

    O

    NH

    O

    37d10% (100% purity)

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    NH

    VPW

    O

    NH

    O

    37a2% (100% purity)

    37b2% (100% purity)

    37e13% (100% purity)

    NH

    VPW

    O

    NH

    O

    37c10% (100% purity)

    Cl

    Cl

    O

    Cl

    N N

    O

    NN + R NHN

    O

    NR NH2

    R NH

    N

    O

    N

    VPW

    O

    NH

    NH

    O

    R OH

    OH OH

    OH

    OH

    OH

    A

    B

    CDI(1.1 equiv)

    DMAP (0.1 equiv)

    DCM, 0OC -> rt3 h33 34

    34(3.0 equiv)

    MeI (15.0 equiv)

    MeCN, 24 h35 30

    3637

    NEt3 (6.0 equiv)DCM, 20 h

    DCM/HFIP (4:1 v/v)1 h x2

  • 17

    2.3Reactivityofthioureas

    PreviouslyintheBateygroup,itwasshownthatthioureasattachedtopolymer

    boundpeptidesundergocyclizationtoformhydantoins,inthepresenceof

    Mukaiyama’sreagent(Scheme12).19Usingtheβ-alaninethioureapreviouslymade

    Scheme12.Polymerboundpeptidescontainingthioureascanformhydantoins

    32f,thisapproachwasattemptedtoforma6-memberedversionofthehydantoin,

    usinggeneralexperimentalprocedureH(Scheme13).Whenfirstattemptingthis

    reactiontheformationofthecarbodiimideintermediate40andtheureaside

    product42wasobserved,butthedesired6-memberedringproduct41wasnot

    (Table1,entry1).Thepresenceoftheureaindicatesthatthecarbodiimide

    underwentnucleophilicattackbywater.Thereactionwasattemptedagainunder

    dryerconditions,toattempttoreducetheamountofureaformation(Table1,entry

    2).ByLCMSthepresenceoftheproductplus2m/z,indicatedasmallquantityofthe

    startingmaterialhadlikelybeenreduced.Thisismostlikelyduetotheincreasein

    peptideHN PS

    Mukaiyama’sReagent

    (10.0 equiv)

    NEt3 (10.0 equiv)DMF, 20 hO

    NH

    R

    NH

    SR' peptide

    HN PS

    ON

    RCN’R

    peptideN PSHN

    O

    N

    R

    R'

    38

    39

    N ClI

  • 18

    Scheme13.Cyclizationofaβ-alaninethiourea

    Entry Base Product(LCMS,%)***

    1* NEt3 0

    2 NEt3 0

    3 Piperidine 0

    4 DABCO 0

    5** NaOH 0

    6 NaH 0

    *Entry1usedDMF,Mukaiyama’sreagent,NEt3andDCMwithoutspecialpreparation.Entries2-6useddistilledDMFandDCM,Mukayaima’sreagentfromadesiccatorandNEt3withmolecularsieves.**IRindicatedcleavedfromresin,nobandscorrespondingtothepeptidewerepresent(Seeappendix)***LCMSisfromasmallamountofthepeptidethatwascleavedfromthepolymersupport.IRswereobtainedwiththepeptidestillattachedtothepolymersupport.

    Table1.Differentconditionsforcyclizingaβ-alaninethiourea

    VPW PS

    O

    NH

    NH

    S

    VPW PS

    O

    NCN

    PW PS

    O

    HN

    N N O

    32f

    Mukaiyama’sReagent

    (10.0 equiv)

    Base (10.0 equiv)DMF, 20 h

    N ClI

    41

    40

    VPW PS

    O

    NH

    NH

    O

    42

  • 19

    purityoftheMukaiyama’sreagentfromthedrying,resultinginahigheramountof

    equivalentsofthereagentrelativetothepreviousentry.Toincreasethe

    nucleophilicityofthenitrogenonthevalineofthepeptide,theaminoacidadjacent

    tothecarbodiimide,differentbaseswereexperimentedwith(Table1,entry3-6).

    Thesetestsdidnotresultinformationoftheproduct,andinthecaseofNaOHit

    appearedtohavecleavedthepeptidefromthepolymer.

    Sinceitappearedthatthecarbodiimidewasbeingformed,trappingitoutwitha

    nucleophilewasattempted.Anewpeptideonresinwaspreparedusinggeneral

    experimentalprocedureB,CandE,yielding43.Usinggeneralexperimental

    procedureI,thisreactionworkedwithbenzylaminegivinganalmostpureproduct

    andsurprisinglyhighyield(Scheme14).

    Scheme14.Trappingoutapolymersupportedcarbodiimidewithbenzylamine

    AW PS

    O

    NH

    NH

    S

    AW PS

    O

    NCN

    NH2

    AW PS

    O

    NH

    N

    NHAW

    O

    NH

    N

    NH

    45a90% (90% pure)

    OH

    Mukaiyama’sReagent

    (10.0 equiv)

    NEt3 (10.0 equiv)DMF, 20 h

    N ClI

    43

    Benzylamine(10.0 equiv)

    44a

    DCM/HFIP (4:1 v/v)1 h x2

  • 20

    Thiswasapromisingresult,asaguanidinefunctionalityisoftenfoundinbiological

    moleculesandnotjustintheformoftheaminoacid,arginine.20Thisreactionwas

    attemptedagainwithanumberofdifferentnucleophiles46(Scheme15).

    Unfortunately,mostofthesereagentswerenotstrongenoughnucleophilestolead

    toadditionproducts44.Thetert-butylesteralanineyieldedlowamountsofthe

    desiredproduct.Thisisofinterest,becauseifaprotectinggroupsimilartoFmoc

    wereplacedonthecarboxylicacidthepeptidewouldhavethepotentialtobegrown

    outfurtherinareverseorder.Thus,changingthechaingrowthfromC-terminusto

    N-terminusintoN-terminustoC-terminus,whilestillbeingcompatiblewiththe2-

    chlorotritylresin(Scheme16).

    Scheme15.Trappingoutapolymersupportedcarbodiimidewithvariousnucleophileswithamountconvertedtoproduct(LCMS)shown

    AW PS

    O

    NH

    NH

    S

    AW PS

    O

    NCN

    AW PS

    O

    NH

    N

    Nuc

    Nuc46

    (10.0 equiv)

    44

    Mukaiyama’sReagent

    (10.0 equiv)

    NEt3 (10.0 equiv)DMF, 20 h

    N ClI

    43

    NH2 NH2 HNFmoc OH

    O

    O

    ONH2OH

    46b0%

    46c0%

    46d0%

    46e0%

    46f28%

  • 21

    Scheme16.TheuseofaC-terminusprotectedaminoacidasanucleophileallowsfortheorientationofthepeptidetoflip

    2.4Conclusionandoutlook

    ThismethodologyshowedanumberofwaystoformureasontheN-terminusof

    polymer-supportedpeptides.Isocyanatescanreactwithunprotectedaminoacids

    ontheN-terminusandthentheC-terminuscanbecoupledtoapolymer-supported

    peptide.AlternativelytheN-terminusofapeptidealreadyonresincanreactwithan

    isocyanate.AnotherwayofmakingtheseureasisreactingtheN-terminuswith

    carbamoylimidazoles.Theisocyanatesofferasimpleandcommerciallyavailable

    syntheticroute,whilethecarbamoylimidazolesofferapotentialwiderscope.

    ItwasalsoshownthataN-terminalgroupbearingacarboxylicacidonapolymer-

    supportedpeptidecouldundergotheCurtiusrearrangementtoformureas.Thisis

    knowntogothroughanisocyanateintermediateontheN-terminus.Thethiourea

    derivativesofpolymer-supportedpeptidesofferaninterestingnewwaytoform

    guanidines,throughacarbodiimideintermediateontheN-terminus.Boththese

    reactionswarrantfurtheroptimizationandnucleophilicscopeforpotential

    practicaluses.

    peptide PS

    OHN

    R

    HN

    NR''R’O

    O

    peptide PS

    OHN

    R

    HN

    NR’’R’peptide

    O

    N CC N CC

    47 48

  • 22

    Chapter3Results&Discussion

    3PeptideCouplingConditions

    3.1Methodsofactivation

    Herecouplingconditionsforpeptidesandtheirrelativeeffectivenesswas

    investigated.Fortheseexperimentsaprolineterminalpolymerboundpeptidewas

    used.Proline,beingtheonlynaturalsecondaryaminoacid,isknowntobemore

    difficulttocouplethroughacylationoftheN-terminus.Thepolymer-supported

    peptide,50,waspreparedusinggeneralexperimentalprocedureBandC.We

    startedthisstudybyreactingthepeptidewithtwoactivatedacylatingcompounds

    usinggeneralexperimentalprocedureJ(Table2).Theacylchloride,benzoyl

    chloride,andthesymmetricalanhydride,benzoicanhydride,bothgavetheproduct

    inhighpuritybutlowyield.

    Wenextactivatedbenzoicacidwithdifferenttypesofreagentstoundergopeptide

    couplingusinggeneralexperimentalproceduresKandL(Table3).Thebulkofthe

    peptidewasnotcleavedfromtheresin,exceptforasmallportionthatwasusedfor

    LCMSanalysis.Inthiscasetheacylatingintermediates(Table3,entry1-2)were

    showntoresultinhigherproportionofproductthantheanhydrides(Table3,entry

    3-6.Oneissueinparticularwastheunsymmetricalnatureoftheanhydrides,

    isobutylchloroformate,Yamaguchireagent,anddiethylcarbamylchloride,whichhad

    issueswiththeactivatingagentreactingdirectlywiththepeptideforming52.Itwas

    alsoshownthatoxalylchlorideisabetteractivatorofcarboxylicacidsthanthionyl

    chloride,duetotheamountofproductpresentineachreaction.

  • 23

    Entry Electrophile Purity(%) Yield(%)

    1

    99 4

    2

    99 13

    Table2.Reactionofapolymerboundpeptidewithsimpleacylatingagents

    Withtheseresultswemovedontoactivationofaminoacidsusinggeneral

    experimentalproceduresMandN.Fmocprotectedglycinewasactivatedand

    allowedtoreactwiththepolymerboundpeptide(Table4).Onceagainoxalyl

    chloridewasshowntobethebestactivatingagent.Thecompoundsshowedhigh

    purity,butwereisolatedinpooryields.

    PW PS PW+ PS

    OO

    X

    51

    PW OH

    O

    52

    49(3.0 equiv)

    50

    DIPEA (6.0 equiv)

    DCM, 1 h

    DCM/HFIP (4:1 v/v)1 h x2

    Cl

    O

    O

    O

    O

  • 24

    Entry ActivatingAgent X 51(LCMS,%) 52(LCMS,%)

    1

    98 N/A

    2

    100 N/A

    3

    95 0

    4

    53 43

    5

    38 61

    6

    0 10

    Table3.Reactionofapolymerboundpeptidewithvariousactivatingagentsandbenzoicacid

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.6 equiv)

    DCM, 1 h

    O

    HO51

    Benzoic Acid(3.0 equiv)

    49

    DIPEA (6.0 equiv)

    NMP, 1 h50

    +

    PW PS

    O

    X

    52

    SO

    ClCl+ DMF Cl

    Cl

    O

    OH

    Cl+ DMF Cl

    O

    Cl

    O Cl

    OO

    O

    Cl

    Cl

    Cl Cl

    Cl

    Cl Cl

    O

    ClNN

  • 25

    Entry ActivatingAgent X 54(purity,%) Yield(%) 52

    1

    60 N/A N/A

    2

    95 9 N/A

    3

    94 4 4

    Table4.Polymerboundpeptidereactingwithactivatedaminoacid

    3.2Applicationsofactivation

    Withthebestactivatingconditionsfound,comparisonwithstandardcoupling

    conditionscouldbeperformed.Twomorepolymerboundpeptides,55and57,

    weremadefollowinggeneralexperimentalproceduresBandC.Usingoxalyl

    chloridewithacarboxylicacid,thatwaspreviouslyshowntonotcoupletothe

    peptideusingHATU,wewereabletogetsuccessfulconversiontotheDVVSV-based

    product56a,usinggeneralexperimentalprocedureP(Table5).

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.0-3.6 equiv)

    DCM, 0.5 h

    O

    HO

    HNFmoc

    NHFmoc

    NHFmoc

    54

    Fmoc-glycine(3.0 equiv)

    DIPEA (6.0 equiv)

    NMP, 1 h53 50

    +

    PW PS

    O

    X

    52

    SO

    ClCl+ DMF Cl

    Cl

    O

    OH

    Cl+ DMF Cl

    O

    Cl

  • 26

    Entry ActivatingAgent 56a(%)

    1

    0

    2

    96

    Table5.Differentactivatingagentswithanelectronpoorcarboxylicacid

    Tofurthershowtheeffectivenessofthisreagent,wetriedwithanothercompound

    polymerboundVVSV57,whichalsodidnotcouplethecorrespondingacidusing

    HATU.Inthiscase,theoxalylchlorideconditionsdidnotwork,butitwasfoundthat

    EDCconditionsdid,usinggeneralexperimentalprocedureQ(Table6).Thissuccess

    ofEDCrelativetoHATUmaybeduetothelargestericsandelectronpoor

    characteristicsofthecarboxylicacid.Thiswouldmakeitharderforthecarboxylic

    acidtoaddintoHATU,whileEDCwouldberelativelyeasier,duetotherelative

    stericsofthesereagents.

    SO ONActivating

    Agent(3.0 equiv)

    DCM, 0-1 hDVVSV PS

    DVVSVO

    +

    PS

    SO O

    N

    O

    ClO

    X Cl

    O

    SO ON

    O

    OH Cl

    O

    56a53a(3.0 equiv)

    54a

    55

    DIPEA (6.0 equiv)

    NMP, 1 h

    N NN

    N

    O

    PF6N

    N

    Cl

    O

    OH

    Cl+ DMF

  • 27

    Entry ActivatingAgent 56b(%)

    1

    0

    2

    0

    3

    92

    Table6.Reactionusingdifferentactivatingagentswithanelectronpoorcarboxylicacid53b

    Thispromisingresultencouragedustousethismethodwithonemorecarboxylic

    acidthathadpreviouslygivenpoorerresultswithHATU(Table7).Onceagainit

    wasshownthatEDCwasmoreeffectiveasacouplingagent.

    SO OHN

    HO

    O SO OHN

    X

    OVVSV PS VVSV

    O

    SO

    ONH

    + PS

    56b53b(3.0 equiv)

    54b57

    ActivatingAgent

    (3.0 equiv)

    DCM, 0-1 h

    DIPEA (6.0 equiv)

    NMP, 1 h

    N NN

    N

    O

    PF6N

    N

    Cl

    O

    OH

    Cl+ DMF

    NCNN

    N

    NN

    NOH+

  • 28

    Entry ActivatingAgent 56c(%)

    1

    60

    32

    98

    Table7.Comparisonofabulkycarboxylicacid,53c,couplingsusingHATUandEDC

    UsingthisnewinformationabouttheeffectivenessofEDC,anumberofdifferent

    amineswereinvestigated,usinggeneralexperimentalprocedureR(Scheme17).

    Since,wewereinvestigatingawidescopeofamineswithoutaC-terminus,forthis

    experimenttheconditionswereinsolutionphasewithoutapolymersupport.Inthis

    caseEDCwasshowntonotbeaseffectiveasHATU.Amines57d-f,whichwere

    weakernucleophilesthantheotheramines,didnotcoupletothecarboxylicacidat

    allwithEDC,butworkedwithHATU.Thisreactionislessdependentonthesterics

    oftheEDCandHATUbecausethesamecarboxylicacid,whichisnotbulky,isused

    witheachamine.Thepartofthecouplingthatisaffectedbytheamineinvolvesthe

    HOAtcomponentofthereaction,whichHATUreleasesafterthefirststepgivinga

    greaterentropicdrivingforcerelativetotheEDCconditions.Inadditionthistime

    DMAPwasusedinsteadofHOAtfortheEDCconditionsandwasusedinlessthan

    SO ONHActivating

    Agent(3.0 equiv)

    DCM, 0-1 hDVVSV PS

    DVVSVO

    +

    PS

    SO O

    NH

    BrO

    X Br

    SO ONH

    O

    OH Br

    56c53c(3.0 equiv)

    54c

    55

    DIPEA (6.0 equiv)

    NMP, 1 h

    Cl

    O

    OH

    Cl+ DMF

    NCNN

    N

    NN

    NOH+

  • 29

    oneequivalent,furthershowingtheimportanceoftheDMAP/HOAtcomponentof

    thereaction.Allthecompoundsweremadeinlowyieldsduetotheweak

    nucleophilicpropertiesoftheaminesandtheratioofaminetocarboxylicacid

    comparedtopreviousreactions.

    .

    O

    + NH

    NH

    OO

    NH

    R NH

    ROHNH

    O

    H2NR

    18a(1.0 equiv)

    57 58

    EDC (1.4 equiv)DMAP (0.5 equiv)

    DIPEA (1.5 equiv)DCM, 16 h

    N

    S

    H2N

    Ph

    PhN

    SH2NPh

    OH2N

    HN

    O

    HN

    OH2N N

    N

    H2N

    N

    O

    H2N

    Ph

    Ph

    N

    NHH2N

    N

    N

    O

    HN

    OH2N

    N

    N

    O

    HN

    OH2N

    N

    NHH2N

    Ph

    O

    N

    N

    OHN

    H2NHN

    O

    H2N N

    N

    Ph

    57c3%

    57b9%

    57i6%

    57g30%

    57d7%

    57j30%

    57l35%

    57k51%

    57f2%

    57e31%

    57a40%

    57h16%

    * **

  • 30

    *UsedHATUinsteadofEDCandDMAP,whichresultedinnoproductformationScheme17.Reactingthecarboxylicacid18awithvariousamines

    NHN

    OH2N

    NH2NO F F

    F

    NH

    HN

    OH2N

    ON

    O

    H2N

    F

    O

    NNH2

    H2NN

    O Br

    H2NHN

    O

    N

    H3NO

    O

    O

    H3N

    N

    O

    NH2 HN

    O

    N

    H2N N

    O

    57u8%

    57m51%

    57v8%

    57o37%

    57r44%

    57t48%

    57w19%

    Cl

    57q47%

    Cl

    57s45%

    57p4%

    57n42%

  • 31

    3.3ConclusionandoutlookOptimalcouplingconditionswerediscoveredforthereactionofpolymer-supported

    peptides.Withthelesstypicalactivatingconditionsitwasfoundthatacylchlorides

    workedbetterthananhydridesforcoupling.Theanhydrideshadworseleaving

    groupsandhadtheissueofthedesiredhalfoftheanhydridebecomingthe

    carboxylateleavinggroup,whichisnotlikelytooccurforacylchlorides.

    Thedifferencesbetweenstandardcouplingconditionswerealsoinvestigated.HATU

    andEDCwereshowntobothworkwelldependingonthesubstratetheywere

    activating.Duetotheirdifferencesthereisnotonebestcouplingagentforpolymer

    supportedpeptides,butitdependsonthesituation.Thesedifferenceswarrant

    furtherinvestigation,asitwouldbeneficialtonowhatarethedifferentparameters

    forthesedifferentinstances.

  • 32

    Chapter4Experimental

    Copiesof1HNMR,13CNMRandIRspectraforallsynthesizedcompoundscanbe

    foundintheappendix.THF,diethyletherandpentanewerefreshlydistilledfrom

    sodium/benzophenoneketylundernitrogen.DCMandtoluenewerefreshlydistilled

    fromsodiumundernitrogen.AnhydrousDMFwasstoredundernitrogenwith4Å

    molecularsieves.AllothersolventswereobtainedasACSgradeorbetterfrom

    commercialsuppliers.Allstartingmaterialsandreagentswerepurchasedfrom

    Aapptec,AlfaAesarorSigma-Aldrich.Flashchromatographyonsilicagel(60Å,230-

    400mesh,obtainedfromSilicycle)wasperformedwithreagentgradesolvents.

    AnalyticalTLCwasperformedonMerckSilicagel60F254pre-coatedplatesand

    visualizedwithaUVlamp.Reversephasecolumnchromatographywasperformed

    withaBiotageSNAPUltraC18column.IRspectrawereobtainedonaPerkinElmer

    100SeriesFTIRequippedwithadiamond/ZnSeATRaccessory.UVspectrawere

    obtainedusingaLambda1050UV/VisSpectrometer.LCMSdatawasobtainedfrom

    AgilentHPLCsystems(1100,1200,1260).Massspectrawereobtainedbythe

    UniversityofTorontoAIMSmassspectrometryfacility;HRMSwererecordedonan

    Agilent6538UHDAccurate-MassQ-TOFLC/MS.Meltingpointswereobtainedona

    MEL-TEMPcapillarymeltingpointapparatusandareuncorrected.AllNMRspectra

    wereobtainedon400and500MHzspectrometersassolutionsindeuterated

    solvents(obtainedfromCambridgeIsotopeLabs).Chemicalshiftsarereportedasδ

    values.1HNMRchemicalsshiftswereinternallyreferencedtotetramethylsilane(δ

    0.00)forCDCl3ortotheresidualprotonresonanceinMeOH-d4(δ3.31)andDMSO-

    d6(δ2.49).Carbonchemicalshiftswereinternallyreferencedtothesolvent

    resonancesinCDCl3(δ77.16),MeOH-d4(δ49.15)andDMSO-d6(δ39.51).Peak

    multiplicitiesaredesignatedbythefollowingabbreviations:s,singlet;d,doublet;t,

    triplet;q,quartet;m,multiplet;br,broad;J,couplingconstantinHzandroundedto

    thenearest0.5Hz.

  • 33

    Generalexperimentalprocedures

    GeneralexperimentalprocedureA

    Toaflamedried25mLroundbottomflaskundernitrogengasaβ-aminoacid(1.0

    equiv),phenylisocyanate(1.0equiv)anddistilledTHF(5-28mL)wereadded.The

    reactionmixturewasstirredfor3daysthenpurifiedusingautomatedflashsilicagel

    columnchromatography(10gcolumn,0%-50%ethylacetateinhexane,0%-20%

    MeOHinDCM)yieldingtheproduct18.

    GeneralexperimentalprocedureB

    Toafrittedroundbottomreactionvessel2-chlorotritylchlorideresin(1.0equiv)

    wasadded.ThereactionvesselwasattachedtoanAapptecEndeavor90tabletop

    peptidesynthesizer.Undernitrogengastheresinwasswelledwithpeptidegrade

    DMF(10mL/gofresin)for15min.Afterthesolventwasdrained,asolutionofan

    Fmoc-protectedaminoacid(5.0equiv)andDIPEA(10.0equiv)indistilledDCM(10

    mL/gofresin).Theresinsolutionwasshakenfor5h.Thesolutionwasdrainedand

    theresinwascappedbytheadditionofHPLCgradeMeOH.Theresinsolutionwas

    shakenfor15min,drainedandwashedwithpeptidegradeDMF(10mL/gofresin

    x2),HPLCgradeMeOH(10mL/gofresinx2)anddistilledDCM(10mL/gofresin

    NCO

    H2N OH

    O

    R+

    NH

    OH

    O

    RNH

    OTHF

    3 days

    Phenyl Isocyanate(1.0 equiv)

    17(1.0 equiv)

    18

    O

    OHNH

    PSCl+ PSO

    OHNDIPEA (10.0 equiv)

    DCM, 5 h

    RFmoc

    RFmoc

    19(3.0 equiv)

    20 21

  • 34

    x2)yieldingtheFmoc-protectedaminoacidattachedtoa2-chlorotritylresin.The

    resinwasdriedfor24hundervacuum.Asmallamountoftheresin(10.0mg)was

    weighedoutina0.5drvial.TheresinwasswelledinDMF(0.800mL)for15min.To

    theresinsolutionpiperidine(0.200mL)wasaddedandtheresinsolutionwas

    shakenfor15minutes.Asmallamount(0.050mL)ofthesolutionwastaken

    withouttheresinandwasaddedtoaDMF(3mL)ina0.5drvial.TheUV

    absorbanceofthissolutionwasmeasuredandusedtocalculatetheloading

    efficiencyoftheFmoc-protectedaminoacidontothe2-chlorotritylresin.

    GeneralexperimentalprocedureC

    ToafrittedroundbottomreactionvesselanFmoc-protectedaminoacidattachedto

    a2-chlorotritylresin(1.0equiv)wasadded.Thereactionvesselwasattachedtoan

    AapptecEndeavor90tabletoppeptidesynthesizer.Undernitrogengastheresin

    wasswelledwithpeptidegradeDMF(10mL/gofresin)for15min.Afterthe

    solventwasdrained,amixtureofpeptidegradeDMFandpiperidine(4:1v/v)was

    addedandshakenwiththeresinfor15min.Afterdrainingthisprocesswas

    repeatedwiththemixtureforanother15min.Themixturewasdrainedandthe

    PSO

    OHN

    RFmoc

    DMF/Piperidine (4:1 v/v)15 min x2

    PSO

    OH2N

    R

    O

    OHNH

    RFmocHATU (3.0 equiv)

    DIPEA (6.0 equiv)NMP, 2 h x2

    PSO

    OHN

    RONH

    RFmoc

    PSO

    OHN

    ROH2N

    Rn

    21 22

    19(3.0 equiv)

    2324

  • 35

    resinwashedwithpeptidegradeDMF(10.0mL/gofresinx2).Nextasolutionofan

    Fmoc-protectedaminoacid(3.0equiv),HATU(3.0equiv)andDIPEA(6.0equiv)in

    NMP(10mL/gofresin)wasadded.Theresinsolutionwasshakenfor2h.The

    solutionwasdrainedandthisprocesswasrepeatedwiththemixtureforanother2

    h.TheresinsolutionwasdrainedandwashedwithpeptidegradeDMF(10mL/gof

    resinx2),HPLCgradeMeOH(10mL/gofresinx2)anddistilledDCM(10mL/gof

    resinx2)yieldingaFmoc-protecteddipeptideattachedtoa2-chlorotritylresin.This

    entireprocessisrepeatedtoaddadditionalaminoacidstothepeptides.

    GeneralexperimentalprocedureD

    ToaRediSepdisposablecolumn(22.4mL)L-valyl-L-prolyl-L-trypotophanattached

    toa2-chlorotritylresin(1.0equiv)wasswelledinpeptidegradeDMF(5mL)for15

    minutes.Thesolventwasdrainedandasolutionofcarboxylicacid(3.0equiv),

    HATU(3.0equiv)andDIPEA(6.0equiv)inNMP(3mL)wasadded.Theresin

    solutionwasshakenovernight.Thesolutionwasdrainedandtheresinwashedwith

    peptidegradeDMF(5mLx2),HPLCgradeMeOH(5mLx2)anddistilledDCM(5mL

    x2).DistilledDCM(2.4mL)andHFIP(0.6mL)wereaddedtotheresinandthe

    reactionmixtureshakenfor1h.Thesolutionwascollectedandthisprocesswas

    repeatedwiththeresin,moreHFIPandmoreDCM.AsolutionofdistilledEt2Oand

    distilledpentane(3mL,1:1v/v)wasaddedtotheresultingoilformingasolid.The

    solidwastrituratedthroughsonicationandthenfilteredundervacuumyieldingthe

    productasasolid27.

    VPW PS VPW

    O

    + PSNHOH

    O

    RNH

    O

    NH R

    NH

    O

    VPW

    O

    NH R

    NH

    O

    OH

    18(3.0 equiv)

    25 26

    27

    HATU (3.0 equiv)DIPEA (6.0 equiv)

    NMP, 16 h

    DCM/HFIP (4:1 v/v)1 h x2

  • 36

    GeneralexperimentalprocedureE

    ToaRediSepdisposablecolumn(22.4mL)L-valyl-L-prolyl-L-trypotophanattached

    toa2-chlorotritylresinsolutionwasswelledinpeptidegradeDMF(5mL)for15

    minutes.Totheresinaphenylisocyanate(3.0equiv)anddistilledTHF(3mL)was

    added.Theresinwasshakeninthesolutionovernight(19.5h).Thesolutionwas

    drainedandtheresinwashedwithpeptidegradeDMF(5mLx2),HPLCgradeMeOH

    (5mLx2)anddistilledDCM(5mLx2).DistilledDCM(2.4mL)andHFIP(0.6mL)

    wasaddedtotheresinandthereactionmixturewasshakenfor1h.Thesolution

    wascollectedandthisprocesswasrepeatedwiththeresin,moreHFIPandmore

    DCM.AsolutionofdistilledEt2Oanddistilledpentane(3mL,1:1v/v)wasaddedto

    theresultingoilformingasolid.Thesolidwastrituratedthroughsonicationand

    thenfilteredundervacuumyielding32.

    GeneralexperimentalprocedureF

    Toaflameddry25mLroundbottomflask,undernitrogengasat0°C,anamine(1.0

    equiv),CDI(1.1equiv),DMAP(0.1equiv)anddistilledDCM(10mL)wasadded.The

    solutionwasallowedtocometoroomtemperature,stirredfor3handthenpurified

    usingflashsilicagelcolumnchromatography(0%-5%MeOHinDCM)yielding34.

    PS VPW

    O

    + PSNHNH

    XR

    VPW

    O

    H2NNCX

    R

    VPW

    O

    NH

    NH

    XR

    OH

    29(3.0 equiv)

    THF

    19.5 h

    30 31

    32

    DCM/HFIP (4:1 v/v)1 h x2

    N N

    O

    NN + R NHN

    O

    NR NH2

    CDI(1.1 equiv)

    DMAP (0.1 equiv)

    DCM, 0OC -> rt3 h33 34

  • 37

    GeneralexperimentalprocedureG

    Toa20mLvial,undernitrogengasanN-alkylcarbamoylimidazole(3.0equiv),MeI

    (15.0equiv)anddistilledacetonitrile(1mL)wasaddedandstirredfor24h.The

    reactionmixturewasthendried.NEt3(6.0equiv)anddistilledDCM(3mL)were

    addedtothemixture.ThesolutionwasthenaddedtoaRediSepdisposablecolumn

    (22.4mL)containing3-aminopropanamido-L-valyl-L-prolyl-L-trypotophan

    attachedtoa2-chlorotritylresin(1.0equiv)wasswelledinpeptidegradeDMF(5

    mL)for15minutes.Theresinsolutionwasshakenfor20h.Thesolutionwas

    drainedandwashedwithpeptidegradeDMF(5mLx2),HPLCgradeMeOH(5mL

    x2)anddistilledDCM(5mLx2).DistilledDCM(2.4mL)andHFIP(0.6mL)were

    addedtotheresinandthereactionmixturewasshakenfor1h.Thesolutionwas

    collectedandthisprocesswasrepeatedwiththeresin,moreHFIPandmoreDCM.A

    solutionofdistilledEt2Oanddistilledpentane(3mL,1:1v/v)wasaddedtothe

    resultingoilformingasolid.Thesolidwastrituratedthroughsonicationandthen

    filteredundervacuumyieldingthe37.

    PS

    VPW

    O

    +

    PSNHNH

    O

    VPW

    O

    H2NR N

    HN

    O

    N

    R

    R NH

    N

    O

    N

    VPW

    O

    NH

    NH

    O

    R OH

    34(3.0 equiv)

    MeI (15.0 equiv)

    MeCN, 24 h35 30

    3637

    NEt3 (6.0 equiv)DCM, 20 h

    DCM/HFIP (4:1 v/v)1 h x2

  • 38

    GeneralexperimentalprocedureH

    ToaRediSepdisposablecolumn(22.4mL)containingL-valyl-L-prolyl-L-

    trypotophanattachedtoa2-chlorotritylresin(1.0equiv,0.017mmol,0.34mmol/g)

    wasaddedandallowedtoswellinpeptidegradeDMF(5mL)for15minutes.Tothe

    resinsolutionMukaiyama’sreagent(10equiv,0.17mmol),base(10equiv,0.17

    mmol)anddriedDMF(3mL)wasadded.Theresinsolutionwasshakenovernight

    (19h).DistilledDCM(0.8mL)andHFIP(0.2mL)wereaddedtoasmallamountof

    theresin(1mg)andthereactionmixturewasshakenfor1h.Theresultingsolid

    wasusedforLCMSanalysis.

    VPW PS

    O

    NH

    NH

    S

    VPW PS

    O

    NCN

    PW PS

    O

    HN

    N N O

    32f

    Mukaiyama’sReagent

    (10.0 equiv)

    Base (10.0 equiv)DMF, 20 h

    N ClI

    41

    40

  • 39

    GeneralexperimentalprocedureI

    ToaRediSepdisposablecolumn(22.4mL)L-valyl-L-prolyl-L-trypotophanattached

    toa2-chlorotritylresin(1.0equiv)wasswelledinpeptidegradeDMF(5mL)for15

    minutes.TotheresinsolutionMukaiyama’sreagent(10.0equiv),NEt3(10.0equiv)

    anddriedDMF(3mL)wereadded.After1hanamine(10.0equiv)wasadded.The

    resinsolutionwasshakenovernight(19h).Thesolutionwasdrainedandwashed

    withpeptidegradeDMF(5mLx2),HPLCgradeMeOH(5mLx2)anddistilledDCM

    (5mLx2).DistilledDCM(2.4mL)andHFIP(0.6mL)wereaddedtotheresinand

    thereactionmixturewasshakenfor1h.Thesolutionwascollectedandthisprocess

    wasrepeatedwiththeresin,moreHFIPandmoreDCM.AsolutionofdistilledEt2O

    anddistilledpentane(3mL,1:1v/v)wasaddedtotheresultingoilformingasolid.

    Thesolidwastrituratedthroughsonicationandthenfilteredundervacuumyielding

    the45.

    AW PS

    O

    NH

    NH

    S

    AW PS

    O

    NCN

    AW PS

    O

    NH

    N

    Nuc

    Nuc46

    (10.0 equiv)

    44

    Mukaiyama’sReagent

    (10.0 equiv)

    NEt3 (10.0 equiv)DMF, 20 h

    N ClI

    43

    AW

    O

    NH

    N

    Nuc

    45

    OH

    DCM/HFIP (4:1 v/v)1 h x2

  • 40

    GeneralexperimentalprocedureJ

    ToaRediSepdisposablecolumn(22.4mL)prolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(1.0equiv)wasaddedandallowedtoswellinpeptidegradeDMF

    (5mL)for15minutes.Totheresinsolutionactivatedbenzoicacid(3.0equiv),

    DIPEA(6.0equiv)andNMP(3mL)wereadded.Theresinsolutionwasshakenfor1

    h.ThesolutionwasdrainedandwashedwithdistilledDCM(5mLx2).DistilledDCM

    (2.4mL)andHFIP(0.6mL)wasaddedtotheresinandshakenfor1h.Thesolution

    wascollectedandthisprocesswasrepeatedwiththeresin,moreHFIPandmore

    DCM.AsolutionofdistilledEt2Oanddistilledpentane(3mL,1:1v/v)wasaddedto

    theresultingoilformingasolid.Thesolidwastrituratedthroughsonicationand

    thenfilteredundervacuumyielding52.

    GeneralexperimentalprocedureK(acylchlorides)

    PW PS PW+ PS

    OO

    X

    51

    PW OH

    O

    52

    49(3.0 equiv)

    50

    DIPEA (6.0 equiv)

    DCM, 1 h

    DCM/HFIP (4:1 v/v)1 h x2

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.6 equiv)

    DCM, 0.5-1 h

    O

    HO51

    Benzoic Acid(3.0 equiv)

    49

    DIPEA (6.0 equiv)

    NMP, 1 h50

    +

    PW PS

    O

    X

    52

  • 41

    Toaflamedried25mLroundbottomflaskundernitrogengasbenzoicacid(3.0

    equiv),activatingagent(3.6equiv),DMF(3.0equivlants)anddistilledDCM(7mL)

    wasadded.After30minutesthereactionmixturewasdriedundervacuum.The

    resultantoilwasdissolvedinDIPEA(6.0equiv)andNMP(3mL).Thesolutionwas

    addedtoaRediSepdisposablecolumn(22.4mL)withprolyl-L-trypotophan

    attachedtoa2-chlorotritylresin(1.0equiv)thatwasswelledinpeptidegradeDMF

    (5mL)for15minutes.Theresinsolutionwasshakenfor1h.Thesolutionwas

    drainedandwashedwithdistilledDCM(5mLx2)yielding51.DistilledDCM(0.8

    mL)andHFIP(0.2mL)wereaddedtoasmallamountoftheresin(1mg)andthe

    reactionmixturewasshakenfor1h.TheresultingsolidwasusedforLCMSanalysis.

    GeneralexperimentalprocedureL(anhydrides)

    Toaflamedried25mLroundbottomflaskundernitrogengasbenzoicacid(3.0

    equiv),activatingagent(3.6equiv),anddistilledDCM(7mL)wasadded.After30

    minutesthereactionmixturewasdriedundervacuum.Theresultantoilwas

    dissolvedinDIPEA(6.0equiv)andNMP(3mL).Thesolutionwasaddedtoa

    RediSepdisposablecolumn(22.4mL)withprolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(1.0equiv)thatwasswelledinpeptidegradeDMF(5mL)for15

    minutes.Theresinsolutionwasshakenfor1h.Thesolutionwasdrainedand

    washedwithdistilledDCM(5mLx2)yielding51.DistilledDCM(0.8mL)andHFIP

    (0.2mL)wereaddedtoasmallamountoftheresin(1mg)andthereactionmixture

    wasshakenfor1h.TheresultingsolidwasusedforLCMSanalysis.

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.6 equiv)

    DCM, 0.5-1 h

    O

    HO51

    Benzoic Acid(3.0 equiv)

    49

    DIPEA (6.0 equiv)

    NMP, 1 h50

    +

    PW PS

    O

    X

    52

  • 42

    GeneralexperimentalprocedureM(acylchlorides)

    Toaflamedried25mLroundbottomflaskundernitrogengasFmoc-glycine(3.0

    equiv),activatingagent(3.6equiv),DMF(3.0equiv)anddistilledDCM(7mL)was

    added.After30minthereactionmixturewasdriedundervacuum.Theresultantoil

    wasdissolvedinDIPEA(6.0equiv)andNMP(3mL).Thesolutionwasaddedtoa

    RediSepdisposablecolumn(22.4mL)withprolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(1.0equiv)thatwasswelledinpeptidegradeDMF(5mL)for15

    min.Theresinsolutionwasshakenfor1h.Thesolutionwasdrainedandwashed

    withdistilledDCM(5mLx2)yieldingthe54.DistilledDCM(0.8mL)andHFIP(0.2

    mL)wereaddedtoasmallamountoftheresin(1mg)andthereactionmixturewas

    shakenfor1h.TheresultingsolidwasusedforLCMSanalysis.

    GeneralexperimentalprocedureN(anhydrides)

    Toaflamedried25mLroundbottomflaskundernitrogengasFmoc-glycine(3.0

    equiv),activatingagent(3.0equiv),anddistilledDCM(7mL)wasadded.After30

    minthereactionmixturewasdriedundervacuum.Theresultantoilwasdissolved

    inDIPEA(6.0equiv)andNMP(3mL).ThesolutionwasaddedtoaRediSep

    disposablecolumn(22.4mL)withprolyl-L-Trypotophanattachedtoa2-chlorotrityl

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.0-3.6 equiv)

    DCM, 0.5 h

    O

    HO

    HNFmoc

    NHFmoc

    NHFmoc

    54

    Fmoc-glycine(3.0 equiv)

    DIPEA (6.0 equiv)

    NMP, 1 h53 50

    +

    PW PS

    O

    X

    52

    PW PS

    PW

    +

    PS

    O

    O

    X

    ActivatingAgent

    (3.0-3.6 equiv)

    DCM, 0.5 h

    O

    HO

    HNFmoc

    NHFmoc

    NHFmoc

    54

    Fmoc-glycine(3.0 equiv)

    DIPEA (6.0 equiv)

    NMP, 1 h53 50

    +

    PW PS

    O

    X

    52

  • 43

    resin(1.0equiv)thatwasswelledinpeptidegradeDMF(5mL)for15min.The

    resinsolutionwasshakenfor1h.Thesolutionwasdrainedandwashedwith

    distilledDCM(5mLx2)yieldingtheproduct.DistilledDCM(0.8mL)andHFIP(0.2

    mL)wereaddedtoasmallamountoftheresin(1mg)andthereactionmixturewas

    shakenfor1h.TheresultingsolidwasusedforLCMSanalysis.

    GeneralexperimentalprocedureO(HATU)

    ToaRediSepdisposablecolumn(22.4mL)L-aspartyl-L-valyl-L-valyl-L-seryl-L-

    valineattachedtoa2-chlorotritylresin(1.0equiv)wasswelledinpeptidegrade

    DMF(5mL)for15minutes.Totheresinacarboxylicacid(3.0equiv),HATU(3.0

    equiv),DIPEA(3.0equiv)anddistilledDCM(3mL)wereadded.Theresinsolution

    wasshakenfor1h.ThesolutionwasdrainedandwashedwithdistilledDCM(5mL

    x2).DistilledDCM(2.4mL)andHFIP(0.6mL)wereaddedtotheresinandthe

    reactionmixturewasshakenfor1h.Thesolutionwascollectedandthisprocess

    wasrepeatedwiththeresin,moreHFIPandmoreDCM.AsolutionofdistilledEt2O

    anddistilledpentane(3mL,1:1v/v)wasaddedtotheresultingoilformingasolid.

    Thesolidwastrituratedthroughsonicationandthenfilteredundervacuumyielding

    56.

    GeneralexperimentalprocedureP(oxalylchloride)

    Toaflamedried25mLroundbottomflaskundernitrogengasacarboxylicacid(3.0

    equiv),oxalylchloride(3.0equiv),DMF(3.0equiv)anddistilledDCM(7mL)was

    DVVSV PS DVVSV+ PSHO R

    O

    X R

    OO

    R

    ActivatingAgent

    (3.0 equiv)

    DCM, 0-1 h

    DIPEA (6.0 equiv)

    NMP, 1 h53

    (3.0 equiv)54 55 56

    DVVSV PS DVVSV+ PSHO R

    O

    X R

    OO

    R

    ActivatingAgent

    (3.0 equiv)

    DCM, 0-1 h

    DIPEA (6.0 equiv)

    NMP, 1 h53

    (3.0 equiv)54 55 56

  • 44

    added.After30minutesthereactionmixturewasdriedundervacuum.The

    resultantoilwasdissolvedinDIPEA(3.0equiv)andNMP(3mL).Thesolutionwas

    addedtoaRediSepdisposablecolumn(22.4mL)L-aspartyl-L-valyl-L-valyl-L-seryl-

    L-valineattachedtoa2-chlorotritylresin(1.0equiv)thatswelledinpeptidegrade

    DMF(5mL)for15minutes.Theresinsolutionwasshakenfor2h.Thesolutionwas

    drainedandwashedwithdistilledDCM(5mLx2).DistilledDCM(2.4mL)andHFIP

    (0.6mL)wereaddedtotheresinandthereactionmixturewasshakenfor1h.The

    solutionwascollectedandthisprocesswasrepeatedwiththeresin,moreHFIPand

    moreDCM.AsolutionofdistilledEt2Oanddistilledpentane(3mL,1:1v/v)was

    addedtotheresultingoilformingasolid.Thesolidwastrituratedthrough

    sonicationandthenfilteredundervacuumyielding56.

    GeneralexperimentalprocedureQ(EDC)

    ToaRediSepdisposablecolumn(22.4mL)L-aspartyl-L-valyl-L-valyl-L-seryl-L-

    valineattachedtoa2-chlorotritylresin(1.0equiv)wasswelledinpeptidegrade

    DMF(5mL)for15minutes.Totheresinacarboxylicacid(3.0equiv),EDC(3.0

    equiv),HOAt(3.0eqviv),NEt3(6.0equiv)anddistilledDCM(3mL)wasadded.The

    resinsolutionwasshakenfor1h.Thesolutionwasdrainedandwashedwith

    distilledDCM(5mLx2).DistilledDCM(2.4mL)andHFIP(0.6mL)wereaddedto

    theresinandthereactionmixturewasshakenfor1h.Thesolutionwascollected

    andthisprocesswasrepeatedwiththeresin,moreHFIPandmoreDCM.Asolution

    ofdistilledEt2Oanddistilledpentane(3mL,1:1v/v)wasaddedtotheresultingoil

    formingasolid.Thesolidwastrituratedthroughsonicationandthenfilteredunder

    vacuumyielding56.

    DVVSV PS DVVSV+ PSHO R

    O

    X R

    OO

    R

    ActivatingAgent

    (3.0 equiv)

    DCM, 0-1 h

    DIPEA (6.0 equiv)

    NMP, 1 h53

    (3.0 equiv)54 55 56

  • 45

    GeneralexperimentalprocedureR

    Toa20mLvial3-(3-phenylureido)propanoicacid(1.0equiv),EDC(1.4equiv),

    DMAP(0.5equiv),NEt3(1.5equiv)anddistilledDCM(0.8mL)wasadded.After

    stirringfor1min,anamine(1.0equiv)wasaddedandthereactionmixturewas

    allowedtostirovernight.Thereactionmixturewasthenpurifiedusingautomated

    flashsilicagelcolumnchromatography(10gcolumn,0%-10%MeOHinDCM)

    yieldingtheproduct58.

    3-(3-Phenylureido)propanoicacid(18a)

    UsingthegeneralexperimentalprocedureAwith3-aminopropanoicacid(500mg,

    5.6mmol.0.2M),phenylisocyanate(0.67mg,5.6mmol,0.61mL)anddistilledTHF

    (28mL)yielded18a,whichwasisolatedasawhitesolid(1.10g,95%).Rf:0.13

    (DCM:MeOH9:1).1HNMR(500MHz,DMSO-d6)(ppm)δ12.32(1H,brs),8.58(1H,

    brs),7.36(2H,dd,J=7.5,4.6Hz),7.20(2H,t,J=8.0Hz),6.87(1H,tt,J=7.4,1.2Hz),

    6.23(1H,brt,J=5.7Hz),3.28(2H,q,J=6.3Hz),2.38(2H,t,J=6.4Hz).13CNMR

    (126MHz,CDCl3)(ppm)δ173.4,155.1,140.5,128.6,120.9,117.5,35.2,34.8.HRMS

    (ESI+)m/zcalc’dforC10H13N2O3[M+H]+:209.09262,found:209.09258.

    (S)-3-(3-Phenylureido)butanoicacid(18b)

    O

    + NH

    NH

    OO

    NH

    R NH

    ROHNH

    O

    H2NR

    18a(1.0 equiv)

    57 58

    EDC (1.4 equiv)DMAP (0.5 equiv)

    DIPEA (1.5 equiv)DCM, 16 h

    NH

    O

    OHNH

    O

    NH

    O

    OHNH

    O

  • 46

    UsingthegeneralexperimentalprocedureAwith(S)-3-aminobutanoicacid(100mg,

    0.968mmol,0.2M),phenylisocyanate(115.4mg,0.968mmol,0.106mL)and

    distilledTHF(4.85mL)yielded18b,whichwasisolatedasawhitesolid(47.9mg,

    22%).Rf:0.26(DCM:MeOH9:1).1HNMR(500MHz,MeOH-d4)(ppm)δ7.33(2H,d,

    J=8.5Hz),7.23(2H,t,J=8.0Hz),6.96(1H,td,J=7.5,1.1Hz),4.19(1H,hextet,J=

    6.7Hz,1H),2.49(2H,dq,J=41.1,6.2Hz),1.25(3H,d,J=6.7Hz).13CNMR(126MHz,

    CDCl3)(ppm)δ172.9,154.4,140.5,128.6,120.9,117.5,42.2,41.0,20.6.HRMS

    (ESI+)m/zcalc’dforC11H15N2O3[M+H]+:223.10827,found:223.10871.

    (R)-3-(3-Phenylureido)butanoicacid(18c)

    UsingthegeneralexperimentalprocedureAwith(R)-3-

    aminobutanoicacid(100mg,0.968mmol,0.2M),phenylisocyanate(115.4mg,

    0.968mmol,0.106mL)anddistilledTHF(4.85mL)yielded18c,whichwasisolated

    asawhitesolid(52.2mg,24%).Rf:0.22(DCM:MeOH9:1).1HNMR(500MHz,

    MeOH-d4)(ppm)δ7.33(2H,dd,J=8.7,1.1Hz),7.23(2H,t,J=8.0Hz),6.96(1H,t,J=

    7.2,1.2Hz),4.19(1H,hextet,J=6.5Hz),2.48(2H,dq,J=40.7,6.1Hz),1.25(3H,d,J

    =6.7Hz).13CNMR(126MHz,CDCl3)(ppm)δ172.2,154.4,140.5,128.6,120.9,

    117.5,42.2,40.9,20.6.HRMS(ESI+)m/zcalc’dforC11H15N2O3[M+H]+:223.10827,

    found:223.10897.

    2-Methyl-3-(3-phenylureido)propanoicacid(18d)

    UsingthegeneralexperimentalprocedureAwith(RS)-3-aminoisobutanoicacid

    (100mg,0.968mmol,0.2M),phenylisocyanate(115.4mg,0.968mmol,0.106mL)

    anddistilledTHF(4.85mL)yielded18d,whichwasisolatedasawhitesolid(111.5

    mg,52%).Rf:0.26(DCM:MeOH9:1).1HNMR(500MHz,DMSO-d6)(ppm)δ12.35

    (1H,brs),8.64(1H,brs),7.37(2H,dd,J=8.7,1.1Hz),7.20(2H,t,J=8.0Hz),6.87

    NH

    O

    OHNH

    O

    NH

    O

    OHNH

    O

  • 47

    (1H,tt,J=7.5,1.2Hz),6.26(1H,t,J=5.6Hz),3.20(2H,t,J=6.2Hz),2.52(1H,m),

    1.08(3H,d,J=7.1Hz).13CNMR(126MHz,CDCl3)(ppm)δ176.8,155.6,140.9,

    129.1,121.4,117.9,42.3,40.1,15.1.HRMS(ESI+)m/zcalc’dforC11H15N2O3[M+H]+:

    223.10827,found:223.10860.

    3-Methyl-3-(3-phenylureido)butanoicacid(18e)

    UsingthegeneralexperimentalprocedureAwith

    3-amino-3-amino-butanoicacid(200mg,1.707mmol,0.2M),phenylisocyanate

    (203.2mg,1.707mmol,0.185mL)anddistilledTHF(8.53mL)yielded18e,which

    wasisolatedasayellowoil(8.9mg,2%).

    N-(3-(3-phenylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan(27a)

    FollowedthegeneralexperimentalprocedureD

    using3-(3-phenylureido)propanoicacid(61.4mg,0.295mmol),L-valyl-L-prolyl-L-

    trypotophanattachedtoa2-chlorotritylresin(60mg,0.098mmol)HATU(112.2

    mg,0.295mmol),DIPEA(0.103mL,0.590mmol)andNMP(3mL)yielded27a,

    whichwasisolatedasalightbrownsolid(12.7mg,22%).1HNMR(500MHz,DMSO-

    d6)(ppm)δ12.55(1H,brs),10.84(1H,brs),8.56(1H,s),8.09(1H,d,J=8.5Hz),

    7.98(1H,d,J=7.5Hz),7.52(1H,d,J=8.0Hz),7.36(2H,dd,J=8.7,1.1Hz),7.32(1H,

    dt,J=8.1,0.9Hz),7.20(3H,m),7.05(1H,ddd,J=8.1,7.0,1.1Hz),6.97(1H,ddd,J=

    8.0,7.0,1.0Hz),6.87(1H,tt,J=7.5,1.2Hz),6.15(1H,t,J=5.8Hz),4.44(2H,m),

    4.32(1H,t,J=8.4Hz),3.73(1H,m),3.54(1H,m),3.26(2H,qd,J=6.6,2.0Hz),3.10

    (2H,qd,J=14.7,6.1Hz),2.35(2H,qt,J=15.2,6.6Hz),2.00(1H,m),1.86(1H,m)

    0.86(6H,dd,J=23.2,6.7Hz).13CNMR(126MHz,CDCl3)(ppm)δ173.2,171.4,

    170.8,170.1,155.0,140.5,136.0,128.6,127.3,123.8,120.9,120.8,118.3,118.2,

    117.5,111.3,109.4,59.1,55.6,53.0,47.1,35.6,35.3,30.0,29.0,27.0,24.4,19.1,18.5.

    HRMS(ESI+)m/zcalc’dforC31H39N6O6[M+H]+:591.2926,found:223.2923.

    NH

    O

    O

    NH

    O

    NH

    O

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 48

    (S)-N-(3-(3-phenylureido)butanamido)-L-valyl-L-prolyl-L-trypotophan(27b)

    UsingthegeneralexperimentalprocedureD

    with(S)-3-(3-phenylureido)butanoicacid(47.9mg,0.222mmol),L-valyl-L-prolyl-L-

    trypotophanattachedtoa2-chlorotritylresin(60mg,0.098mmol)HATU(112.2

    mg,0.295mmol),DIPEA(0.103mL,0.590mmol)andNMP(3mL)yielded27b,

    whichwasisolatedasabrownsolid(13.9mg,23%).1HNMR(500MHz,DMSO-d6)

    (ppm)δ12.48(1H,brs),10.83(1H,s),8.47(1H,s),8.10(1H,d,J=8.6Hz),7.96(1H,

    brd,J=4.6Hz),7.53(1H,d,J=8.0Hz),7.36(2H,d,J=8.7,1.1Hz),7.32(1H,dt,J=

    8.1,0.8Hz),7.20(3H,m),7.05(1H,ddd,J=8.1,7.1,1.1Hz),6.97(1H,ddd,J=7.9,

    7.0,1.0Hz),6.87(1H,tt,J=7.5,1.1Hz),6.18(1H,brd,J=7.3Hz),4.43(2H,m),4.33

    (1H,t,J=8.5Hz),4.00(1H,heptet,J=6.6Hz)3.73(1H,dt,J=9.7,6.7Hz),3.53(1H,

    m),3.10(1H,dd,m),2.33(2H,m),1.99(1H,m),1.86(4H,m),1.06(3H,d,J=6.6Hz),

    0.85(6H,dd,J=20.4,6.7Hz).13CNMR(126MHz,CDCl3)(ppm)δ173.2,171.4,

    170.2,170.0,154.4,140.6,136.0,128.6,127.3,123.8,120.9,120.8,118.3,118.2,

    117.5,111.3,109.5,59.1,55.5,53.0,47.1,42.7,41.7,30.0,29.0,27.0,24.4,20.6,19.1,

    18.5.HRMS(ESI+)m/zcalc’dforC32H41N6O6[M+H]+:605.3082,found:605.3082.

    (R)-N-(3-(3-phenylureido)butanamido)-L-valyl-L-prolyl-L-trypotophan(27c)

    UsingthegeneralexperimentalprocedureD

    with(R)-3-(3-phenylureido)butanoicacid(52.2mg,0.242mmol),L-valyl-L-prolyl-

    L-trypotophanattachedtoa2-chlorotritylresin(60mg,0.098mmol)HATU(112.2

    mg,0.295mmol),DIPEA(0.103mL,0.590mmol)andNMP(3mL)yielded27c,

    whichwasisolatedasalightorangesolid(18.0mg,30%).1HNMR(500MHz,

    DMSO-d6)(ppm)δ12.56(1H,brs),10.84(1H,s),8.53(1H,s),8.12(1H,d,J=8.5

    Hz),7.98(1H,d,J=7.5Hz),7.53(1H,d,J=8.0Hz),7.36(2H,m),7.32(1H,d,J=8.1,

    0.9Hz),7.19(3H,m),7.05(1H,ddd,J=8.1,7.1,1.1Hz),6.97(1H,ddd,J=8.0,7.0,

    1.0Hz),6.86(1H,tt,J=7.5,1.2Hz),6.23(1H,d,J=8.3Hz),4.44(2H,m),4.33(1H,t,

    NH

    O

    Val-Pro-Trp-OHNH

    O

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 49

    J=8.4Hz),3.99(1H,m)3.73(1H,dt,J=9.7,6.9Hz),3.54(1H,m),3.10(2H,m),2.42

    (1H,dd,J=14.1,5.7Hz)2.25(1H,dd,J=14.1,6.3Hz),1.99(1H,m),1.86(4H,m),

    1.06(3H,d,J=6.6Hz),0.86(6H,dd,J=18.4,6.7Hz).13CNMR(126MHz,CDCl3)

    (ppm)δ173.1,171.4,170.4,170.0,154.3,140.6,136.0,128.6,127.3,123.8,120.8,

    118.3,118.2,117.5,111.3,109.4,59.1,55.6,53.0,47.1,42.7,41.3,30.1,29.0,27.0,

    24.4,20.6,19.1,18.4,17.2.HRMS(ESI+)m/zcalc’dforC32H41N6O6[M+H]+:

    605.3082,found:605.3082.

    N-(2-Methyl-3-(3-phenylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan

    (27d)

    UsingthegeneralexperimentalprocedureD

    with2-Methyl-3-(3-phenylureido)propanoicacid(63.6mg,0.295mmol),L-valyl-L-

    prolyl-L-trypotophanattachedtoa2-chlorotritylresin(60mg,0.098mmol)HATU

    (112.2mg,0.295mmol),DIPEA(0.103mL,0.590mmol)andNMP(3mL)yielded

    27d,whichwasisolatedasalightbrownsolid(13.6mg,23%).1HNMR(500MHz,

    DMSO-d6)(ppm)δ12.51(1H,brs),10.83(1H,s),8.51(1H,s),8.04(1H,dd,30.3,8.5

    Hz),7.97(1H,dd,J=11.8,6.5Hz),7.52(1H,dd,J=8.0,3.4Hz),7.33(3H,m),7.19

    (3H,m,J=7.9Hz),7.05(1H,dddd,J=8.0,7.1,3.6,1.1Hz),6.96(1H,dddd,J=8.0,

    7.0,3.0,1.0Hz),6.87(1H,tq,J=7.6,1.1Hz),6.11(1H,dt,J=38.0,5.6),4.44(2H,m),

    4.32(1H,dt,J=31.7,8.3Hz),3.70(1H,m),3.53(1H,brm),3.11(4H,m),1.92(5H,

    m),0.99(3H,dd,J=29.7,7.0Hz),0.85(3H,ddd,J=22.9,6.7,3.7Hz).13CNMR(126

    MHz,CDCl3)(ppm)δ174.4,173.2,171.4,170.1,155.1,140.5,136.0,128.6,127.3,

    123.8,120.9,120.8,118.3,118.2,117.4,111.3,109.4,59.1,55.6,53.0,48.5,47.0,

    42.2,41.9,35.8,30.1,29.0,27.0,24.4,19.1*,18.5*,18.2*,17.2*,16.1*,15.4*.HRMS

    (ESI+)m/zcalc’dforC32H41N6O6[M+H]+:605.3082,found:605.3082.

    *diasteriomers

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 50

    (3-Carboxy-3-methyl-3-butanamido)-L-valyl-L-prolyl-L-trypotophan(26eI)

    ToafrittedcolumnL-valyl-L-prolyl-L-trypotophan

    attachedtoa2-chlorotritylresin(100mg,0.061mmol)wasaddedandallowedto

    swellinpeptidegradeDMFfor15minutes.Totheresin2,2-dimethylsuccinic

    anhydride(0.207mL,0.183mmol)anddistilledTHF(3mL)wasadded.Theresin

    wasthereactionmixturewasshakeninthesolutionfor2h.

    N-(3-Methyl-3-(3-phenylureido)butanamido)-L-valyl-L-prolyl-L-trypotophan(27e)

    Toafrittedcolumn(3-carboxy-3-methyl-3-

    butanamido)-L-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(100

    mg,0.061mmol)wasaddedandallowedtoswellinpeptidegradeDMFfor15

    minutes.Theresinwasthentransferredtoa2drvial.DIPEA(0.106mL,0.610

    mmol)anddistilledtoluene(2mL)wasaddedfollowedbyDPPA(0.131mL,0.610

    mmol)wasaddedandthesolutionwasstirred.After2haniline(0.056mL,0.610

    mmol)wasaddedandthesolutionwasallowedtostirfor16hat50°C.Theresin

    wastransferredbacktoafrittedcolumnandthesolutionwasdrained.Another

    equivalentofaniline(0.610mmol)andDIPEA(0.610mmol)wasaddedindistilled

    Toluene(2mL)totheresinandthereactionmixturewasshakenfor24hatroom

    temperature.ThesolutionwasdrainedandwashedwithpeptidegradeDMF(5mL

    x2),HPLCgradeMeOH(5mLx2)anddistilledDCM(5mLx2).DistilledDCM(2.4

    mL)andHFIP(0.6mL)wasaddedtotheresinandthereactionmixturewasshaken

    for1h.Thesolutionwascollectedandthisprocesswasrepeatedwiththeresin,

    moreHFIPandmoreDCM.Thecrudewasthenpurifiedwithreversephasecolumn

    chromatography(water,acetonitrile)yielded27e,,whichwasisolatedasawhite

    solid(1.3mg,3%).HRMS(ESI+)m/zcalc’dforC33H43N6O6[M+H]+:619.3239,found:

    619.3233.

    O

    Val-Pro-Trp-OHO

    HO

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 51

    N-(3-(3-(4-Trifluoromethyl)phenylureido)propanamido)-L-valyl-L-prolyl-L-

    trypotophan(32a)

    Usingthegeneralexperimentalprocedure

    EwithL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(50mg,

    0.031mmol),p-(trifluoromethyl)phenylisocyanate(17.1mg,0.092mmol,0.0131

    mL)anddistilledTHF(3mL)yielded32a,whichwasisolatedasalightpinksolid

    (7.0mg,35%).1HNMR(500MHz,DMSO-d6)(ppm)δ12.55(1H,brs),10.82(1H,s),

    9.01(1H,s),8.09(1H,d,J=8.4Hz),7.95(1H,brm),7.54(5H,m),7.30(1H,d,J=8.1

    Hz),7.19(1H,d,J=2.3Hz),7.03(1H,ddd,J=8.1,7.2,1.0Hz),6.95(1H,ddd,J=7.9,

    7.0,0.8Hz),6.33(1H,t,J=5.9Hz),4.42(2H,m),4.30(1H,t,J=8.4Hz),4.13(m,2H),

    3.70(1H,dt,J=9.7,6.7Hz),3.53(1H,m),3.27(2H,q,J=6.7Hz),3.08(2H,m),2.35

    (2H,m),1.98(1H,m),1.83(4H,m),0.84(6H,dd,J=24.1,6.7Hz).13CNMR(126

    MHz,DMSO-d6)(ppm)δ173.2,171.4,170.8,170.0,154.7,144.2,136.0,127.3,126.0,

    125.8,123.8,121.0,120.8,118.3,118.2,117.0,111.3,109.4,59.1,55.7,53.0,47.1,

    35.6,35.1,30.0,28.9,27.0,24.4,19.1,18.4.(ESI+)m/zcalc’dforC32H38N6O6F3

    [M+H]+:659.2799,found:659.2787.

    N-(3-(3-(4-Chloro)phenylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan

    (32b)

    UsingthegeneralexperimentalprocedureE

    withL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(50mg,0.031

    mmol),p-chlorophenylisocyanate(14.1mg,0.092mmol)anddistilledTHF(3mL)

    yielded32b,whichwasisolatedasalightpinksolid(5.2mg,27%).1HNMR(500

    MHz,DMSO-d6)(ppm)δ12.34(1H,brs),10.83(1H,s),8.74(1H,s),8.09(1H,d,J=

    8.5Hz),7.95(1H,brs),7.53(1H,d,J=7.7Hz),7.39(1H,d,J=9.0Hz),7.32(1H,d,J=

    Hz),7.24(2H,d,J=9.0Hz)7.20(1H,d,J=2.2Hz),7.05(1H,ddd,J=8.1,7.2,1.0Hz),

    6.96(1H,ddd,J=7.8,7.0,0.8Hz),6.22(1H,brs),4.43(2H,m),4.31(1H,t,J=8.4

    NH

    O

    Val-Pro-Trp-OHNH

    OF3C

    NH

    O

    Val-Pro-Trp-OHNH

    OCl

  • 52

    Hz),3.71(1H,m),3.53(1H,m),3.26(2H,q,J=6.8Hz),3.10(2H,m),2.34(2H,qt,J=

    15.4,6.6),1.99(1H,m),1.84(4H,m),0.85(6H,dd,J=23.5,6.7Hz).13CNMR(126

    MHz,DMSO-d6)(ppm)δ173.2,171.4,170.8,170.1,154.9,139.5,136.0,129.3,128.4,

    127.3,124.3,123.8,120.8,118.9,118.3,118.2,111.2,59.1,55.7,53.0,47.1,35.6,

    35.2,30.0,28.9,27.1,24.4,19.1,18.4.(ESI+)m/zcalc’dforC31H38N6O6Cl[M+H]+:

    625.2536,found:625.2537.

    N-(3-(3-Tolylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan(32c)

    UsingthegeneralexperimentalprocedureE

    withL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(50mg,0.031

    mmol),p-tolylisocyanate(12.2mg,0.092mmol,0.0115mL)anddistilledTHF(3

    mL)yielded32c,whichwasisolatedasalightpinksolid(7.5mg,41%).1HNMR

    (500MHz,DMSO-d6)(ppm)δ12.52(1H,brs),10.83(1H,s),8.44(1H,s),8.08(1H,

    d,J=8.5Hz),7.96(1H,m),7.52(1H,d,J=7.9Hz),7.32(1H,d,J=8.1Hz),7.24(2H,

    m)7.21(1H,d,J=2.3Hz),7.05(1H,ddd,J=8.1,7.0,1.1Hz),7.00(2H,d,J=7.9Hz),

    6.96(1H,dddJ=7.9,7.0,1.0Hz),6.10(1H,t,J=5.8Hz),4.43(2H,m),4.31(1H,t,J=

    8.4Hz),3.72(1H,dt,J=9.5,6.9Hz),3.53(1H,m),3.25(2H,qd,J=6.8,1.8Hz),3.09

    (2H,m),2.33(2H,ddt,J=22.0,15.3,7.5Hz),2.20(3H,s),2.00(1H,m),1.84(4H,m),

    0.85(6H,dd,J=23.0,6.7Hz)..13CNMR(126MHz,DMSO-d6)(ppm)δ173.2,171.4,

    170.8,170.1,155.1,138.0,136.0,129.6,129.0,127.3,123.8,120.8,118.3,118.2,

    117.6,111.2,109.4,59.1,55.6,53.0,47.1,35.6,35.3,30.8,30.0,28.9,27.0,24.4,19.1,

    18.5.(ESI+)m/zcalc’dforC32H41N6O6[M+H]+:605.3082,found:605.3079.

    N-(3-(3-(4-Dimethylamino)phenylthioureido)propanamido)-L-valyl-L-prolyl-L-

    trypotophan(32d)

    Usingthegeneralexperimentalprocedure

    EwithL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(50mg,

    NH

    O

    Val-Pro-Trp-OHNH

    O

    NH

    O

    Val-Pro-Trp-OHNH

    SN

  • 53

    0.031mmol),p-dimethylaminophenylisothiocyanate(14.8mg,0.092mmol)and

    distilledTHF(3mL)yielded32d,whichwasisolatedasalightorangesolid(9.9mg,

    50%).1HNMR(500MHz,DMSO-d6)(ppm)δ12.48(1H,brs),10.83(1H,s),9.30

    (1H,s),8.08(1H,d,J=5.6Hz),7.95(1H,s),7.52(1H,d,J=7.9Hz),7.32(1H,d,J=

    8.1Hz),7.26(1H,m),7.20(1H,d,J=1.4Hz),7.05(3H,t,J=8.2Hz),6.96(1H,t,J=

    7.0Hz),6.67(1H,d,J=9.1Hz),4.43(2H,m),4.28(1H,t,J=8.3Hz),3.70(1H,dt,J=

    9.7,7.0Hz),3.62(2H,m),3.52(1H,m),3.10(2H,m),2.87(6H,s),2.43(2H,s),1.99

    (1H,m),1.85(4H,m),0.84(6H,dd,J=22.6,6.6Hz).13CNMR(126MHz,DMSO-d6)

    (ppm)δ180.2,173.2,171.4,170.7,170.0,148.2,136.0,127.3,125.7,125.6,123.8,

    120.8,118.3,118.2,112.5,111.2,109.5,59.1,55.7,53.0,47.1,40.8,35.8,34.1,30.0,

    28.9,27.0,24.4,19.0,18.5.(ESI+)m/zcalc’dforC33H44N7O5S[M+H]+:650.3119,

    found:650.3111.

    N-(3-(3-(4-Methoxy)phenylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan

    (32e)

    Usingthegeneralexperimentalprocedure

    EwithL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(50mg,

    0.031mmol),p-methoxyphenylisocyanate(13.6mg,0.092mmol,0.0119mL)and

    distilledTHF(3mL)yielded32e,,whichwasisolatedasalightorangesolid(8.1mg,

    43%).1HNMR(500MHz,DMSO-d6)(ppm)12.54(1H,brs),10.84(1H,s),8.34(1H,

    s),8.08(1H,d,J=8.5Hz),7.97(1H,m),7.52(1H,d,J=8.0Hz),7.32(1H,d,J=8.1

    Hz),7.26(2H,d,J=9.1Hz),7.21(1H,dJ=2.3Hz),7.05(1H,ddd,J=8.1,7.1,1.1Hz),

    6.97(1H,ddd,J=7.9,7.1,1.0Hz),6.79(2H,d,J=9.1Hz),6.03(1H,t,J=5.8Hz),4.44

    (2H,m),4.31(1H,t,J=8.4Hz),3.71(1H,m),3.53(1H,m),3.25(2H,qd,J=6.7,1.7

    Hz),3.09(2H,m),2.33(2H,m),1.99(1H,m),1.86(4H,m),0.85(6H,dd,J=22.9,6.7

    Hz).13CNMR(126MHz,DMSO-d6)(ppm)δ173.2,171.4,170.8,170.1,155.3,153.8,

    136.0,133.7,127.3,123.8,120.8,119.2,118.3,118.2,113.8,111.3,109.4,59.1,55.6,

    55.1,53.0,47.1,35.6,35.1,30.0,28.9,27.0,24.4,19.1,18.5.(ESI+)m/zcalc’dfor

    C32H41N6O7[M+H]+:621.3031,found:621.3028.

    NH

    O

    Val-Pro-Trp-OHNH

    OO

  • 54

    N-(3-(3-Phenylthioureido)propanamido)-L-valyl-L-prolyl-L-trypotophan(32f)

    UsingthegeneralexperimentalprocedureE

    withL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin(100mg,

    0.034mmol),phenylisothiocyanate(13.8mg,0.102mmol,0.0122mL)anddistilled

    THF(3mL)yielded32f,whichwasisolatedasalightyellowsolid(9.8mg,48%).1H

    NMR(500MHz,DMSO-d6)(ppm)δ12.56(1H,brs),10.83(1H,s),9.65(1H,s),8.12

    (1H,d,J=6.2Hz),7.97(1H,m),7.73(1H,brs),7.53(1H,d,J=8.0Hz),7.40(1H,d,J

    =7.6Hz),7.31(3H,m),7.20(1H,d,J=2.3Hz),7.10(1H,tt,J=7.7,1.2Hz),7.05(1H,

    ddd,J=8.1,7.1,1.1Hz),6.97(1H,t,J=7.9,7.0,1.0Hz),4.43(2H,m),4.31(1H,t,J=

    8.4Hz),3.68(3H,m),3.54(1H,m),3.11(2H,m),2.47(2H,m),2.00(1H,m),1.85

    (4H,m),0.85(6H,dd,J=22.8,6.7Hz).13CNMR(126MHz,DMSO-d6)(ppm)δ180.1,

    173.2,171.4,170.8,170.0,136.0,128.6,127.3,124.1,123.8,122.9,120.8,118.3,

    118.2,111.3,109.4,59.1,55.7,54.9,53.0,47.1,35.8,34.4,30.0,28.9,27.0,24.4,19.0,

    18.5.(ESI+)m/zcalc’dforC31H39N6O5S[M+H]+:607.2697,found:607.2702.

    N-(3-(3-(4-Nitro)phenylureido)propanamido)-L-valyl-L-prolyl-L-trypotophan

    (32g)

    Followedthegeneralexperimental

    procedureCusingL-valyl-L-prolyl-L-trypotophanattachedtoa2-chlorotritylresin

    (50mg,0.031mmol),p-nitrophenylisocyanate(15.0mg,0.092mmol)anddistilled

    THF(3mL)yielded32g,whichwasisolatedasayellowsolid(3.4mg,18%).1H

    NMR(500MHz,DMSO-d6)(ppm)δ12.57(1H,brs),10.83(1H,s),9.41(1H,s),8.12

    (3H,m),7.97(1H,brs),7.60(2H,d,J=9.3Hz),7.52(1H,d,J=7.8Hz),7.32(1H,d,J

    =8.1Hz),7.20(1H,d,J=2.1Hz),7.05(1H,ddd,J=8.1,6.9,1.2Hz),6.96(1H,ddd,J=

    7.9,7.0,1.0Hz),6.50(1H,brs),4.43(2H,m),4.32(1H,t,J=8.4Hz),3.72(1H,dt,J=

    10.1,6.7Hz),3.54(1H,m),3.30(2H,q,J=6.4Hz),3.09(2H,m),2.37(2H,m),2.00

    (1H,m),1.85(4H,m),0.85(6H,dd,J=24.7,6.7Hz).13CNMR(126MHz,DMSO-d6)

    NH

    O

    Val-Pro-Trp-OHNH

    S

    NH

    O

    Val-Pro-Trp-OHNH

    OO2N

  • 55

    (ppm)δ173.2,171.4,170.7,170.0,154.2,147.1,140.3,136.0,127.3,125.1,123.8,

    120.8,118.3,118.2,116.7,111.3,109.4,59.1,55.7,53.0,47.1,35.7,34.9,30.0,29.0,

    27.0,24.4,19.1,18.4.(ESI+)m/zcalc’dforC31H38N7O6[M+H]+:636.2776,found:

    636.2775.

    3-(3-Benzylureido)propanamido-L-valyl-L-prolyl-L-trypotophan(37a)

    UsingthegeneralexperimentalprocedureG

    with3-aminopropanamido-L-valyl-L-prolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(50mg,0.031mmol),N-benzyl-1H-imidazole-1-carboxamide(18.4

    mg,0.091mmol),MeI(64.9mg,0.458mmol,28.4μL),NEt3(18.5mg,0.183mmol,

    25.5μL),distilledAcetonitrile(1.0mL)anddistilledDCM(3mL)yielded37a,which

    wasisolatedasalightyellowsolid(0.4mg,2%).1HNMR(500MHz,DMSO-d6)

    (ppm)δ10.84(1H,s),8.04(1H,d,J=8.5Hz),7.96(1H,m),7.53(1H,d,J=8.0Hz),

    7.31(3H,m),7.22(3H,m),7.06(1H,ddd,J=8.1,7.1,1.1Hz),6.97(1H,ddd,J=7.9,

    7.0,1.0Hz),6.45(1H,t,J=6.0Hz),5.92(1H,t,J=5.9Hz),4.43(2H,m),4.33(t,J=15

    Hz,1H),4.30(1H,t,J=8.4Hz),4.19(2H,dd,J=5.9,2.8Hz),3.72(1H,dt,J=9.4,6.8

    Hz),3.52(1H,m),3.20(2H,ddt,J=10.3,6.7,3.8Hz),3.11(2H,m),2.30(2H,m),1.99

    (1H,m),1.86(4H,m),0.85(6H,dd,J=22.1,6.7Hz).13CNMR(126MHz,DMSO-d6)

    (ppm)δ173.6,171.8,171.2,170.6,158.4,141.4,136.4,128.6,127.4,126.9,124.2,

    121.6,118.7,118.6,111.7,109.9,59.6,56.1,53.5,47.5,43.3,36.4,36.1,30.4,29.4,

    27.5,24.8,19.5,18.9.(ESI+)m/zcalc’dforC32H41N6O6[M+H]+:605.3082,found:

    605.3085.

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 56

    3-(3-(3,4-Dichlorobenzyl)ureido)propanamido-L-valyl-L-prolyl-L-trypotophan

    (37b)

    Usingthegeneralexperimentalprocedure

    Gwith3-aminopropanamido-L-valyl-L-prolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(50mg,0.031mmol),N-(3,4-dichlorobenzyl)-1H-imidazole-1-

    carboxamide(24.7mg,0.091mmol),MeI(64.9mg,0.458mmol,28.4μL),NEt3(18.5

    mg,0.183mmol,25.5μL),distilledacetonitrile(1.0mL)anddistilledDCM(3mL)

    yielded37b,whichwasisolatedasalightyellowsolid(0.5mg,2%).1HNMR(500

    MHz,DMSO-d6)(ppm)δ10.83(1H,s),8.03(1H,d,J=8.5Hz),7.92(1H,d,J=8.6

    Hz),7.56(1H,d,J=8.2Hz),7.53(1H,m),7.46(1H,d,J=2.0Hz),7.32(1H,d,J=8.9

    Hz),7.22(1H,m),7.05(1H,ddd,J=8.1,7.1,1.1Hz),6.96(1H,ddd,J=7.9,7.1,1.0

    Hz),6.58(1H,t,J=6.0Hz),6.03(1H,t,J=5.8Hz),4.41(2H,m),4.30(1H,t,J=8.3

    Hz),4.18(2H,dd,J=6.1,1.8Hz),3.71(1H,dt,J=9.4,7.0Hz),3.51(1H,m),3.19(2H,

    qd,J=6.7,2.2Hz),3.10(2H,ddd,J=35.7,14.8,6.3Hz),2.29(2H,m),1.99(1H,m),

    1.85(4H,m),0.85(6H,dd,J=23.7,6.7Hz).13CNMR(126MHz,DMSO-d6)(ppm)δ

    173.2,171.3,170.8,170.1,157.8,142.5,136.0,130.7,130.3,128.9,127.3,123.8,

    120.8,118.2,118.2,111.2,109.5,59.2,55.6,53.1,47.1,41.8,36.0,35.6,30.0,28.9,

    27.0,24.3,19.1,18.4.(ESI+)m/zcalc’dforC32H39N6O6Cl2[M+H]+:673.2303,found:

    673.2308.

    3-(3-(4-Methoxybenzyl)ureido)propanamido-L-valyl-L-prolyl-L-trypotophan(37c)

    Usingthegeneralexperimental

    procedureGwith3-aminopropanamido-L-valyl-L-prolyl-L-trypotophanattachedto

    a2-chlorotritylresin(50mg,0.031mmol),N-(4-methoxybenzyl)-1H-imidazole-1-

    carboxamide(21.2mg,0.091mmol),MeI(64.9mg,0.458mmol,28.4μL),NEt3(18.5

    mg,0.183mmol,25.5μL),distilledacetonitrile(1.0mL)anddistilledDCM(3mL)

    NH

    O

    Val-Pro-Trp-OHNH

    OCl

    Cl

    NH

    O

    Val-Pro-Trp-OHNH

    O

    O

  • 57

    yielded37c,whichwasisolatedasalightyellowsolid(2.0mg,10%).1HNMR(500

    MHz,DMSO-d6)(ppm)δ10.84(1H,s),8.03(1H,d,J=8.4Hz),7.95(1H,d,J=7.6

    Hz),7.53(1H,d,J=7.9Hz),7.34(1H,d,J=8.8Hz),7.21(1H,d,J=2.3Hz),7.13(2H,

    d,J=7.6Hz),7.05(1H,ddd,J=8.1,7.2,1.1Hz),6.97(1H,ddd,J=7.9,7.2,0.9Hz),

    6.85(2H,d,J=8.7Hz),6.35(1H,t,J=6.0Hz),5.87(1H,t,J=5.9Hz),4.42(2H,m),

    4.29(1H,t,J=8.4Hz),4.10(2H,dd,J=5.9,2.4Hz),3.51(1H,dt,J=12.0,6.4Hz),

    3.18(2H,m),3.10(2H,m),2.28(2H,m),1.98(1H,m),1.84(1H,m),0.85(6H,dd,J=

    22.4,6.7Hz).13CNMR(126MHz,DMSO-d6)(ppm)δ173.7,171.8,170.6,158.5,

    158.3,136.4,133.2,128.7,127.8,124.2,121.2,118.7,118.6,114.0,111.7,110.0,

    59.6,56.1,55.5,53.5,47.5,42.8,36.4,36.2,30.4,29.4,27.5,24.8,19.5,18.9.(ESI+)

    m/zcalc’dforC32H43N6O7[M+H]+:635.3188,found:635.3189.

    3-(3-(4-Methylbenzyl)ureido)propanamido-L-valyl-L-prolyl-L-trypotophan(37d)

    Usingthegeneralexperimentalprocedure

    Gwith3-aminopropanamido-L-valyl-L-prolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(50mg,0.031mmol),N-tolyl-1H-imidazole-1-carboxamide(19.7

    mg,0.091mmol),MeI(64.9mg,0.458mmol,28.4μL),NEt3(18.5mg,0.183mmol,

    25.5μL),distilledacetonitrile(1.0mL)anddistilledDCM(3mL)yielded37d,which

    wasisolatedasalightorangesolid(1.9mg,10%).1HNMR(500MHz,DMSO-d6)

    (ppm)δ10.85(1H,s),8.03(1H,d,J=8.5Hz),7.97(1H,d,J=7.1Hz),7.53(1H,d,J=

    7.9Hz),7.33(1H,d,J=8.1Hz),7.21(1H,d,J=2.3Hz),7.11(3H,s),7.06(1H,ddd,J=

    8.1,7.1,1.1Hz),6.97(1H,ddd,J=7.9,7.0,0.9Hz),6.38(1H,t,J=5.9Hz),5.89(1H,t

    J=5.9Hz),4.44(2H,m),4.30(1H,t,J=8.4Hz),4.13(2H,dd,J=5.9,3.2Hz),3.72

    (1H,dt,J=9.8,6.8Hz),3.53(1H,m),3.19(2H,m),3.09(2H,m),2.31(2H,m),2.27

    (3H,s),1.99(1H,m),1.85(4H,m),0.85(6H,dd,J=22.1,6.7Hz).13CNMR(126MHz,

    DMSO-d6)(ppm)δ173.7,171.8,171.2,170.6,158.4,138.3,136.5,135.9,129.2,

    127.8,127.4,124.3,121.3,118.7,118.6,111.7,109.9,59.6,56.1,53.4,47.5,43.0,

    36.4,36.2,30.4,29.4,27.5,24.8,21.1,19.5,18.9.(ESI+)m/zcalc’dforC33H43N6O6

    [M+H]+:619.3239,found:619.3233.

    NH

    O

    Val-Pro-Trp-OHNH

    O

  • 58

    3-(3-(3-Chlorobenzyl)ureido)propanamido-L-valyl-L-prolyl-L-trypotophan(37e)

    Usingthegeneralexperimentalprocedure

    Gwith3-aminopropanamido-L-valyl-L-prolyl-L-trypotophanattachedtoa2-

    chlorotritylresin(50mg,0.031mmol),N-(3-chlorobenzyl)-1H-imidazole-1-

    carboxamide(21.6mg,0.091mmol),MeI(64.9mg,0.458mmol,28.4μL),NEt3(18.5

    mg,0.183mmol,25.5μL),distilledacetonitrile(1.0mL)anddistilledDCM(3mL)

    yielded37e,whichwasisolatedasalightyellowsolid(2.5mg,13%).1HNMR(500

    MHz,DMSO-d6)(ppm)δ10.83(1H,s),8.04(1H,d,J=8.5Hz),7.95(1H,d,J=7.2

    Hz),7.53(1H,d,J=8.0Hz),7.33(2H,m),7.27(2H,m),7.20(2H,m),7.05(1H,ddd,J

    =8.1,7.1,1.1Hz),6.97(1H,ddd,J=7.9,7.0,1.0Hz),6.54(1H,t,J=6.1Hz),5.98(1H,

    t,J=5.8Hz),4.42(2H,m),4.30(1H,t,J=8.4Hz),4.19(2H,dd,J=6.0,2.5Hz),3.71

    (1H,dt,J=9.3,6.7Hz),3.52(1H,dt,J=12.1,6.2Hz),3.20(2H,ddt,J=9.7,6.8,3.0

    Hz),3.31(2H,m),2.29(2H,m),1.99(1H,m),1.85(4H,m),0.85(6H,dd,J=22.4,6.7

    Hz).13CNMR(126MHz,DMSO-d6)(ppm)δ173.7,171.8,171.2,170.6,158.3,144.2,

    136.4,133.3,130.5,127.8,127.1,126.8,126.1,124.2,121.3,118.7,111.7,109.9,

    59.6,56.1,53.5,47.5,42.7,36.5,36.1,30.4,29.4,24.8,19.5,18.9.(ESI+)m/zcalc’d

    forC32H40N6O6Cl[M+H]+:639.2692,found:639.2697.

    3-(3-Benzyl-2phenylguanidino)propanamido-L-allyl-L-trypotophan(44a)

    UsingthegeneralexperimentalprocedureI

    with3-aminopropanamido-L-allyl-L-trypotophanattachedtoa2-chlorotritylresin

    (50mg,0.031mmol),Mukaiyama’sreagent(79.2mg,0.310mmol),benzylamine

    (33.2mg,0.310mmol,33.9μL),NEt3(31.4mg,0.310mmol,43.2μL)anddistilled

    DMF(3mL)yielded44a,whichwasisolatedasanorangesolid(15.4mg,90%).1H

    NMR(400MHz,DMSO-d6)(ppm)δ12.61(1H,brs),10.89(1H,s),8.46(1H,brd,J=

    NH

    O

    Val-Pro-Trp-OHNH

    OCl

    Ala-Trp

    O

    NH

    N

    NH OH

  • 59

    7.4Hz),8.27(1H,d,J=7.5Hz),8.15(1H,d,J=7.5Hz),7.96(1H,brs),7.52(1H,d,J=

    7.9Hz),7.36(3H,m),7.21(1H,t,J=7.4Hz),7.16(3H,dd,J=4.8,2.4Hz),7.05(1H,

    ddd,J=8.1,7.0,1.1Hz),6.96(1H,t,J=7.9,7.0,1.0Hz),4.50(2H,brs),4.44(1H,td,

    J=7.8,5.4Hz),4.37(1H,t,J=7.3Hz),3.47(2H,brq,J=6.7Hz),3.30(2H,q,J=7.1

    Hz),3.11(2H,m),2.46(2H,m),1.19(3H,d,J=7.1Hz).13CNMR(101MHz,DMSO-

    d6)(ppm)δ173.2,172.1,169.9,153.9,137.0,136.0,129.5,128.5,127.4,127.3,

    127.2,123.9,123.7,120.8,118.3,118.2,111.3,109.7,48.9,48.0,30.1,29.0,27.0,

    18.4,17.2.(ESI+)m/zcalc’dforC31H35N6O4[M+H]+:555.2719,found:555.2714.

    Benzoyl-L-prolyl-L-trypotophan(52)

    UsingthegeneralexperimentalprocedureJwithL-prolyl-L-

    trypotophanattachedtoa2-chlorotritylresin(100mg,0.058mmol),benzoyl

    chloride(24.5mg,0.174mmol,20.2μL),DIPEA(45.0mg,0.348mmol,60.6μL)and

    NMP(3mL)yielded52,whichwasisolatedasalightpinksolid(1mg,4%).1HNMR

    (400MHz,DMSO-d6)(ppm)δ12.23(1H,brs),10.84(1H,d,J=22.0Hz),8.07(1H,d,

    J=25.6Hz),7.49(4H,m),7.33(2H,m),7.21(2H,m),7.05(1H,m),6.97(1H,m),

    4.49(1H,m),4.28(1H,m),3.56(1H,m),3.17(2H,m),2.95(1H,m),2.06(1H,m),

    1.86(3H,m).(ESI+)m/zcalc’dforC23H24N3O4[M+H]+:406.1764,found:406.1761.

    Fmoc-glycyl-L-prolyl-L-trypotophan(54)

    UsingthegeneralexperimentalprocedureMwithL-prolyl-

    L-trypotophanattachedtoa2-chlorotritylresin(100mg,0.061mmol),Fmoc-

    glycine(54.4mg,0.183mmol),oxalylchloride(27.8mg,0.210mmol,18.8μL),DMF

    (13.4mg,0.183mmol,13.4μL),DIPEA(47.3mg,0.366mmol,63.7μL),distilled

    DCM(3mL)andNMP(3mL)yielded54,whichwasisolatedasalightorangesolid

    (3.3mg,9%).1HNMR(400MHz,DMSO-d6)(ppm)δ10.82(1H,s),8.00(1H,d,J=7.6

    Hz),7.88(2H,d,J=8.2Hz),7.72(2H,d,J=6.8Hz),7.54(1H,q,J=6.1,5.5Hz),7.42

    Pro-Trp

    O

    OH

    Pro-Trp

    OHN

    Fmoc

    OH

  • 60

    (2H,m),7.32(3H,m),7.18(1H,m),7.04(1H,q,J=8.1,7.6Hz)6.96(1H,m),4.46