synthesis, structure, and photophysical properties of ... · 1,2,4-triazole ligands jing-lin...

19
S1 Electronic Supplementary Information (ESI) Synthesis, structure, and photophysical properties of copper(I) triphenylphosphine complexes with functionalized 3-(2-pyrimidinyl)- 1,2,4-triazole ligands Jing-Lin Chen,* abe Xue-Hua Zeng, a Yan-Sheng Luo, a Wan-Man Wang, a Li-Hua He, a Sui-Jun Liu, a He-Rui Wen, a Shuping Huang,* c Li Liu* d and Wai-Yeung Wong* b a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China b Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University. Hung Hom, Hong Kong, P.R. China c College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China d Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China. e Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China. *Authors to whom correspondence should be addressed. E-mail: [email protected] (J.-L. Chen); [email protected] (W.-Y. Wong); [email protected] (S. Huang); [email protected] (L. Liu) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 15-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

S1

Electronic Supplementary Information (ESI)

Synthesis, structure, and photophysical properties of copper(I)

triphenylphosphine complexes with functionalized 3-(2′-pyrimidinyl)-

1,2,4-triazole ligands

Jing-Lin Chen,*abe Xue-Hua Zeng,a Yan-Sheng Luo,a Wan-Man Wang,a Li-Hua He,a Sui-Jun Liu,a

He-Rui Wen,a Shuping Huang,*c Li Liu*d and Wai-Yeung Wong*b

a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology,

Ganzhou 341000, P.R. China

b Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University.

Hung Hom, Hong Kong, P.R. China

c College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China

d Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of

Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules,

School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China.

e Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of

Sciences, Beijing 100049, P.R. China. *Authors to whom correspondence should be addressed. E-mail: [email protected] (J.-L. Chen); [email protected] (W.-Y. Wong);

[email protected] (S. Huang); [email protected] (L. Liu)

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2017

S2

Fig. S1 1H NMR spectrum of 1 in CD2Cl2.

Fig. S2 1H NMR spectrum of 2 in CD2Cl2.

S3

Fig. S3 1H NMR spectrum of 3 in CD2Cl2.

Fig. S4 1H NMR spectrum of 4 in CD2Cl2.

S4

Fig. S5 31P NMR spectrum of 1 in CD2Cl2.

Fig. S6 31P NMR spectrum of 2 in CD2Cl2.

S5

Fig. S7 31P NMR spectrum of 3 in CD2Cl2.

Fig. S8 31P NMR spectrum of 4 in CD2Cl2.

Fig. S9 1H NMR s

S6

spectra of 3 in CD2Cl2 at 218 K.

F

Fig. S10

Fig. S11 1

31P NMR s

1H NMR sp

S7

spectrum of

ectrum of 2

f 3 in CD2Cl

2 in DMSO-

l2 at 218 K.

-d6 at 298 K

K.

Fig. SS12 Variabble-temperaature 31P NM

S8

MR spectra of 2 in DMMSO-d6 fromm 298 K to 3358 K.

Fig. S13 Variable-temperrature 31P N

S9

NMR spectraa of 4 in CDD2Cl2 from 2298 K to 2118 K.

Fig. S14

Fig. S15

S10

ESI-MS of

ESI-MS of

f complex 1

f complex 2

.

.

Fig. S16

Fig. S17

S11

ESI-MS of

ESI-MS of

f complex 3

f complex 4

Fig. S1

Fig. S

18 TGA cu

S19 The P

S12

urves of com

PXRD patte

mplexes 1‒

ern of comp

4 in N2.

plex 1.

Fig. S

Fig. S

S20 The P

S21 The P

S13

PXRD patte

PXRD patte

ern of comp

ern of comp

plex 2.

plex 3.

Fig. S

S22 The P

S14

PXRD patteern of compplex 4.

S15

4

3

2

1

HOMO LUMO

Fig. S23 Plots of the frontier molecular orbitals involved in the lowest triplet excited state of complexes 1‒4 based on the T1-optimized structure in CH2Cl2 media calculated by TD-DFT method at the PBE1PBE level (isovalue = 0.02).

S16

Fig. S24 IR spectrum of complex 1.

Fig. S25 IR spectrum of complex 2.

3852.68

3734.92

3431.86

2925.12

1645.74

1570.18

1433.26

1092.11

807.37

748.74

697.17

622.45

510.78

500100015002000250030003500

Wavenumber cm-1

80

85

90

95

100

Transmittance [%]

3852.20

3731.72

3442.51

3055.01

2924.37

2359.02

1634.06

1577.74

1476.86

1434.32

1386.98

1310.42

1100.23

1017.73

808.05

746.04

696.35

622.91

513.06

500100015002000250030003500

Wavenumber cm-1

92

94

96

98

100

Transmittance [%]

S17

Fig. S26 IR spectrum of complex 3.

Fig. S27 IR spectrum of complex 4.

3739

.72

3432

.56

3062

.64

2926

.61

1638

.67

1571

.90

1518

.16

1476

.05

1434

.80

1389

.31

1267

.92

1099

.20

1010

.21

815.

4074

6.99

696.

8262

6.16

511.

94

500100015002000250030003500Wavenumber cm-1

7580

8590

9510

0Tr

ansm

ittan

ce [%

]

3432.49

3056.94

1640.31

1571.55

1475.99

1433.65

1390.27

1178.58

1091.84

1016.02

809.71

746.00

695.72

621.53

512.08

500100015002000250030003500

Wavenumber cm-1

70

75

80

85

90

95

100

Transmittance [%]

S18

Fig. S28 IR spectrum of complex 1a.

Fig. S29 IR spectrum of complex 1b.

3852.34

3739.44

3442.58

3056.72

2965.38

2920.12

2362.65

1837.37

1741.47

1634.75

1570.62

1473.80

1434.96

1387.39

1311.51

1219.41

1082.89

823.55

748.24

697.37

513.58

500100015002000250030003500

Wavenumber cm-1

80

85

90

95

100

Transmittance [%]

3852.70

3437.17

3058.23

2970.54

1970.46

1897.25

1823.18

1629.36

1574.23

1531.18

1477.02

1435.34

1389.71

1310.18

1268.46

1218.98

1095.71

1030.28

846.72

746.97

697.43

642.82

559.22

512.20

434.95

500100015002000250030003500

Wavenumber cm-1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Absorbance Units

S19

Table S1 Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) for 1‒4 based on the S0-optimized structures in CH2Cl2 media calculated by TD-DFT method at the PBE1PBE level Orbital Energy

(eV) HOMO-LUMO

Gap (eV) MO Contribution (%)

Cu P Ph bpmtzH or fpmtzH 1 HOMO

LUMO -6.50 -2.06

4.44 35.12 0.76

19.68 0.00

41.27 1.51

3.93 97.73

2 HOMO LUMO

-6.75 -2.85

3.90 31.97 1.51

18.21 0.62

45.89 1.66

3.93 96.21

3 HOMO LUMO

-6.56 -2.67

3.89 32.35 0.96

18.69 0.23

46.16 0.87

2.80 97.94

4 HOMO LUMO

-6.30 -2.03

4.27 36.80 1.40

20.22 0.39

36.67 3.17

6.31 95.04

Table S2 Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) for 1–4 based on the T1-optimized structures in CH2Cl2 media calculated by TD-DFT method at the PBE1PBE level Orbital Energy

(eV) HOMO-LUMO

Gap (eV) MO Contribution (%) Cu P Ph bpmtzH or fpmtzH

1 HOMO LUMO

-5.85 -2.60

3.25 37.67 2.20

20.09 0.32

31.11 1.64

11.13 95.84

2 HOMO LUMO

-5.98 -3.36

2.62 35.64 0.04

22.45 1.97

29.6 5.8

12.31 92.19

3 HOMO LUMO

-5.82 -3.15

2.67 34.37 2.39

24.13 1.33

30.25 1.39

11.25 94.89

4 HOMO LUMO

-5.54 -2.53

3.01 41.01 0.11

21.37 1.76

22.51 5.37

15.11 92.76