synthesis gas by catalytic steam reforming of bio …

33
Synthesis gas by catalytic steam Synthesis gas by catalytic steam reforming of bio reforming of bio-oil. oil. F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, M. Oliva, J. Ruiz, De Chen, J. Arauzo M. Oliva, J. Ruiz, De Chen, J. Arauzo Thermochemical Processes Group (GPT) Aragón Institute for Engineering Research (I3A) University of Zaragoza, María de Luna, 3, E-50018, Zaragoza, Spain

Upload: others

Post on 26-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Synthesis gas by catalytic steam Synthesis gas by catalytic steam reforming of bioreforming of bio--oil.oil.

F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, M. Oliva, J. Ruiz, De Chen, J. Arauzo M. Oliva, J. Ruiz, De Chen, J. Arauzo

Thermochemical Processes Group (GPT)Aragón Institute for Engineering Research (I3A)

University of Zaragoza, María de Luna, 3, E-50018, Zaragoza, Spain

Page 2: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Hydrogen economy:

� Increasing interest in Hydrogen economy:

� Several chemical uses.

� Utilization as clean fuel in high energetic efficiencysystems like fuel cells in stationary, mobile or portableapplications that can be used in vehicles.

H2O

Page 3: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

THERMOCHEMICAL CONVERSIONTHERMOCHEMICAL CONVERSION

GASIFICATIONGASIFICATION

CHCH44/CO/CO22 HH22/CO/CO

PYROLYSISPYROLYSIS

Supercritical conditionsSupercritical conditions FlashFlash

HH22/CO/CO22

CHCH44/CO/CO22

Reforming Reforming ++ShiftShift

BioBio--oiloil

Reforming Reforming ++ShiftShift

Reforming Reforming ++ShiftShift

ShiftShiftSynthesisSynthesis

CHCH33OH/COOH/CO22

HH22/C/C

SevereSevere

Page 4: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Steam reforming of pyrolysis liquids (Bio-oil):

PyrolysisBio-oil

BTG process (fast pyrolysis)� Complex mixture of organic

compounds and water*.

� Are unstable and suffer fromaging.

* Oasmaa, D. Meier, J. Anal. Appl. Pyr., 73 (2005) 323

Page 5: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Steam reforming:

� Vegetable oils:

� Sunflower� Soya� Rapeseed� Palm� …

� Trap grease � Bioethanol

Page 6: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Introduction

Steam reforming:

� Bioethanol � Biobutanol

Page 7: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Steam reforming:

� Important increasing in biodiesel production

� Glycerol

Glycerol prices decrease, so it isnecessary to find new ways toconvert glycerol into valuableadded products � H2

Page 8: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Introduction

Ligninic fraction

Aqueous fraction

Steam reforming of pyrolysis liquids (Bio-oil):

High valuable coproducts from bio-oil*

Higher stability

* J. Shabtai, W. Zmierczak, E. Chornet, Evironment, Chemicals, Fibers and Materials (Ed. by R.P. Overend, E. Chornet) Vol2 (1997) 1507

Page 9: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

OBJECTIVES:OBJECTIVES:

�� ExperimentalExperimental workwork withwith modelmodel compoundscompounds andand withwith thethe aqueousaqueousfractionfraction ofof biobio--oiloil bothboth atat micromicro andand benchbench scalesscales..

�� DevelopmentDevelopment ofof suitablesuitable catalystscatalysts forfor thethe processprocess::

�� AdequateAdequate catalyticcatalytic activityactivity andand selectivityselectivity towardstowards HH22..

�� ResistanceResistance toto deactivationdeactivation byby cokingcoking depositiondeposition..

�� ResistanceResistance toto attritionattrition toto workwork atat fluidizedfluidized bedbed..

�� DevelopmentDevelopment ofof thethe processprocess atat aa benchbench--scalescale fluidizedfluidized--bedbedfacilityfacility andand scalescale upup toto aa demonstrationdemonstration plantplant..

Page 10: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

CHARACTERISTICS OF CHARACTERISTICS OF BIOBIO--OOIL*IL*

(*Oasmaa and Meier, (*Oasmaa and Meier, J. Anal. Appl. Pyrol. 73, (2005), 323J. Anal. Appl. Pyrol. 73, (2005), 323))

ORGANICS / WATER

(85/15 w/w)

� Heterogeneous

properties (feedstock)

� Colour: Dark red /

brown

� Odour: smoke like

� Quite viscous at room

temperature

Thermally unstable WATER ADDITION:

� Thermally unstable

(polymerization)

� High oxygen content

(ca. 40 % dry matter)

� pH: 2.3 – 2.8

� Alcohols

� Carboxylic acids

� Sugars

� Aldehydes

� Ketones

� Complex carbohydrates

� Lignin derived materials

WATER ADDITION:

WATER INSOLUBLE

FRACTION

(Pyrolytic lignin)

AQUEOUS

FRACTION

Fine Chemicals(Kelley et al., 1997; Shabtai et al., 1997)

Catalytic Steam

Reforming(Czernik et al., 1997)

Page 11: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Great complexity!

CHARACTERISTICS OF CHARACTERISTICS OF BIOBIO--OOIL*IL*

(*Oasmaa and Meier, (*Oasmaa and Meier, J. Anal. Appl. Pyrol. 73, (2005), 323J. Anal. Appl. Pyrol. 73, (2005), 323))

� Alcohols

� Carboxylic acids

� Sugars

� Aldehydes

� Ketones

� Complex carbohydrates

� Lignin derived materials

↓↓↓↓Experimental work with model

compounds:

• Acetic acid

• Acetol

• 1-Butanol

• D-Fructose

Page 12: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

CATALYSTS PREPARED AT INCREASING pH

HYDRATED

PRECURSOR

Ni(NO3)2·6H2O

Al(NO3)3·9H2O

FILTERINGFILTERINGFILTERINGFILTERING

DRYINGDRYINGDRYINGDRYING

3h, 3h, 3h, 3h,

REDUCTIONREDUCTIONREDUCTIONREDUCTION

10 % H10 % H10 % H10 % H2, , , ,

T = 650ºCT = 650ºCT = 650ºCT = 650ºC

1 hour1 hour1 hour1 hour

CALCINED

PRECURSOR

ACTIVATED

CATALYST

NH4OH

pH=7.9pH=7.9pH=7.9pH=7.9

T = T = T = T =

40ºC40ºC40ºC40ºC

COPRECIPITATIONCOPRECIPITATIONCOPRECIPITATIONCOPRECIPITATION

CALCINATIONCALCINATIONCALCINATIONCALCINATION

3h, 3h, 3h, 3h,

T = 750ºCT = 750ºCT = 750ºCT = 750ºC

Page 13: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Characterization: Catalysts prepared at increasing pH

NiONiAl O

23 % NiNiONiAl O

23 % Ni

XRD

XPS

1200 1000 800 600 400 200 0

O 1s

O 2s

Al 2p

Ni 3p

Al 2s

Ni 2p

ab

Ni LMM

C 1s

Binding energy (eV)

28%

33%

23%

O KLL

d

856.0 (2.9)

856.0 (2.8)

856.6 (2.9) −23 %

854.3 (1.8)33 %

−28 %

Ni 2p3/2Sample

856.0 (2.9)

856.0 (2.8)

856.6 (2.9) −23 %

854.3 (1.8)33 %

−28 %

Ni 2p3/2Sample

� BET: – 23 % Ni → Sg = 205 m

2/g

– 28 % Ni → Sg = 205 m2/g

– 33 % Ni → Sg = 180 m2/g

� ICP – OES:

10 20 30 40 50 60 70 80 90

2 θ

c)

Inte

nsit

y (a

.u.)

b)

NiAl2O

4

a)

23 % Ni

28 % Ni

33 % Ni

10 20 30 40 50 60 70 80 90

2 θ

c)

Inte

nsit

y (a

.u.)

b)

NiAl2O

4

a)

23 % Ni

28 % Ni

33 % Ni

22.0 %23 %

32.1 %33 %

26.9 %28 %

RealTheoretical

22.0 %23 %

32.1 %33 %

26.9 %28 %

RealTheoretical

880 870 860 850

Binding energy (eV)

23%

28%

33%

Page 14: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

CATALYSTS PREPARED AT CONSTANT pH

HYDRATED

PRECURSOR

FILTERINGFILTERINGFILTERINGFILTERING

DRYINGDRYINGDRYINGDRYING

6h, 6h, 6h, 6h,

REDUCTIONREDUCTIONREDUCTIONREDUCTION

10 % H10 % H10 % H10 % H2, , , ,

T = 650ºCT = 650ºCT = 650ºCT = 650ºC

10 hours10 hours10 hours10 hours

Ni(NO3)2·6H2O

Al(NO3)3·9H2O

Mg(NO3)2·6H2O

CALCINED

PRECURSOR

ACTIVATED

CATALYST

COPRECIPITATIONCOPRECIPITATIONCOPRECIPITATIONCOPRECIPITATION

CALCINATIONCALCINATIONCALCINATIONCALCINATION

6h, 6h, 6h, 6h,

T = 600ºCT = 600ºCT = 600ºCT = 600ºCCu(NO3)2·3H2O

Aging: Aging: Aging: Aging:

T = 80ºC, T = 80ºC, T = 80ºC, T = 80ºC,

15h15h15h15h

pH=8.5pH=8.5pH=8.5pH=8.5NaOH Na2CO3

Page 15: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Study with Microactivity plant*:Study with Microactivity plant*:

�� MicroactivityMicroactivity plantplant::

�� MicroMicro--scalescale fixedfixed bedbed

�� ExperimentsExperiments withwith differentdifferent modelmodelcompoundscompounds::

�� AceticAcetic acidacid�� AcetolAcetol�� AcetolAcetol�� 11--ButanolButanol�� DD--FructoseFructose

�� OptimizedOptimized experimentalexperimental conditionsconditions::

�� 650650ºCºC�� 11 hh previousprevious reductionreduction* Nickel content of the catalyst: 23, 28 and 33 % (Ni/(Ni+Al) * Nickel content of the catalyst: 23, 28 and 33 % (Ni/(Ni+Al)

relative at. %) relative at. %) * Ni/Al modified with Cu and Mg: Collaboration with the Norwegian University of Science and Technology (NTNU, Trondheim (Norway)).

*Results reported by Bimbela, F. et al., J. Anal. Appl. Pyrol., 79 (2007) 112

Page 16: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Fixed bed microactivity setup

Page 17: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Experimental ConditionsExperimental Conditions

�� AtmosphericAtmospheric pressure,pressure, reactionreaction temperaturetemperature setset atat 650650ºCºC..

�� Liquid feeding rate: 0.15 mL/min of acetic acid aqueous solution (23% Liquid feeding rate: 0.15 mL/min of acetic acid aqueous solution (23% w/w)w/w)

0.05 g of catalyst and 0.05 g of catalyst and ca. 1.5 g sand (particle size: 160ca. 1.5 g sand (particle size: 160--320 320 m)m)�� 0.05 g of catalyst and 0.05 g of catalyst and ca. 1.5 g sand (particle size: 160ca. 1.5 g sand (particle size: 160--320 320 µµm)m)

�� W/mW/mHAcHAc ~~ 11..4646 ggcatalystcatalyst·min/g·min/gaceticacetic acidacid,, S/CS/C molarmolar ratioratio == 55..5858

�� GGcc11HSVHSV ~~ 2850028500 hh--11

�� 11 hh reductionreduction timetime

�� 22 hh reactionreaction timetime

Page 18: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Catalytic steam reforming of ACETOL:Catalytic steam reforming of ACETOL:Influence of the nickel content Influence of the nickel content and reaction temperatureand reaction temperature

(W/(W/mmAcAc = 0,88 g cat= 0,88 g cat··min/g Ac)min/g Ac)

0,100,120,140,160,18

Hyd

roge

n yi

eld

(g/g

ace

tol)

Non catalytic

23 % Ni

28 % Ni

33 % Ni

Equilibrium

650 ºC: Better performance: 28 % Ni.650 ºC: Better performance: 28 % Ni.

23 % y 33 % display similar performances.23 % y 33 % display similar performances.

0 20 40 60 80 100 1200,000,020,040,060,08

Hyd

roge

n yi

eld

(g/g

ace

tol)

Time (min)

650 ºC650 ºC

Page 19: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

CH4

CO

CO2

C2H4

ACETIC ACID VS ACETOLACETIC ACID VS ACETOL

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00 ,0 00 ,0 20 ,0 40 ,0 60 ,0 80 ,1 00 ,1 20 ,1 40 ,1 60 ,1 80 ,2 00 ,2 2

Gas

yie

lds

(g/g

ace

tic a

cid)

T im e (m in )

Non catalytic reforming, 650 ºC

Catalytic Reforming. W/morg = 1.46 g·min/g, 650 ºC

0 20 40 60 80 100 1200,000,020,040,060,080,100,120,140,160,180,200,22

Gas

yie

lds

(g/g

)

Time (min)

Acetic acid Acetol

��Significant Significant non catalytic non catalytic reforming for reforming for acetol.acetol.

C2H4

C2H6

C2H2

H2

0 20 40 60 80 100 1200,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

Gas

yie

lds

(g/g

ace

tic a

cid)

Time (min)

Catalytic Reforming. W/morg = 1.46 g·min/g, 650 ºC

0 20 40 60 80 100 1200,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

Gas

yie

lds

(g/g

ace

tol)

Time (min)

Acetic acid Acetol

��Slower Slower decrease of decrease of the catalytic the catalytic activity for activity for acetol.acetol.

Page 20: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

ACETIC ACID VS ACETOLACETIC ACID VS ACETOL

ACETOL:ACETOL:��Better catalytic reforming:Better catalytic reforming:•• Much higher carbon conversion.Much higher carbon conversion.

•• Greater gas yields.Greater gas yields.

��CHCH44, C, C22HH44 and Cand C22HH66 detected.detected.��Product gas compositions:Product gas compositions:��Product gas compositions:Product gas compositions:•• similar Hsimilar H22

•• higher CO higher CO •• lower COlower CO22

Page 21: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Fluidized bed plant:

FLUIDIZED BED PLANT

Page 22: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Experimental methodExperimental method

Experimental conditionsExperimental conditions

�� AtmosphericAtmospheric pressurepressure andand 650650ºCºC temperaturetemperature

�� Liquid flow rate: 0.75Liquid flow rate: 0.75--0.77 ml/min acetic acid aqueous solution0.77 ml/min acetic acid aqueous solution

�� 7 cm height bed: 1,1 g catalyst and 7 cm height bed: 1,1 g catalyst and ~ 38 g sand (particle size of ~ 38 g sand (particle size of 160160--320 320 m)m)7 cm height bed: 1,1 g catalyst and 7 cm height bed: 1,1 g catalyst and ~ 38 g sand (particle size of ~ 38 g sand (particle size of 160160--320 320 µµm)m)

�� W/mW/mHAcHAc ~~ 66 ggcatalystcatalyst·min/g·min/gaceticacetic acidacid,, S/CS/C molarmolar ratioratio == 55..5858

�� u/uu/umfmf == 1010 GGcc11SHVSHV ~~ 68006800 hh--11

�� 22 hh reactionreaction timetime

Page 23: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

CatalystCatalyst A*A* A2*A2* BB B2B2 CC C2C2 DD D2D2 EE††

Relative atomic % Relative atomic % (Ni/(Ni+Al)(Ni/(Ni+Al)

1515 1515 2828 2828 2828 2828 2828 2828 3333

Screening of catalysts. Attrition tests.Screening of catalysts. Attrition tests.

Fluidized bed setupFluidized bed setup

�� FluidizationFluidization attritionattrition requirementsrequirements:: %% weightweight loss/hloss/h << 00..55 %% weight/h*weight/h*

�� MaximumMaximum resistanceresistance toto attritionattrition forfor DD catalystcatalyst

Calcination temperature Calcination temperature (ºC)(ºC)

750&750750&750 900&750900&750 750750 850850 750750 900900 750750 900900 850850

Ca/Ni molar ratio Ca/Ni molar ratio 0.320.32 0.320.32 00 00 1.291.29 1.291.29 0.310.31 0.310.31 5.005.00

Ca/Al molar ratioCa/Al molar ratio 0.060.06 0.060.06 00 00 0.500.50 0.500.50 0.120.12 0.120.12 2.502.50

AttritionAttrition

(% weight loss/h)(% weight loss/h)0.620.62 0.460.46 1.161.16 0.990.99 1.471.47 0.690.69 0.220.22 0.160.16 3.253.25

*Prepared*Prepared byby impregnationimpregnation.. SupportSupport calcinedcalcined atat 900900ºCºC andand impregnatedimpregnated precursorprecursor calcinedcalcined atat 750750ºCºC..

††PreparedPrepared byby coprecipitationcoprecipitation methodmethod atat constantconstant pHpH (precipitating(precipitating agentagent:: NaOHNaOH andand NaNONaNO33 solution)solution)..

Page 24: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Catalysts:

FLUIDIZED BED PLANT

Catalyst Preparation methodwt% Ni

Mg/Al molar ratio

Ca/Al molar ratio

Attrition rate (wt%/h)*

Sustainable fluidizable catalyst

NiAl Coprecipitation 28.5 0 0 1.16 No ����

* wt%/h: weight of catalyst lost per hour. Sustainable fluidizable catalyst when attrition rate < 0.5 wt%/h.

NiMgAl0.26 Coprecipitation 29.3 0.26 0 0.27 Yes ����

NiCaAl0.12 Coprecipitation 26.3 0 0.12 0.22 Yes ����

NiCaAl0.03 imp

Impregnation 7.5 0 0.03 0.46 Yes ����

* K.A. Magrini-Bair, S. Czernik, R. French, Y.O. Parent, E. Chornet, D.C. Dayton, C. Feik, R. Bain, Appl. Catal. A, 318 (2007) 199.

Page 25: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Butanol steam reforming:

FLUIDIZED BED PLANT

W/mbutanol

= 6 gcatalyst

·min/gbutanol W/m

butanol= 2 g

catalyst·min/g

butanol

�Complete carbon conversion at GC1HSV of araund 6000 h-1

���� NiAl���� NiMgAl 0.26���� NiCaAl 0.12���� NiCaAl 0.03 imp

0 20 40 60 80 100 1200

20

40

60

80

100

W/mbutanol

= 6 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)0 20 40 60 80 100 120

0

20

40

60

80

100

W/mbutanol

= 2 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)

GGC1C1HSV ~ 6000 hHSV ~ 6000 h--11

GGC1C1HSV ~ 33800 hHSV ~ 33800 h--11

650ºC, 1 atm, S/C = 14.7, u/u mf = 10

Page 26: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Butanol steam reforming:

FLUIDIZED BED PLANT

W/mbutanol

= 6 gcatalyst

·min/gbutanol W/m

butanol= 2 g

catalyst·min/g

butanol

�Except with the impregnated catalyst CaAl 0.03 imp ����low activity. ��������

Its catalytic activity is lower in butanol steam reformingthan in acetic acid or acetol steam reforming where 99% and

88% carbon conversion were obtained respectively. ☺☺☺☺

���� NiAl���� NiMgAl 0.26���� NiCaAl 0.12���� NiCaAl 0.03 imp

0 20 40 60 80 100 1200

20

40

60

80

100

W/mbutanol

= 6 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)0 20 40 60 80 100 120

0

20

40

60

80

100

W/mbutanol

= 2 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)

GGC1C1HSV ~ 6000 hHSV ~ 6000 h--11

GGC1C1HSV ~ 33800 hHSV ~ 33800 h--11

650ºC, 1 atm, S/C = 14.7, u/u mf = 10

Page 27: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Butanol steam reforming:

FLUIDIZED BED PLANT

W/mbutanol

= 6 gcatalyst

·min/gbutanol W/m

butanol= 2 g

catalyst·min/g

butanol

�Mg and Ca modified coprecipitated catalysts can perform with a good activity and with a higher resistance to attrition than the non modified Ni/Al catalyst.

���� NiAl���� NiMgAl 0.26���� NiCaAl 0.12���� NiCaAl 0.03 imp

0 20 40 60 80 100 1200

20

40

60

80

100

W/mbutanol

= 6 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)0 20 40 60 80 100 120

0

20

40

60

80

100

W/mbutanol

= 2 gcatalyst

·min/gbutanol

Car

bon

conv

ersi

on (

%)

Time (min)

GGC1C1HSV ~ 6000 hHSV ~ 6000 h--11

GGC1C1HSV ~ 33800 hHSV ~ 33800 h--11

650ºC, 1 atm, S/C = 14.7, u/u mf = 10

Page 28: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Butanol steam reforming:

FLUIDIZED BED PLANT

0,30

0,35

0,40

g/g

But

anol

)

0,3

0,4

But

anol

)

—— Equilibrium���� NiAl���� NiMgAl 0.26���� NiCaAl 0.12

650ºC, 1 atm, S/C = 14.7, u/u mf = 10, W/mbutanol = 2 gcatalyst ·min/g butanol

�Mg and Ca modified catalysts showed close hydrogen yields to the non modified

catalysts..

0 20 40 60 80 100 1200,00

0,05

0,10

0,15

0,20

0,25

Hyd

roge

n yi

eld

(g/

g

Time (min)

0 20 40 60 80 100 1200,0

0,1

0,2

CO

yie

ld (

g/g

But

anol

Time (min)

���� NiCaAl 0.12���� NiCaAl 0.03 imp

Page 29: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Butanol steam reforming:

FLUIDIZED BED PLANT

0,3

0,4

But

anol

)

0,30

0,35

0,40

g/g

But

anol

)

—— Equilibrium���� NiAl���� NiMgAl 0.26���� NiCaAl 0.12���� NiCaAl 0.03 imp

650ºC, 1 atm, S/C = 14.7, u/u mf = 10, W/mbutanol = 6 gcatalyst ·min/g butanol

W/mW/mbutanolbutanol from 2 to 6from 2 to 6

�Equilibrium hydrogen yields are reached with all the catalysts.

0 20 40 60 80 100 1200,0

0,1

0,2

CO

yie

ld (

g/g

But

anol

Time (min)

0 20 40 60 80 100 1200,00

0,05

0,10

0,15

0,20

0,25

Hyd

roge

n yi

eld

(g/

g

Time (min)

���� NiCaAl 0.03 imp

Page 30: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Aqueous fraction of bio-oil

� Bio-oil supplied by BTG (technology based on rotating cone reactor)

� Aqueous fraction prepared by dropwise water addition with continuous stirringaddition with continuous stirring

� Elemental analysis: C1.4 H3.4 O1 .

� S/C = 7.64

� pH = 2.52

� Water/organic mass ratio: 85/15

Page 31: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Steam reforming of the aqueous-phase of bio-oil:

FLUIDIZED BED PLANT

� 73.5% carbon conversionNiAl catalyst28.5 wt% Ni

650ºC, 1 atm, S/C = 7.64, u/u mf = 10W/mAqueous Fraction of Bio-Oil ~ 4, GC1SHV ~ 11800 h-1

� 63.3% H2 (%mol, N2 and H2O Free)

0 20 40 60 80 100 1200,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

H2 y

ield

(g/

gA

queo

us F

ract

ion

Bio

-Oil

)

Time (min)0 20 40 60 80 100 120

0

20

40

60

80

100

Car

bon

conv

ersi

on (

%)

Time (min)

Page 32: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Catalytic steam reforming of the aqueous fraction

0.4

0.6

0.8

1.0

1.2

1.4

yiel

d (g

/g o

f org

anic

s)

CH4 CO CO2 C2H4 C2H6 C2H2 H2

� Experimental conditions: 2 h reaction at 650 ºC, GC1HSV = 19000 h-1

� No operational problems detected

� Recovery (liquid+gas) = 97.5 %

� Carbon conversion averages 70 %

0 10 20 30 40 50 60 70 80 90 100 110 1200.0

0.2

time (min)

� Carbon conversion averages 70 % during the first hour of reaction

� 28 % Ni catalyst reduced in diluted H2 (H2:N2 1:10 vol.) at 650 ºC for 1 h

� Other catalysts tested: 23 % and 33 % Ni (increasing pH method) and 0, 1, 3, 5 and 10 % Cu (constant pH method)

� Average gas composition(vol. %):� H2 = 67.4

� CO = 6.3

� CO2 = 25.5

� CH4 = 0.5

Page 33: SYNTHESIS GAS BY CATALYTIC STEAM REFORMING OF BIO …

Synthesis gas by catalytic steam Synthesis gas by catalytic steam reforming of bioreforming of bio--oil.oil.

F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, F. Bimbela, J.A. Medrano, L. García, M. Oliva, J. Ruiz, De Chen, J. Arauzo M. Oliva, J. Ruiz, De Chen, J. Arauzo

Thermochemical Processes Group (GPT)Aragón Institute for Engineering Research (I3A)

University of Zaragoza, María de Luna, 3, E-50018, Zaragoza, Spain